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In the last lecture, we started with some definitions related to the so called Johnson bound.
Today, we will state and prove the Johnson bound.

1 Johnson bound
Let Jq(n, d, e) be the maximum number of codewords in a Hamming ball of radius e for any code
C ⊆ [q]n of distance d. Then obviously,

Jq

(
n, d,

⌊
d− 1

2

⌋)
= 1.

Notice that if we can show Jq(n, d, e) = nO(1) for some e > bd−1
2
c, list decoding is possible for

any code of distance d up to e errors. We will show how to prove the Johnson bound for binary
case. Before the proof, let’s set up some notations.

Definition 1.1. Jq(δ) = (1− 1
q
)
(
1−

√
1− q

q−1
δ
)

As we will see later in these notes, Jq(δ) > δ/2 for every 0 < δ < 1− 1/q.

Theorem 1.2 (Johnson bound). If e
n

< q−1
q

(
1−

√
1− q

q−1
d
n

)
, then Jq(n, d, e) ≤ qnd.

Proof. : We will only prove the Johnson bound for q = 2. The proof technique that we will use
has a name: double counting.

We have to show that for every binary code C ⊆ {0, 1}n with distance d (i.e. for every
c1 6= c2 ∈ C, ∆(c1, c2) ≥ d) and every y ∈ {0, 1}n, |B2(y, e)

⋂
C| ≤ 2nd.

Fix arbitrary C and y. Let c1, . . . , cM ∈ B2(y, e). We need to show that M ≤ 2nd. Define
ci
′ = ci − y for 1 ≤ i ≤ M , then

(i) wt(ci
′) ≤ e for 1 ≤ i ≤ M because ci ∈ B2(y, e).

(ii) ∆(ci
′, cj

′) ≥ d for every i 6= j, because ∆(ci, cj) ≥ d.

Define
S =

∑
i<j

∆(ci
′, cj

′).

Then from (ii), we have

S ≥
(

M

2

)
d (1)
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Taking each ci
′ as a column vector, we get the n ×M matrix (c1

′T , · · · , cM
′T ). Define mi as the

number of 1’s in the i-th row for 1 ≤ i ≤ n. Then the i-th row of the matrix contributes the value
mi(M −mi) to S because we can find this number of 0-1 pairs in that row.

Set e =
∑

i mi/M . From (i) above, we have e ≤ e. Using the Cauchy-Schwartz inequality
(i.e., 〈x,y〉 ≤ ||x|| · ||y|| for x,y ∈ Rn) by taking x = (m1, · · · ,mn), y = (1/n, · · · , 1/n),

(∑
mi

n

)2

≤
(∑

m2
i

) 1

n
. (2)

Thus,

S =
n∑

i=1

mi(M −mi) = M2e−
n∑

i=1

m2
i ≤ M2e− (Me)2

n
= M2(e− e2

n
), (3)

where the inequality follows from (2). By (1) and (3),

M2

(
e− e2

n

)
≥ M(M − 1)

2
d,

which implies that

M ≤ dn

dn− 2ne + 2e2 =
2dn

2dn− n2 + n2 − 4ne + 4e2 =
2dn

(n− 2e)2 − n(n− 2d)

≤ 2dn

(n− 2e)2 − n(n− 2d)
,

where the last inequality follows from the fact that e ≤ e. Then from

e

n
<

1

2

(
1−

√
1− 2d

n

)
,

We get
n− 2e >

√
n(n− d).

In other words
(n− 2e)2 > n(n− d).

Thus, (n− 2e)2 − n(n− 2d) ≥ 1 because n, e are all integers and we have M ≤ 2dn.

We now digress a bit to prove the following property of the function Jq(·):
Lemma 1.3. Let q ≥ 2 be an integer and let 0 ≤ x ≤ 1− 1

q
. Then the following inequalities hold:

Jq(x) ≥ 1−√1− x ≥ x

2
.
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Proof. We start with by proving the inequality

Jq(x) =

(
1− 1

q

)(
1−

√
1− xq

q − 1

)
≥ 1−√1− x.

Indeed, both the LHS and RHS of the inequality are zero at x = 0. Further, it is easy to check that
the derivatives of the LHS and RHS are 1√

1− xq
q−1

and 1√
1−x

respectively. Finally, the latter is always

larger than the former quantity, which implies that the LHS increases more rapidly than the LHS,
which in turn proves the required inequality.

The second inequality follows from the subsequent relations. As x ≥ 0,

1− x +
x2

4
≥ 1− x,

which implies that (
1− x

2

)2

≥ 1− x,

which in turn implies the required inequality.

Remark 1.4. Theorem 1.2 and Lemma 1.3 imply that for any code, list decoding can potentially
correct strictly more errors than unique decoding in polynomial time, as long as q is at most some
polynomial in n (which will be true of all the codes that we discuss in this course).

Theorem 1.2 and Lemma 1.3 also implies the following “alphabet free” version of the Johnson
bound.

Theorem 1.5 (Alphabet free version). If e ≤ n−
√

n(n− d) then Jq(n, d, e) ≤ qnd for all the q.

A natural question to ask is the following:

Question 1.1. Is the Johnson bound tight?

The answer is yes in the sense that there exist linear codes with relative distance δ such that we
can find Hamming ball of radius larger than Jq(δ) with super-polynomially many codewords [1, 2].

On the other hand, it is not tight in the following sense. Note that by the Singleton bound, the
Johnson bound implies that for any code one can hope to list decode from about p ≤ 1 − √

R
fraction of errors. However, this tradeoff between p and R is not tight: recall that for large q, the
list decoding capacity is 1−R > 1−√R. Figure 1 plots and compares the relevant trade-offs.
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Figure 1: The tradeoff between rate R and the fraction of errors that can be corrected. 1 − √R
is the tradeoff implied by the Johnson bound. The bound for unique decoding is (1 − R)/2 while
1−R is the Singleton bound (and the list decoding capacity for codes over large alphabets).
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