
PROJECT REPORT

Pseudorandom Generator based on the
Directed Hamiltonian Path Problem

Submitted in partial fulfilment of
the requirements for the award of the degree of

Bachelor of Technology
in

Computer Science and Engineering

Submitted by

Girish R Varma
CS04B025

Under the guidance of
Mr. Muralikrishnan K

Department of Computer Science & Engineering

National Institute of Technology Calicut
Kerala - 673601

2008

National Institute of Technology Calicut
Department of Computer Science & Engineering

Certified that this Project Report entitled

Pseudorandom Generator based on the
Directed Hamiltonian Path Problem

is a bonafide record of the work carried out by

Girish R Varma
CS04B025

in partial fulfilment of
the requirements for the award of the degree of

Bachelor of Technology
in

Computer Science and Engineering

under our guidance

Mr. Muralikrishnan K
Lecturer
Dept.of Computer Science & Engineering

Dr.M.P.Sebastian
Professor and Head
Dept.of Computer Science & Engineering

Contents

1 Introduction 4
1.1 An Incomplete Model . 4
1.2 Revised Model . 4
1.3 Security of the Model . 5

1.3.1 Information Theoretic Definition . 5
1.3.2 Complexity Theoretic Definition . 5

1.4 Some Common Terms . 5
1.4.1 Efficient and Intractable . 5
1.4.2 Negligible and Noticeable . 5

1.5 Notations . 6

2 One-Way Functions 7
2.1 Hard-Core Predicate . 7
2.2 Hard-Core Predicates for any One-Way Function 7

3 Construction of One-Way Functions based on NP-Hard Problems 10
3.1 Functions that are Hard on Average but Easy with Auxiliary Input 10
3.2 Construction based on HAMPATH . 10

4 Pseudorandom Generator 12
4.1 Equivalence of Pseudorandom Generator with different Expansion Factors . . . 12
4.2 Psuedorandom Generators based on One-Way Functions 14

5 Conclusion 16

References 17

2

Abstract

This report is a study of one-way functions and pseudorandom generators, which
forms the primitives in construction of cryptographic systems. Simpler arguments proving
equivalence of one-way functions and pseudorandom generators are presented[1][2]. Also
a one-way function is constructed based on the HAMPATH(directed hamiltonian path
probem). It is found that this requires a strong assumption of hardness on average of
HAMPATH. Basing the one-wayness of the function constructed on weaker assumption is
left for future work.

3

1 Introduction

One of the basic problems that cryptography attempts to find a solution is described as
follows[3]. Alice is sending a message to Bob, and wants to do it secretly. Bob wants to
make sure that the message he receives was sent by Alice. The message is sent over an insecure
channel, where Eve (eavesdropper) is listening and she tries to get the message.

1.1 An Incomplete Model

So Alice encrypts (using encryption function e) the message also called plain text (m) and
converts it to a cipher text(c). Bob decrypts (using decryption function d) the cipher text and
converts it back to message. The problem with this model is that e and d might be known to
Eve. So Eve cannot be stopped from obtaining m.The model is incomplete.

1.2 Revised Model

Assume that Alice and Bob know some secret which is not known to Eve. This secret is called
the key (K). The functions e and d now also takes K as an input. The functions are such that
the message encrypted using a particular key can only be decrypted using the same key. This
model is popularly called Private Key or Symmetric Encryption.

A variation of this is the Public Key Encryption where the encryption key(or public key)
and decryption key(or private key) are different. Each party who want to communicate, has
a private key known only to him and a public key known to every one. To send a message to

4

Bob, Alice encrypts m using his public key. Then c can be decrypted only using his private
key, known only to him. It requires an additional restriction that the Bobs private key should
not be feasibly computable from his public key.

1.3 Security of the Model

Security of the model above is defined in two ways:

1.3.1 Information Theoretic Definition

Given c, Eve should not be able to gain any information about m. Shannon proved that it can
be done by using a random key equal to the size of the message. Each bit of the message is
XOR-ed with the corresponding bit of the key. This technique is called One Time Pad (OTP).
The problem with this technique is that the size of messages can be very large. It is inconvenient
to have large key values.

1.3.2 Complexity Theoretic Definition

Assume Eve has limited computational capability. Given c, Eve should not be able to obtain
m by efficient methods. Construction of a model as above without having the key size increas-
ing is possible using this assumption. It requires structures known as one-way functions and
pseudorandom generators.

1.4 Some Common Terms

1.4.1 Efficient and Intractable

Computations that can be done by probabilistic polynomial time Turing Machines are consid-
ered efficient. Those that cannot be done by them are considered intractable. The adversarial
tasks that we are interested, is such that if a solution is found, it can easily be verified(∈ NP).
So cryptographic systems based on complexity theory also assumes that ∃L ∈ NP \ BPP .
Therefore P 6= NP is necessary but not sufficient[4].

1.4.2 Negligible and Noticeable

A function is said to be negligible if

∀k ∃n0 ∀n > n0, f(n) ≤ 1/nk (1.1)

If an algorithm has negligible probability of success, repeating the algorithm polynomial num-
ber of times, yields a new algorithm with negligible probability of success.

A function is said to be noticeable if

∃k ∃n0 ∀n > n0, f(n) ≥ 1

nk
(1.2)

Functions may be neither negligible nor noticeable.

5

1.5 Notations

• Here a random variable is used to denote a mapping from some sample space to a set of
strings.

• Un denotes a random variable uniformly distributed in {0, 1}n.

• If A is a probabilistic polynomial time algorithm, f is a function f : {0, 1}∗ → {0, 1}∗,
then

Pr[A(f(Un)) = Un]

denotes the following ∑
x∈{0,1}n

Pr[Un = x] ∗ Pr[A(f(x)) = x]

That is for some deterministic A
′
, a polynomial p(n) number of coin tosses,

∑
x∈{0,1}n

Pr[Un = x] ∗

(∑
c∈{0,1}p(n) ψ[A

′
(f(x), c) = x]

)
2p(n)

where ψ denotes the indicater random variable.

6

2 One-Way Functions

In simple terms, they are functions that are easy to compute but hard on average to invert[1].
For simplicity, i am restricting to functions that are length regular(∀x ∈ {0, 1}n, |f(x)| remains
same). To avoid functions that decrease the length of the input exponentially, i restrict that
length of x may be computed easily from that of f(x).

Definition 2.1. A function f : {0, 1}∗ → {0, 1}∗ is said to be one-way if

1. f is deterministic polynomial time computable.

2. ∃ (a function l, polynomial time algorithm A) ∀x,

l(|x|) = |f(x)|
∧

A(l(|x|)) = |x|

3. ∀(probabilistic polynomial time algorithms A, k) ∃n0 ∀n > n0,

Pr[A(f(Un)) = Un] <
1

nk
(2.1)

2.1 Hard-Core Predicate

A hard-core predicate with respect to a function f , is a function with 1 bit output that is easy
to compute from the input of f , but can be computed only with negligible advantage on the
average from the output.

Definition 2.2. A predicate b : {0, 1}∗ → {0, 1} is called a hard-core of a function f if

1. b is deterministic polynomial time computable.

2. ∀(probabilistic polynomial time algorithms A, k) ∃n0 ∀n > n0,

Pr[A(f(Un)) = b(Un)] <
1

2
+

1

nk
(2.2)

2.2 Hard-Core Predicates for any One-Way Function

Theorem 2.3. Let f be an arbitrary one-way function, and let g be defined by g(x, r) =
(f(x), r), where |x| = |r|. Let b(x, r) =

⊕n
i=1 xi · ri (the inner product mod 2 of the binary

vectors x and r). Then the predicate b is a hard-core of the function g.

The function g is one-way, as inverting f can be reduced to inverting g. The theorem states
that the exclusive or of a random subset of bits of x, cannot be found by efficient means given
f(x) and the subset itself.

Proof. The proof follows by contradiction. Let G be a probabilistic polynomial time algo-
rithm(that was not supposed to exist) for computing b(x, r) from f(x) and r, with noticeable
probability. Then

Pr[G(f(Un), Rn) = b(Un, Rn)] =
1

2
+ ε(n)

∧
ε(n) >

1

nk
(2.3)

where Rn is uniformly distributed in {0, 1}n. Using G it is possible to construct an efficient
algorithm, G

′
for inverting g, resulting in a contradiction.

We analyze G
′

only for a noticeable fraction of x ∈ {0, 1}n(denoted as Sn) and we prove
that G

′
inverts f with noticeable probability for x ∈ Sn. This is enough to show that G

′
inverts

f with noticeable probability.

7

Lemma 2.4. Let Sn ⊆ {0, 1}n be the set of x such that,

Pr[G(f(x), Rn) = b(x,Rn)] ≥ 1

2
+
ε(n)

2

Then |Sn| ≥ ε(n)
2

.

Loosely speaking, this means for a noticeable fraction of inputs, the advantage in finding
b(x,Rn) is noticeable.

Proof. Let s(x) = Pr[G(f(x), Rn) = b(x,Rn)] and t = 1
2

+ ε(n)
2

. Then E(s(X)) = 1
2

+ ε(n).

E(s(X)) ≤ t ∗ 1 + 1 ∗ Pr[s(X) ≥ t]

⇔ Pr[s(X) ≥ t] ≥ E(s(X))− t

⇔ Pr[s(X) ≥ 1

2
+
ε(n)

2
] ≥ ε(n)

2

(2.4)

Lemma 2.5.
b(x, α)

⊕
b(x, β) = b

(
x, α

⊕
β
)

Proof.

b(x, α)
⊕

b(x, β) =

(
n⊕

i=1

xi · αi

) ⊕ (
n⊕

i=1

xi · βi

)
=

n⊕
i=1

xi ·
(
αi

⊕
βi

)
= b

(
x, α

⊕
β
)

The equations given below follows from Claim 2.
Especially, if ei denote a n bit string with all 0 but 1 in only the ith position, then

b(x, r)
⊕

b
(
x, r

⊕
ei

)
= b(x, ei) = xi

Also, for i ∈ {1..l}, if ∀i, b(x, si) = σi, then for any J ⊆ {1, ..l}, let rJ =
⊕

j∈J sj and

ρJ =
⊕

j∈J σj.

b(x, rJ) = b

(
x,
⊕
j∈J

sj

)
=
⊕
j∈J

b(x, sj) =
⊕
j∈J

σj = ρJ

Loosely speaking, this means by guessing only σ1..σl, each equal to b(x, s1)..b(x, sl), we get
2l − 1 samples(one for each subset of {1, ..l}), with b(x, rJ) = ρJ . Each rJ so obtained are
pairwise independent if s1..sl are uniformly and independently selected. This is true because,
for each J1 6= J2 ⊆ {1, ..l}, J1 ⊂ J2

∨
J2 ⊂ J1

∨
no subset relation exists. So ∃si ∈ J1 /∈ J2 or

vice versa. Since si’s are xor-ed, rJ1 and rJ2 are independent.

Lemma 2.6. If each xi is obtained with probability atleast 1
2

+ 1
2p(n)

, then with m = 2np2(n)

pair-wise independent trials, the probability can be amplified to 1− 1
2n

. Then x can be obtained
with probability atleast 1− n

2n
= 1

2
.

8

Proof. Let Xj denote whether the ith trial was successful in obtaining xi. Using Chebyshev’s
inequality,

Pr[failure] = Pr
[∑

Xj ≤
m

2

]
≤ Pr

[∣∣∣∣∑Xj − (
1

2
+

1

2p(n)
)m

∣∣∣∣ ≥ m

2p(n)

]
≤ V ar[Xj]

(1
2p(n)

)2 ∗m

= V ar[Xj]/(
1

2p(n)
)2 ∗ (2np2(n))

=
1/4

n/2

=
1

2n

(2.5)

Using the above lemmas we can write an algorithm for inverting f .

Algorithm 2.1 G
′
(y)

1: l← log(np2(n) + 1).
2: Uniformly and independently select s1..sl and σ1..σl.
3: for all J ⊆ {1, ..l} do
4: rJ ←

⊕
j∈J sj

5: ρJ ←
⊕

j∈J σj

6: for all i ∈ {1, ..n} do
7: zJ

i ← G(y, rJ)
⊕

ρJ

8: end for
9: end for

10: xi ← majority value of zi’s.
11: return x1...xn.

All σi = b(x, si) with probability 2−l = 1
2np2(n)+1

. For ε(n)/2 fraction of x’s, this algorithm

inverts f with probability 1
2
∗ 1

2np2(n)+1
. Therefore

Pr[G
′
(f(Un)) = Un] ≥ 1

2
∗ 1

2np2(n) + 1
∗ ε(n)

2

=
1

8np3(n) + 4p(n)

Hence f is not one-way which is a contradiction.

9

3 Construction of One-Way Functions based on NP-Hard

Problems

For constructing one-way functions based on NP-Hard Problems it is useful to consider the
following structure

3.1 Functions that are Hard on Average but Easy with Auxiliary
Input

Definition 3.1. A function h : DGen → {0, 1}∗ is hard on average but easy with auxiliary
input if

1. ∃ (probabilistic polynomial time algorithm Gen, polynomial time algorithm A) such that
A(x, y) = h(x) for every (x, y) that is a possible output of Gen(1n) for some n

2. ∀ (probabilistic polynomial time algorithm A
′
, k) ∃n0 ∀n > n0

Pr[A
′
(UDGen

n
) = h(UDGen

n
)] < 1/nk

3. where DGen is the set of all x that is the first output of Gen(1n) for some n and DGen
n =

DGen ∩ {0, 1}n.

Theorem 3.2. If there exists a function that is hard on average but easy with auxiliary input,
then we can define a function that is one-way from the coins used by Gen to x.

Proof. Let f be a function mapping the coin tosses of Gen to its first output. Let us assume
that f is not one-way ie ∃ a probabilistic polynomial time algorithm A such that

Pr[A(f(Un)) = Un] >
1

nk

Then we can have an algorithm for computing h(x) with noticeable probability using A to find
the coin tosses of Gen. Then execute Gen with the specific coin toss deterministically to obtain
(x, y) and use A

′
to compute h(x).

3.2 Construction based on HAMPATH

Here a one-way function is constructed based on the HAMPATH problem.

HAMPATH = {< G, s, t >: G is a directed graph with a hamiltonian path from s to t}

Let h(< G, s, t >) = (< G, s, t >, 1) if < G, s, t >∈ HAMPATH else (< G, s, t >, 0). Also the
domain of h only consists of those < G, s, t > which is a possible first output of Gen(1n) for
some n.The algorithms Gen and A, required for definition of h are described below.

10

Algorithm 3.1 Gen(1n)

1: for i = 1 to n do
2: Adj[i− 1, i] = 1
3: end for
4: for i = 1 to n do
5: for j = i+ 2 to n do
6: c = TossCoin()
7: Adj[i, j] = c
8: end for
9: end for

10: c = TossCoin()
11: if c = 1 then
12: return (< G, 1, n >,< 1, . . . , n >)
13: else
14: Uniformly choose j ∈ {1, . . . , n}
15: Adj[j − 1, j] = 0
16: for i = 1 to n do
17: if i 6= j then
18: c = TossCoin()
19: Adj[j − 1, j] = c
20: end if
21: end for
22: return (< G, 1, n >,< 0, . . . , 0 >)
23: end if

Algorithm 3.2 A(< G, s, t >, π)

1: if π is a valid hamiltonian path from s to t in G then
2: return (< G, s, t >, 1)
3: else
4: return (< G, s, t >, 0)
5: end if

Remark 3.3. HAMPATH /∈ BPP implies ∃ x such that for even the best probabilistic polyno-
mial time algorithms for HAMPATH

Pr[the algorithm succeeds for x] <
2

3
This only means that ∃x that may be hard instances. For hardness on average, we need this
value averaged over all x to be negligible. So the assumption that HAMPATH ∈ NP \ BPP
seems to be insufficient for proving the hardness on average of the constructed function. Though
it will be interesting if HAMPATH ∈ NP \BPP → ∃ a one way function or the more general
question ∃L ∈ NP \BPP → ∃ a one way function.

Hence it is required to directly assume hardness on average for h. ie, ∀(probabilistic poly-
nomial time algorithms A

′
, k) ∃n0 ∀n > n0,

Pr[A
′
(Un) = h(Un)] <

1

nk

Then we can define a function as proved in Theorem 3.2 from the coin tosses made by Gen to
its first output. This function is one-way.

11

4 Pseudorandom Generator

Definition 4.1. A pseudorandom generator is a deterministic polynomial-time algorithm
G satisfying the following two conditions:

1. Expansion: ∃ (a function l and a polynomial time algorithm A), such that ∀s,

l(|s|) = |G(s)|
∧

A(l(|s|)) = |s|

2. Pseudorandomness: ∀(Probabilistic Polynomial Time Algorithm D, k) ∃n0 ∀n > n0

|Pr[D(G(Un)) = 1]− Pr[D(Un) = 1]| < 1

nk

The function l is called the expansion factor of G.

4.1 Equivalence of Pseudorandom Generator with different Expan-
sion Factors

Theorem 4.2. For any polynomial p(n),
∃ pseudorandom generator of expansion l(n) = n+1⇔ ∃ pseudorandom generator of expansion
l
′
(n) = p(n).

Proof. The backward direction is trivial. The p(n) bit output just need to be stripped at n+ 1
bits. For proving the forward direction, we construct a pseudorandom generator of expansion
p(n) from one with n+ 1.

Let G be a pseudorandom generator of expansion l(n) = n + 1. Therefore ∀(probabilistic
polynomial time algorithms D, k) ∃n0 ∀n > n0,

|Pr[D(G(Un)) = 1]− Pr[D(Un+1) = 1]| < 1

nk
(4.1)

Consider the following algorithm, From the algorithm G
′

it follows that

Algorithm 4.1 G
′
(s)

1: Let s0 = s
2: for i = 1 to p(n) do
3: σisi = G(si−1)
4: end for
5: return σ1..σp(n)

prefj+1

(
G

′
(x)
)

= pref1 (G(x)) · prefj

(
G

′
(suffn(G(x)))

)
(4.2)

where prefj(α) denotes the j bit prefix of α.
For the purpose of the proof, let

fp(n)−k(α) = pref1(α) · prefp(n)−k−1

(
G

′
(suffn(α))

)
(4.3)

12

Lemma 4.3. G
′

is a pseudorandom generator with expansion factor p(n).

Proof. The proof follows by a method known as the hybrid technique. In this method we define
p(n) + 1 hybrid random variables, numbered from 0 to p(n)(Hn

k 0 ≤ k ≤ p(n)). The extreme
ones(Hn

0 and Hn
p(n)), being equal to Up(n) and G

′
(Un). Then it is shown that a polynomial time

distinguisher for extreme hybrids will imply a polynomial time distinguisher for neighboring
hybrids(Hn

k and Hn
k+1) and this will in turn imply a polynomial time distinguisher for G(Un)

and Un+1, which is a contradiction.

Let
Hn

k = Uk · prefp(n)−k

(
G

′
(U

′

n)
)

(4.4)

So
Hn

0 = G
′
(Un) and Hn

p(n) = Up(n)

Also,

Hn
k = Uk · prefp(n)−k

(
G

′
(U

′

n)
)

= Uk · pref1

(
G(U

′

n)
)
· prefp(n)−k−1

(
G

′
(

suffn

(
G(U

′

n)
)))

= Uk · fp(n)−k

(
G(U

′

n)
) (4.5)

where suffj(α) denotes the j bit suffix of α.

Hn
k+1 = Uk+1 · prefp(n)−k−1

(
G

′
(U

′

n)
)

= Uk · pref1

(
U

′

n+1

)
· prefp(n)−k−1

(
G

′
(

suffn

(
U

′

n+1

)))
= Uk · fp(n)−k

(
U

′

n+1

) (4.6)

For the purpose of getting a contradiction, let D
′

be a polynomial time distinguishing
algorithm such that ∃k′ ∀n > n0∣∣∣Pr[D′

(G
′
(Un)) = 1]− Pr[D′

(Up(n)) = 1]
∣∣∣ > 1

nk′

Consider the following algorithm, From the construction it follows that,

Algorithm 4.2 D(αn+1)

1: Uniformly select k ∈ {0, 1, .., p(n)− 1}
2: Uniformly select β ∈ {0, 1}k
3: return D

′
(β · fp(n)−k(α))

Pr[D(α) = 1] =
1

p(n)

p(n)−1∑
k=0

Pr[D
′
(Uk · fp(n)−k(α)) = 1]

13

Lemma 4.4. D can distinguish G(Un) and Un+1 with noticeable probability.

Proof.

Pr[D(G(Un)) = 1] =
1

p(n)

p(n)−1∑
k=0

Pr[D
′
(Uk · fp(n)−k(G(Un))) = 1]

=
1

p(n)

p(n)−1∑
k=0

Pr[D
′
(Hn

k) = 1]

Pr[D(Un+1) = 1] =
1

p(n)

p(n)−1∑
k=0

Pr[D
′
(Uk · fp(n)−k(Un+1)) = 1]

=
1

p(n)

p(n)−1∑
k=0

Pr[D
′
(Hn

k+1) = 1]

Pr[D(G(Un)) = 1]− Pr[D(Un+1) = 1] =
1

p(n)

(
Pr[D

′
(Hn

0) = 1]− Pr[D′
(Hn

p(n)) = 1]
)

>
1

p(n)
∗ 1

nk′

4.2 Psuedorandom Generators based on One-Way Functions

Theorem 4.5. If f : {0, 1}n → {0, 1}n is an one-one one-way function and b be a hard-
core predicate for f , then G(x) = f(x) · b(x) is pseudorandom generator with expansion factor
l(n) = n+ 1.

Proof. We prove that the task of distinguishing G(Un) from Un+1 is equivalent to the task of
distinguishing

E1 = f(Un) · b(Un) and E2 = f(Un) · b(Un) (4.7)

where b(Un) = 1 − b(Un). Then we construct an algorithm A which finds b(Un) from f(Un)
with noticeable advantage using the distinguisher for E1 and E2.

Lemma 4.6. D is a algorithm that is able to distinguish E1 and E2 with noticeable probability
⇔ D is an algorithm that is able to distinguish G(Un) from Un+1 with noticeable probability.

Proof. By definition, G(Un) and E1 are identically distributed. Un+1 is identically distributed to
f(Un) ·U ′

1 as f is one-one. Also U
′
1 is uniformly distributed in the set {b(Un), b (Un)}. Therefore

Un+1 is distributed identically to the distribution obtained by taking E1 with probability 1
2

and
E2 with probability 1

2
.

Pr[D(G(Un)) = 1] = Pr[D(E1) = 1] (4.8)

Pr[D(Un+1) = 1] =
1

2
Pr[D(E1) = 1] +

1

2
Pr[D(E2) = 1] (4.9)

Pr[D(G(Un)) = 1]− Pr[D(Un+1) = 1] =
1

2

(
Pr[D(E1) = 1]− Pr[D(E2) = 1]

)
(4.10)

Hence the claim is proved.

14

For the purpose of contradiction, let us assume that D is an algorithm able to distinguish
E1 and E2 with noticeable probability. Consider the following algorithm,

Algorithm 4.3 A(y = f(x))

1: Uniformly select σ ∈ {0, 1}
2: if D(y · σ) = 1 then
3: return σ
4: else
5: return 1− σ
6: end if

Lemma 4.7. A can find b(Un) given f(Un) with noticeable advantage.

Proof.

Pr[A(f(Un)) = b(Un)] = Pr[D(f(Un) · U ′

1) = 1 & U
′

1 = b(Un)]

+ Pr[D(f(Un) · U ′

1) = 0 & 1− U ′

1 = b(Un)]

= Pr[D(f(Un) · b(Un)) = 1 & U
′

1 = b(Un)]

+ Pr[D(f(Un) · b(Un)) = 0 & U
′

1 = b(Un)]

=
1

2
Pr[D(f(Un) · b(Un)) = 1] +

1

2

(
1− Pr[D(f(Un) · b(Un)) = 1]

)
=

1

2
+

1

2
∗
(
Pr[D(f(Un) · b(Un)) = 1]− Pr[D(f(Un) · b(Un)) = 1]

)
>

1

2
+

1

2nk

(4.11)

15

5 Conclusion

Simpler definitions for one-way functions and pseudorandom generators were presented and
studied. Also simpler proofs for existence of hard-core predicates for one-way functions, con-
struction pseudorandom generators from one-way functions using hard-core predicates and
equivalence of pseudorandom generators with different expansion factors were presented[1].

A one-way function was defined based on HAMPATH ∈ NP -Hard. It was found that the
assumption HAMPATH ∈ NP \BPP is not sufficient for this purpose. So the hardness on av-
erage for HAMPATH was assumed. Basing one-wayness of the constructed function on weaker
assumption is left for future work. Also the papers[5][6], gives more results on basing one-way
functions on NP-Hard problems.

16

References

[1] O. Goldriech, Foundations of Cryptography Volume 1 : Basic Tools. Cambridge University Press,
2001.

[2] S. Arora and B. Barak, Complexity Theory: A Modern Approach.
http://www.cs.princeton.edu/theory/complexity/book.pdf.

[3] H. Delfs and H. Knebl, Introduction to Cryptography: Principles and Applications. Springer,
2002.

[4] M. Sipser, Introduction to the Theory of Computation. Thompson Brook/Cole, 2002.

[5] A. Bogdanov and L. Trevisan, “On worst-case to average-case reductions for np problems,” SIAM
Journal on Computing, vol. 36, no. 4, pp. 1119–1159, 2007.

[6] G. Akavia, Goldreich and Moshkovitz, “On basing one-way functions on np-hardness,” Annual
ACM Symposium on Theory of Computing, vol. 38, pp. 701–710, 2006.

17

Index

cipher text, 4
cryptography, 4

decryption function, 4

efficient, 5
encryption function, 4
expansion factor, 12

HAMPATH, 10
hard on average but easy with auxiliary input,

10
hard-core predicate, 7
hybrid technique, 13

intractable, 5

key, 4

negligible, 5
noticeable, 5

One Time Pad, 5
one-way, 7

plain text, 4
private key, 4
Private Key or Symmetric Encryption, 4
pseudorandom generator, 12
public key, 4
Public Key Encryption, 4

18

	Introduction
	An Incomplete Model
	Revised Model
	Security of the Model
	Information Theoretic Definition
	Complexity Theoretic Definition

	Some Common Terms
	Efficient and Intractable
	Negligible and Noticeable

	Notations

	One-Way Functions
	Hard-Core Predicate
	Hard-Core Predicates for any One-Way Function

	Construction of One-Way Functions based on NP-Hard Problems
	Functions that are Hard on Average but Easy with Auxiliary Input
	Construction based on HAMPATH

	Pseudorandom Generator
	Equivalence of Pseudorandom Generator with different Expansion Factors
	Psuedorandom Generators based on One-Way Functions

	Conclusion
	References

