CS 681: Computational Number Theory and Algebra
Lecture 3
Madhusudan's decoding of Reed-Solomon Code and Divide and Conquer Tool
Lecturer: Manindra Agrawal Scribe: Sudeepa Roy
August 5, 2005

1 Introduction

In the last lecture we studied Berlekamp-Welsh decoding of Reed-Solomon code. In this lecture we shall first look at another decoding algorithm for Reed-Solomon code, by P. Madhusudan (1994). Then we will discuss some applications of our first tool to design algorithms - Divide and Conquer Technique.

2 Madhusudan's Decoding Algorithm of Reed-Solomon Code

First we state the main features of these two decoding algorithms of Reed-Solomon code.

Berlekamp-Welsh Algorithm

- needs solving system of linear equations
- corrects upto $\frac{1}{2}(n-k)$ errors

Madhusudan's Algorithm

- corrects upto $n-2 \sqrt{n k}$ errors
- needs more algebraic operations

Let us restate the notations used for Reed-Solomon code from lecture 0 .

- The data to be stored on a CD is divided into chunks of $b \times k$ bits and each chunk is coded separately.
- F is finite field of size 2^{b}.
- Each chunk is again divided into k blocks of b bits each, say $d_{0}, d_{1}, \cdots, d_{k-1}$.
- Each d_{i} is treated as an element of field F.
- Let $e_{0}, e_{1}, \cdots, e_{n-1}$ be n distinct elements of F.
- Let $f_{j}=P\left(e_{j}\right)$.

Then the original codeword corresponding to $d_{0} d_{1} \cdots d_{k-1}$ is

$$
f_{0} f_{1} \cdots f_{n-1}
$$

Input to the decoding algorithm for a chunk assuming that at least t of the f_{j} should remain unchanged is

$$
\hat{f}_{0} \hat{f}_{1} \cdots \hat{f}_{n-1}
$$

Let $Q(x, y)$ be a polynomial such that $Q\left(e_{j}, \hat{f}_{j}\right)=0$ for $j=0$ to $n-1$. Also let D_{x} and D_{y} be the degrees of x and y respectively in Q.
Then we can write $Q(x, y)$ as

$$
Q(x, y)=\sum_{i=0}^{D_{y}} \sum_{j=0}^{D_{x}} \alpha_{i j} x^{i} y^{j}
$$

In the above equation, there are $\left(1+D_{x}\right)\left(1+D_{y}\right)$ different $\alpha_{i j}$ s and n equations $Q\left(e_{j}, \hat{f}_{j}\right)=0$ for $j=0$ to $n-1$. So if $\left(1+D_{x}\right)\left(1+D_{y}\right)>n$ then Q exists and can be computed easily. Now let us consider another polynomial

$$
R(x)=Q(x, P(x))
$$

As $\operatorname{deg} P$ is $k-1$, so

$$
\operatorname{deg} R \leq D_{x}+(k-1) D_{y}
$$

But $R(x)$ is zero on at least t distinct values since for at least $t j$ s,

$$
R\left(e_{j}\right)=Q\left(e_{j}, P\left(e_{j}\right)\right)=Q\left(e_{j}, f_{j}\right)=Q\left(e_{j}, \hat{f}_{j}\right)=0
$$

Hence if $\operatorname{deg} R \leq D_{x}+(k-1) D_{y}<t$, then $R(x)$ must be the zero polynomial or, $R(x)=0$ for all x. Then
$R(x)=Q(x, P(x))=0$
$\Rightarrow Q(x, y)$ becomes 0 when $y=P(x)$
$\Rightarrow Q(x, y)=0(\bmod y=P(x))$
$\Rightarrow(y=P(x)) \mid Q(x, y)$
So the algorithm is

- Factor $Q(x, y)$ into irreducible factors
- Collect all factors of the form $y-P^{\prime}(x)$
- Use domain knowledge to identify right $P(x)$
where the domain knowledge is knowledge about some typical pattern followed by valid video data so that we can get the correct original video data from a list of candidates.
If we choose $D_{x}=\sqrt{k n}$ and $D_{y}=\sqrt{\frac{n}{k}}$, then

$$
\left(1+D_{x}\right)\left(1+D_{y}\right)>\sqrt{k n} \cdot \sqrt{\frac{n}{k}}=n
$$

So condition for existence of polynomial Q holds.
Now for $R(x)$ to be a zero polynomial,

$$
\begin{aligned}
& D_{x}+(k-1) D_{y}<t \\
& \Rightarrow t>\sqrt{k n}+(k-1) \sqrt{\frac{n}{k}} \geq 2 \sqrt{k n}
\end{aligned}
$$

Hence at least $2 \sqrt{k n}$ data should remain unchanged, or in other words, the algorithm can correct upto $n-2 \sqrt{k n}$ errors.

This algorithm takes more than real time but was improved later. Further, in a true sense, it is not a decoding algorithm as it does not produce a single decoded output but a list of candidate outputs. Then we have to extract the correct output applying knowledge about video data.

3 Divide and Conquer Technique

Divide and Conquer is the first tool for designing efficient algorithms in Number Theory and Algebra that we will study. As this is a well known tool so we will study only some applications of this technique.

3.1 Matrix Multiplication

Problem Given two $n \times n$ matrices A and B, compute $A \times B$.
Time complexity of standard algorithm of matrix multiplication is $O\left(n^{3}\right)$.
But by using divide and conquer technique the time complexity can be reduced. For simplcity let us assume $n=2^{m}$ (else blow up the size filling rest of the entries with zeros).
Let

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

Then

$$
A \times B=\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
$$

where each of $A_{i j} \mathrm{~s}$ and $B_{i j} \mathrm{~s}$ are $2^{m-1} \times 2^{m-1}$ matrices.
The most simple way would be to compute each of the individual products of $A_{i j}$ and $B_{k l}$ matrices and then performing the sum. If we denote time complexity of multiplication of two $n \times n$ matrices as $T(n)$ then the recursive formula of $T(n)$ will be

$$
T(n)=8 T\left(\frac{n}{2}\right)+O\left(n^{2}\right)
$$

where the $O\left(n^{2}\right)$ term comes due to addition of $\frac{n}{2} \times \frac{n}{2}$ matrices.
Claim 3.1 All the terms in $A \times B$ can be computed using only $7 \frac{n}{2} \times \frac{n}{2}$ matrix multiplications [Strassen's Algorithm].

Exercise 3.1 Prove Claim 3.1.

Then the improved recursive relation for time complexity of matrix multiplication of two $n \times n$ matrices will be

$$
T(n)=7 T\left(\frac{n}{2}\right)+O\left(n^{2}\right)
$$

Solving this recursive relation we get

$$
T(n)=O\left(n^{\log _{2} 7}\right)=O\left(n^{2.71}\right)
$$

Time complexity of Strassen's algorithm was still improved further by taking n as powers of larger integers than 2. The best known algorithm for matrix multiplication has time complexity as $O\left(n^{2.36}\right)$ though it is strongly believed by the community that the best possible time complexity is $\theta\left(n^{2}\right)$!

3.2 Extension of Matrix Multiplication

Advantage of better time complexity of Matrix Multiplication using Divide and Conquer can be extended to other problems like finding inverse of a matrix, finding the value of determinant and solving a system of linear equations. Here we give one relevant example of reduction of Matrix Inversion to Matrix Multiplication problem.

Problem Given an $n \times n$ matrix A, compute the matrix A^{-1}.
Let

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Let

$$
A^{-1}=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

Then

$$
A \times A^{-1}=\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]=I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Equating corresponding terms we need to solve four equations to get the values of $B_{i j}$ matrices.

Exercise 3.2 Fill in the details to complete the above reduction.

