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Last lecture we saw the proof of the Singleton bound which claims that for any(n, k, d)q code,
k ≤ n − d + 1. In today’s lecture we will study Reed-Solomon codes. Thesecodes meet the
Singleton bound, i.e. satisfyk = n − d + 1 (but have the unfortunate property thatq ≥ n). Note
that this implies that the Singleton bound is tight, at leastfor q ≥ n.

1 Reed-Solomon Codes

We begin with the definition of Reed-Solomon codes.

Definition 1.1 (Reed-Solomon code). Let Fq be a finite field andFq[x] denote theFq-space of
univariate polynomials where all the coefficients ofx are fromFq. Pick {α1, α2, ...αn} distinct
elements (also calledevaluation points) of Fq and choosen and k such thatk ≤ n ≤ q. We
define an encoding function for Reed-Solomon code asRS : F

k
q → F

n
q as follows. A message

m = (m0, m1, ..., mk−1) with mi ∈ Fq is mapped to a degreek − 1 polynomial.

m 7→ fm(x),

where

fm(x) =
k−1
∑

i=0

mix
i. (1)

Note thatfm(x) ∈ Fq[x] is a polynomial of degree≤ k − 1. The encoding ofm is the evaluation
of fm(x) at all theαi’s :

RS(m) = 〈fm(α1), fm(α2), ..., fm(αn)〉

We call this image Reed-Solomon code orRS code after two inventorsIrving Reedand Gus
Solomonof this code [1]. A common special case isn = q − 1 with the set of evaluation points
beingF

∗ , F \ {0}.

Notice that by definition, the entries in{α1, ..., αn} are distinct and thus, must haven ≤ q.
We now turn to some properties of Reed-Solomon codes.

Claim 1.2. RS codes are linear codes.
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Proof. The proof follows from the fact that ifa ∈ Fq andf(x), g(x) ∈ Fq[x] are polynomials of
degree≤ k− 1, thenaf(x) andf(x)+ g(x) are also polynomials of degree≤ k− 1. In particular,
let messagesm1 andm2 be mapped tofm1

(x) andfm2
(x) wherefm1

(x), fm2
(x) ∈ Fq[x] are

polynomials of degree≤ k − 1 and because of the mapping defined in (1), it is easy to verify that:

fm1
(x) + fm2

(x) = fm1+m2
(x),

and
afm1

(x) = fam1
(x).

Therefore,
RS(m1) + RS(m2) = RS(m1 + m2)

aRS(m1) = RS(am1)

ThereforeRS is a[n, k]q linear code.

The second and more interesting claim is the following:

Claim 1.3. RS is a [n, k, n − k + 1]q code. That is, it matches the Singleton bound.

The claim on the distance follows from the fact that every polynomial of degreek − 1 over
Fq[x] has at mostk − 1 (not necessarily distinct) roots, and that if two polynomials agree on more
thank − 1 places then they must be the same polynomial.

Proposition 1.4(“Degree Mantra”). A nonzero polynomialf(x) of degreet over a fieldFq has at
mostt roots inFq

Proof. We will prove the theorem by induction ont. If t = 0, we are done. Now, considerf(x) of
a degreet > 0. Let α ∈ Fq be a root such thatf(α) = 0. If no such rootα exists, we are done. If
there is a rootα, then we can write

f(x) = (x − α)g(x)

wheredeg(g) = deg(f) − 1 (i.e. x − α dividesf(x)). This is because by the fundamental rule of
division of polynomials:

f(x) = (x − α)g(x) + R(x)

wheredeg(R) ≤ 0 (as the degree cannot be negative this in turn implies thatdeg(R) = 0) and
sincef(α) = 0,

f(α) = 0 + R(α),

which implies thatR(x) = 0. By induction,g(x) has at mostt − 1 roots, which implies thatf(x)
has at mostt roots.

2



We are now ready to prove Claim 1.3
Proof of Claim 1.3 We start by proving the claim on the distance. Fix arbitrarym1 6= m2 ∈
F

k
q . Note thatfm1

(x), fm2
(x) ∈ Fq[x] are distinct polynomials of degree≤ k − 1 sincem1 6=

m2 ∈ F
k
q . Then fm1

(x) − fm2
(x) 6= 0 also has degree≤ k − 1. Note thatw(RS(m2) −

RS(m1)) = ∆(RS(m1), RS(m2)). The weight ofRS(m2) −RS(m1) is n minus the number of
0’s in RS(m2) − RS(m1) which is equal ton minus the number of roots thatfm1

(x) − fm2
(x)

has among{α1, ..., αn}. That is,

∆(RS(m1), RS(m2)) = n − |{α | fm1
(α) = fm2

(α)}|

By Proposition 1.4,fm1
(x) − fm2

(x) has at mostk − 1 roots. Thus, the weight ofRS(m2) −
RS(m1) is at leastn − (k − 1) = n − k + 1. Therefored ≥ n − k + 1, and since the Singleton
bound implies thatd ≤ n − k + 1, we haved = n − k + 1.1 The argument above also shows
that distinct polynomialsfm1

(x), fm2
(x) ∈ Fq[x] are mapped to distinct codewords. Therefore,

the code contains[q]k codewords and has dimensionk. The claim in linearity of the code follows
from Claim 1.2. 2

Definition 1.5 (MDS codes). An (n, k, d)q code is calledMaximum Distance Separable (MDS)if
d = n − k + 1.

Thus, Reed-Solomon codes are MDS codes.
Let us now find a generator matrix forRS codes (which exists by Claim 1.2). By Defi-

nition 1.1, any basisfm1
, ..., fmk

of polynomial of degree at mostk − 1 gives rise to a basis
RS(m1), ..., RS(mk) of the code. A particularly nice polynomial basis is the set of monomials
1, x, ..., xi, ..., xk−1. The corresponding generator matrix, whoseith row (numbering rows from0
to k − 1 ) is

(αi
1, α

i
2, ..., α

i
j, ..., α

i
n)

and this generator matrix is called theVanDerMondematrix withk × n size
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RS codes are used in storage of information in CD’s because theyare robust against burst-
errors that come in contiguous manner, unlike the random error method studied by Shanon. The
drawback of Reed-Solomon codes is the condition thatq ≥ n. The problem is that we need each
coordinate of a codeword to correspond to a distinct elementof Fq

1Alternatively, consider the distance between the all zero codeword and the codeword corresponding to the poly-
nomial

∏k−1

i=1
(x − αi).
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Remark 1.6. One might ask doesq have to vary as a function ofn to satisfy the Singleton bound?
The answer is yes. We can show this by the Plotkin bound, whichwe will prove in a couple of
lectures.

2 Hamming versus Shannon

Let us compare Hamming and Shannon theories in terms of the asymptotic bounds we have seen
so far (recall rateR = k

n
and relative distanceδ = d

n
).

• Hamming theory: Can correct≤ δ
2

fraction of worse case errors for codes of distanceδ.
By the Singleton bound,

δ ≤ 1 − R,

which implies thatp fraction of errors can be corrected, where

p ≤
1 − R

2

The above can be achieved via efficient decoding algorithms for RS codes.

• Shannon theory: In qSCp, we can have reliable communication withR < 1 − Hq(p). It
can be shown that

1. 1 − Hq(p) ≤ 1 − p

2. 1 − Hq(p) ≥ 1 − p − ε, iff q = 2Ω(1/ε) for largeq.

Thus we can have reliable communication withp ∼ 1 − R on qSCp for large enoughq.

Remark 2.1. There is a gap between Shannon and Hamming world: one can correct twice as
many errors as in the Shannon world. One natural question to ask is whether we can somehow
“bridge” this gap.

We will now re-visit the the bad example for unique decoding and consider an extension of the
bad example as shown in Figure 1.

Recall that̄y and the codewordsc1 andc2 form the bad example for unique decoding that we
have already seen before. Recall that for this particular received word we can not do error recovery
by unique decoding since there are two codewordsc1 andc2 having the same distanceδ

2
from

vectorȳ. On the other hand, the received wordz has an unique codewordc1 with distancep > δ
2
.

However, unique decoding does not allow for error recovery form z. This is because by definition
of unique decoding, the decoded codeword cannot have Hamming distance larger thanδ/2 from
the received word. In this example, there is no codeword within Hamming distanceδ/2 of z and
thus, it can not correct the received wordz. In this example is because of the received wordȳ.

Let us consider the example in Figure 1 for the binary case. Itcan be shown that the number of
vectors in dotted lines is insignificant compared to volume of shaded area (for large enough block
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Figure 1: In this example vectors are embedded into Euclidean space such that the Euclidean
distance between two mapped points is the same as the Hammingdistance between vectors. The
c1, c2, c3, c4 are codewords. The dotted lines contain the “bad examples,”that is, the received
words for which unique decoding is not possible.

length of the code). The volume of all Hamming balls radius ofδ
2

around all the codewords is
roughly equal to:

2k2nH( δ

2
),

which implies that the volume of the shaded area (without thedotted lines) is approximately equal
to:

2n − 2k2nH( δ

2
).

In other words, the volume when expressed as a fraction of thevolume of the ambient space is
roughly:

1 − 2−n(1−H( δ

2
)−R), (2)

wherek = Rn andR ≤ 1 − H( δ
2
). If R < 1 − H( δ

2
) then second term of (2) is very small.

Therefore the number of vectors in shaded area (without the bad examples) is almost all of the
ambient space. Note that by the stringent condition on unique decoding none of these received
words can be decoded (even though for such received words there is a unique closest codeword).
Thus, in order to be able to decode such received vectors, we need to relax the notion of unique
decoding. We will consider such a relaxation calledlist decodingin the next lecture.
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