
CS 681: Computational Number Theory and Algebra Lecture 3

Madhusudan’s decoding of Reed-Solomon Code and Divide and Conquer Tool

Lecturer: Manindra Agrawal Scribe: Sudeepa Roy

August 5, 2005

1 Introduction

In the last lecture we studied Berlekamp-Welsh decoding of Reed-Solomon code. In this
lecture we shall first look at another decoding algorithm for Reed-Solomon code, by P.
Madhusudan (1994). Then we will discuss some applications of our first tool to design
algorithms - Divide and Conquer Technique.

2 Madhusudan’s Decoding Algorithm of Reed-Solomon Code

First we state the main features of these two decoding algorithms of Reed-Solomon code.

Berlekamp-Welsh Algorithm

• needs solving system of linear equations

• corrects upto 1
2(n− k) errors

Madhusudan’s Algorithm

• corrects upto n− 2
√

nk errors

• needs more algebraic operations

Let us restate the notations used for Reed-Solomon code from lecture 0.

• The data to be stored on a CD is divided into chunks of b× k bits and each chunk is
coded separately.

• F is finite field of size 2b.

• Each chunk is again divided into k blocks of b bits each, say d0, d1, · · · , dk−1.

• Each di is treated as an element of field F .

• Let e0, e1, · · · , en−1 be n distinct elements of F .

1



• Let fj = P (ej).

Then the original codeword corresponding to d0d1 · · · dk−1 is

f0f1 · · · fn−1

Input to the decoding algorithm for a chunk assuming that at least t of the fjs should
remain unchanged is

f̂0f̂1 · · · f̂n−1

Let Q(x, y) be a polynomial such that Q(ej , f̂j) = 0 for j = 0 to n− 1. Also let Dx and Dy

be the degrees of x and y respectively in Q.
Then we can write Q(x, y) as

Q(x, y) =
Dy∑
i=0

Dx∑
j=0

αij xiyj

In the above equation, there are (1+Dx)(1+Dy) different αijs and n equations Q(ej , f̂j) = 0
for j = 0 to n− 1. So if (1 + Dx)(1 + Dy) > n then Q exists and can be computed easily.
Now let us consider another polynomial

R(x) = Q(x, P (x))

As deg P is k − 1, so

deg R ≤ Dx + (k − 1)Dy

But R(x) is zero on at least t distinct values since for at least t js,

R(ej) = Q(ej , P (ej)) = Q(ej , fj) = Q(ej , f̂j) = 0

Hence if deg R ≤ Dx + (k− 1)Dy < t, then R(x) must be the zero polynomial or, R(x) = 0
for all x. Then

R(x) = Q(x, P (x)) = 0
⇒ Q(x, y) becomes 0 when y = P (x)
⇒ Q(x, y) = 0 (mod y = P (x))
⇒ (y = P (x)) | Q(x, y)

So the algorithm is

• Factor Q(x, y) into irreducible factors

• Collect all factors of the form y − P ′(x)

• Use domain knowledge to identify right P (x)

2



where the domain knowledge is knowledge about some typical pattern followed by valid
video data so that we can get the correct original video data from a list of candidates.
If we choose Dx =

√
kn and Dy =

√
n
k , then

(1 + Dx)(1 + Dy) >
√

kn ·
√

n
k = n

So condition for existence of polynomial Q holds.
Now for R(x) to be a zero polynomial,

Dx + (k − 1)Dy < t
⇒ t >

√
kn + (k − 1)

√
n
k ≥ 2

√
kn

Hence at least 2
√

kn data should remain unchanged, or in other words, the algorithm can
correct upto n− 2

√
kn errors.

This algorithm takes more than real time but was improved later. Further, in a true
sense, it is not a decoding algorithm as it does not produce a single decoded output but a
list of candidate outputs. Then we have to extract the correct output applying knowledge
about video data.

3 Divide and Conquer Technique

Divide and Conquer is the first tool for designing efficient algorithms in Number Theory
and Algebra that we will study. As this is a well known tool so we will study only some
applications of this technique.

3.1 Matrix Multiplication

Problem Given two n× n matrices A and B, compute A×B.

Time complexity of standard algorithm of matrix multiplication is O(n3).
But by using divide and conquer technique the time complexity can be reduced. For sim-
plcity let us assume n = 2m (else blow up the size filling rest of the entries with zeros).
Let

A =
[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
Then

A×B =
[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
where each of Aij s and Bij s are 2m−1 × 2m−1 matrices.
The most simple way would be to compute each of the individual products of Aij and Bkl

matrices and then performing the sum. If we denote time complexity of multiplication of
two n× n matrices as T (n) then the recursive formula of T (n) will be

3



T (n) = 8T (n
2 ) + O(n2)

where the O(n2) term comes due to addition of n
2 ×

n
2 matrices.

Claim 3.1 All the terms in A×B can be computed using only 7 n
2×

n
2 matrix multiplications

[Strassen’s Algorithm].

Exercise 3.1 Prove Claim 3.1.

Then the improved recursive relation for time complexity of matrix multiplication of two
n× n matrices will be

T (n) = 7T (n
2 ) + O(n2)

Solving this recursive relation we get

T (n) = O(nlog2 7) = O(n2.71)

Time complexity of Strassen’s algorithm was still improved further by taking n as powers
of larger integers than 2. The best known algorithm for matrix multiplication has time
complexity as O(n2.36) though it is strongly believed by the community that the best possible
time complexity is θ(n2)!

3.2 Extension of Matrix Multiplication

Advantage of better time complexity of Matrix Multiplication using Divide and Conquer
can be extended to other problems like finding inverse of a matrix, finding the value of
determinant and solving a system of linear equations. Here we give one relevant example
of reduction of Matrix Inversion to Matrix Multiplication problem.

Problem Given an n× n matrix A, compute the matrix A−1.

Let

A =
[
A11 A12

A21 A22

]
Let

A−1 =
[
B11 B12

B21 B22

]
Then

A×A−1 =
[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
= I =

[
1 0
0 1

]
Equating corresponding terms we need to solve four equations to get the values of Bij

matrices.

Exercise 3.2 Fill in the details to complete the above reduction.

4


