1. Suppose there exists a language $A \in N P$ that is not $N P$ complete, but satisfy the property that for all $\mathrm{B} \in \mathrm{NP}, \mathrm{B} \in P^{A}$, then can we conclude that $\mathrm{P} \neq \mathrm{NP}$? Justify.
Soln: If $\mathrm{P}=\mathrm{NP}$, then any two non-trivial problems in NP are reducible to each other (under any notion of polynomial time reduction).
2. If the graph isomorphism problem GI is NP complete and $\mathrm{AM} \subseteq \mathrm{NP}$, then can we conclude that $\mathrm{NP}=\mathrm{coNP}$? Justify your answer.
Soln: GI is NP complete \Rightarrow GNI is co-NP complete. $\mathrm{AM} \subseteq \mathrm{NP} \Rightarrow \mathrm{coNP} \subseteq \mathrm{NP} \Rightarrow \mathrm{NP}=\mathrm{coNP}$.
3. Let $L \in \operatorname{BPP}$. Let $A(x, r)$ be a polynomial time BPP verifier for L that uses $m=\operatorname{poly}(n)$ random bits on input x of length n, such that $\operatorname{Pr}_{r}(A(x, r) \neq(x \in L)) \leq \frac{1}{2^{n}}$. Suppose $x \in L,|x|=n$. Let $z_{1}, z_{2}, . ., z_{m}$ be randomly chosen from $\{0,1\}^{m}$. Show that the probability that there exists an $r \in\{0,1\}^{m}$ such that $A\left(x, r \oplus z_{i}\right)=0$ for all $1 \leq i \leq m$ is strictly less than 1.
Soln: Fix any r. $\operatorname{Pr}\left(A\left(x, z_{1} \oplus r\right)=0<\frac{1}{2^{n}}\right.$ for each i. Thus, $\operatorname{Pr}\left(\forall i A\left(x, z_{i} \oplus r\right)\right)==\left(\frac{1}{2^{n}}\right)^{m}=$ $\frac{1}{2^{m n}}$. Now, this is for any particular r. Probability that at least for one r (among 2^{m} possibilities of r), $\bigwedge_{i} A\left(x, r \oplus z_{i}\right)=0$ is an event of probability at most $2^{m}\left(\frac{1}{2^{m n}}\right)<1$. (Additonal Note: A consequence of this observation is that if $x \in L$, there exists $z_{1}, z_{2}, . . z_{m}$ such that $\bigvee_{i} A\left(x, r \oplus z_{i}\right)=1$ for all $\left.r \in\{0,1\}^{m}\right)$.
4. If we are designing an MA protocol for a language $L \in B P P$ with algorithm $A(x, r)$ specified in the previous question, then what must be the proof sent by Merlin to Arthur? What is the verification step done by Arthur?
Soln: Assume that $\operatorname{Pr}(A(x, r) \neq(x \in L))=\frac{1}{2^{n}}$. Merlin can choose $z_{1}, z_{2}, . . z_{m}$ specified in the Additional note in the solution to the previous question to Arthur. Aruther choses a random r and tests $\bigvee_{i} A\left(x, r \oplus z_{i}\right)=1$. If $x \in L$, proper choice of $z_{1}, \ldots z_{m}$ by Merlin ensures that Arthur will accept. If $x \notin L$, since r is randomly chosen, $A\left(x, z_{i} \oplus r\right)=1$ with probability at most $\frac{1}{2^{n}}$ for each i. Hence the probability that for some $i A\left(x, z_{i} \oplus r\right)=0$ is bounded by (the union bound) $\frac{m}{2^{n}}<1$ as $m=\operatorname{poly}(n)$ for n large enough.

5 . If $\mathrm{MA} \subseteq \mathrm{P} / \mathrm{POLY}$, can we conclude that PH collapses? If so, to which level?
Soln: Since NP \subseteq MA (the verifier can get the certificate from Merlin and do the verification without even doing coin tosses, achieving zero error), if $\mathrm{MA} \subseteq \mathrm{P} / \mathrm{POLY}$, we have $\mathrm{PH}=\Sigma_{2}^{p}$ by Karp Lipton Theorem.
6. Suppose we have an MA proof system for a language L where, given input string x, Merlin sends Arthur a proof y for membership for x in L and Arthur guesses an m bit random string r and runs a verifier $A(x, y, r)$ which accepts with probability 1 when $x \in L$ and accepts with probability less than $\frac{1}{2^{m+1}}$ when $x \notin L$. Design an AM protocol for accepting L and prove the soundness and completeness of your protocol.
Soln: Arthur picks $r \in\{0,1\}^{m}$ and sends to Merlin. Merlin sends the proof y and Arthur runs $A(x, y, r)$. A randomly chosen r has probability at most $\frac{1}{2^{m+1}}$ to be "bad" for any fixed y (in that $A\left(x, y_{1}, r\right)$ gives the wrong answer). Thus, the probability that r is bad for at least one y is at most $\frac{2^{k}}{2^{m+1}}$, where k is the length of each proof y. If this quantity is less than 1 , we have an AM protocol. We can set (through probability amplification) the value of m to meet the requirment $m=k$.
7. Show that $\mathrm{AM} \subseteq \Pi_{2}^{p}$.

Soln: $L \in A M$ if there exists a polynomially balanced $A(x, y, r)$ such that: a) $x \in L \Rightarrow \forall r \exists y A(x, y, z)=$ 1. (This is a Π_{2}^{p} condition). b) if $x \notin L, \operatorname{Pr}_{r}(\exists y A(x, y, z)=1)<\frac{1}{2}$. Since the probability for a particular r to satisfy $\forall y A(x, y, r)=0$ is greater than 0 , we conclude that $\exists r \forall y A(x, y, r)=0$, which is a Π_{2}^{p} condition.
8. A symbolic $n \times n$ matrix $A=\left(x_{i j}\right)$ has its $(i, j)^{t h}$ entry set to either the indeterminate (variable) $x_{i j}$ or zero. The symbolic determinant problem (SYMDET) takes as input a symbolic $n \times n$ matrix A and decides whether $\operatorname{Det}(A)=0$. Show that the problem of testing whether an (n, n) bipartite graph has a perfect matching is log-space reducible to SYMDET.
Soln: Consider the matrix A with $A(i, j)=x_{i j}$ if (i, j) is an edge in $G, 0$ otherwise. It is easy to see that the graph has determinant zero if and only if there is no perfect matching in G.
9. Let M^{B} be a deterministic Turing machine that queries an oracle for a language B and runs for at most n^{k} steps on any input of length n. For any language B, define $L_{B}=\left\{1^{n}: B\right.$ contains at least one string of length $n\}$. Design a language B such that $L\left(M^{B}\right) \neq L_{B}$.
Soln: Choose n_{0} such that $2^{n_{0}}>n^{k}$. Define B as follows: B is either empty or contains at most one string, and that too of length exactly n_{0}. Consider the string $1^{n_{0}}$ of length n_{0}. We will define B in such a way that $M^{B}\left(1^{n_{0}}\right)=1$ if and only if B is empty, thereby ensuring that $L\left(M^{B}\right) \neq L_{B}$. Suppose M on input $1^{n_{0}}$ querires strings $x_{1}, x_{2}, \ldots, x_{t}\left(t \leq n_{0}^{k}\right)$ to its oracle B, we will define B not to contain any of the strings $x_{1}, x_{2}, \ldots x_{t}$ so that the answer supplied by the oracle is always 0 . Finally, if $M^{B}\left(1^{n_{0}}\right)$ accepts, we set $B=\emptyset$ and hence $1^{n_{0}} \notin L_{B}$. Otherwise, let x be any string in $\{0,1\}^{n_{0}}$ different from $x_{1}, x_{2}, . . x_{t}$ (such x must exist because $2^{n_{0}}>n^{k}$). Let $B=\{x\}$. Now $L_{B}=\left\{1^{n_{0}}\right\} \neq L\left(M^{B}\right)$.
10. Let $R \subseteq \Sigma^{*} \times \Sigma^{*}$ be a polynomially balanced binary relation. Define the decision problem $L_{R}=\{x$: $\exists y R(x, y)=1\}$ and $\# R(x)=|\{y: R(x, y)=1\}|$. Suppose it is true that for all polynomially balanced $R, \# R \in P^{L_{R}}$ (that is, the certificate counting problem is Turing reducible to the certificate existence problem for all languages in NP). Then show that $\mathrm{P}=\mathrm{NP}$.
Soln: for any $R, \# R \preceq{ }_{m}^{p} \# \mathrm{PM}$, where $\# \mathrm{PM}$ is the problem of counting the number of perfect matchings in a bipartite graph (Valiant's theorem). However, the decision problem PM of checking whether a graph contains a perfect matching is indeed in P . Hence, under the assumption in the question, $\# \mathrm{PM} \in P^{P M}=$ P. As \#PM is \#P complete, this would mean $\# \mathrm{P} \subseteq \mathrm{P}$, which in turn would imply $\mathrm{P}=\mathrm{NP}$.
11. Show that there exists a directed graph G and vertices $s, t \in V(G)$ such that $s-t$ path exists in G, but a random walk in G starting s may fail to reach t with positive probability. (This shows that the RL algorithm for $s-t$ REACH on undirected graph will not work with directed graphs).
Soln: In the graph $G(V, E)$ with $V=\{1,2,3\}$ and $E=\{(1,2)(1,3)\}$, it is easy to see that a random walk starting at 1 will visit only one of 2 and 3 , each case happening with probability $\frac{1}{2}$.
12. A (cryptographic) one way function is a polynomial time computable $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that the problem of computing f^{-1} is hard. That is, given any $y \in \Sigma^{*}$, the problem of finding an x such that $f(x)=y$ is not polynomial time computable. Show that if one way functions exist, then $\mathrm{P} \neq \mathrm{NP}$.
Soln: Given y, a non-deterministic Turing machine can guess x and hence f^{-1} is in NP. Thus, if $\mathrm{P}=\mathrm{NP}$, inversion will not be hard.
13. Show that $S_{2}^{p} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$.

Soln: By definition of $S_{2}^{p}, x \in L \Rightarrow \exists y \forall z, P(x, y, z)=1$ This is a Σ_{2}^{p} condition. Further, $x \notin L \Rightarrow \exists z \forall y, P(x, y, z)=0$, which implies the Σ_{2}^{p} requirement $\forall y \exists z P(x, y, z)=0$, and consequently $S_{2}^{p} \subseteq \Sigma_{2}^{p}$. The proof for $S_{2}^{p} \subseteq \Pi_{2}^{p}$ is similar.

