
Matchings in Graphs

Lecturer: Meena Mahajan
Scribe: Rajesh Chitnis

Meeting: 1
6th Jan 2010

Most of the material in this lecture is taken from the book “Fast Parallel Algorithms for
Graph Matching Problems” by Karpinski and Rytter, [KR98].

We will only be considering simple undirected finite graphs unless stated otherwise.
Graphs will be denoted as G = (V,E).

1 Some preliminary definitions

Definition 1 Let G = (V,E) be a graph. M ⊆ E is called as a matching of G if ∀ v ∈ V
we have | {e ∈M : v is incident on e ∈ E} | ≤ 1.

Definition 2 A matching M of G is said to be maximal if ∀ e ∈ E \M the set of edges
given by M ∪ {e} is not a matching of G.

Definition 3 The size of a matching M of G is the number of the edges it contains and is
denoted by |M |.

Definition 4 A matching M of G is said to be maximum if ∀ matching M ′ of G we have
|M |≥|M ′ |. A maximum matching is always maximal but not vice-versa.

Definition 5 Let M be matching of G. A vertex v ∈ V is said to be M-saturated if M
contains an edge incident on v. Otherwise v is said to be M-unsaturated or M-free.

Definition 6 A matching M of G is said to be perfect if all vertices of G are M-saturated.
A graph with an odd number of vertices can never admit a perfect matching.

Definition 7 A matching M of G is said to be near-perfect if exactly one vertex of G
is M-unsaturated. A graph with an even number of vertices can never admit a near-perfect
matching.

Definition 8 Let A ⊆ V . A matching M of G is said to be A-perfect if each vertex in A
is M-saturated. A perfect matching is a V -perfect matching.

1

2 Some Remarks

Remark 9 We will later look at weighted graphs i.e graphs with a weight function w : E →
R+ ∪ {0}. There we will be interested in finding matchings of maximum weight where the
weight of a matching is the sum of weights of edges which are in the matching.

Remark 10 We will consider three types of problems

• Decision - Does G have a matching of size ≥ k ?

• Search - Find a matching in G of size ≥ k

• Counting - How many matchings of G have size ≥ k?

3 Augmenting Paths

Definition 11 A path P in G is said to be M-alternating if the edges of P alternate with
respect to membership in M .

Definition 12 A path P in G is said to be M-augmenting if P is a maximal M-alternating
path starting and ending at vertices which are M-unsaturated. Clearly, every M-augmenting
path must have odd length (number of egdes).

Lemma 13 Let G be a graph whose maximum degree is atmost 2. Then every component
of G is either an isolated point, a path or a cycle.

Proof: Consider any non-isolated vertex v of G. Its (at most two) neighbours further have
degree at most 2 and so on. So the component of G containing v is either a path or a cycle.
This holds true for all non-isolated vertices of G and hence we are done.

Lemma 14 (Berge 1957) A matching M is maximum if and only if G has no M-augmenting
path.

Proof: Suppose there exists an M -augmenting path P . Consider the symmetric difference
M ⊕ P (edges which are present in exactly one of M or P). Since P is an M -augmenting
path, M ⊕ P is also a matching of G and |M ⊕ P | = |M |+ 1. So M is not maximum.

Suppose M is not maximum. Let M ′ be a maximum matching and so we have |M ′| > |M |.
Consider M ⊕M ′. Each vertex has degree at most 2 in M ⊕M ′ as each of M and M ′ can
contribute atmost 1 each to degree of each vertex in M⊕M ′. By Lemma 13, M⊕M ′ consists
of cycles and paths and isolated vertices. But edges of M ⊕M ′ are alternate in belonging
exclusively to M and M ′. Hence each cycle must be even. So M ′ can score over M in size
only from the paths. So, there exists at least one path in M ⊕M ′ which has more edges
from M ′ than from M . But such a path is M -augmenting.

2

Corollary 15 (Hopcroft-Karp) Let M∗ be a matching of G. Then for any matching M of
G such that |M∗| ≥ |M | , we have |M∗| − |M | vertex-disjoint M-augmenting paths. The
non-M edges on these paths all belong to M∗.

Proof: Refer to proof of Lemma 14. Every cycle of M ⊕M∗ is even and every path of
M ⊕M∗ which is not M -augmenting must have equal number of edges from M and M∗ as
M∗ is maximum. Also note that each M -augmenting path has exactly one edge more from
M∗ than from M . So we need |M∗| − |M | such paths; these are all vertex-disjoint as we
defined augmenting paths as maximal paths starting and ending at unsaturated points (see
Definition 12).

Corollary 16 Let M∗ be a maximum matching and M be any matching. If M is not
maximum, then the shortest M-augmenting path has length ≤ |V |

|M∗|−|M | − 1

Proof: From Corollary 15 we know that there are |M∗| − |M | vertex-disjoint (and hence
edge-disjoint) M -augmenting paths. By Pigeonhole Principle, one of the paths must have at

most |V |
|M∗|−|M | vertices and thus has length at most ≤ |V |

|M∗|−|M | − 1.

4 Algorithm for finding maximum matching using aug-

menting paths

Consider the following algorithm; its correctness follows immediately from Lemma 14.

1. M = ∅

2. while there is an M -augmenting path P
do M ←M ⊕ P

3. return M

The challenge now is to detect existence of and find augmenting paths efficiently. We will
first consider the case when G is bipartite.

5 An O(n3) algorithm for finding maximum matching

in bipartite graphs

Let G = (A ∪ B,E) be a bipartite graph and let M be a matching of G. We want to find
a maximum matching of G. Denote by A0, B0 the sets of M -unsaturated vertices in A,B
respectively. We consider a new directed graph H on the vertex set A ∪ B and edge set E.
Edges which are in M are directed A→ B and edges not in M are directed B → A.

3

Claim 17 G has a M-augmenting path if and only if H has a path from B0 to A0.

Proof: Suppose G has an M -augmenting path say from u ∈ A0 to v ∈ B0. The same path
directed from v to u is clearly a path in H from B0 to A0.

Suppose H has a path from b ∈ B0 to a ∈ A0. The underlying undirected path from a
to b is clearly an M -augmenting path.

So we do a depth-first-search (DFS) from B0 and stop as soon as we reach some vertex
in A0, thus giving us an M -augmenting path P . We then augment M along P , and repeat
the same process with the new matching M ⊕ P . If we cannot reach any vertex of A0, then
we can conclude from Claim 17 that G has no M -augmenting path i.e. M is maximum.

Let us now analyse the time complexity of our algorithm. Denote |V | = n and |E| = m.

1. Assume |B| ≤ |A| as otherwise we could have just swapped the roles of A and B in our
algorithm. Thus |B0| ≤ |B| ≤ n

2
. Also at each stage of our algorithm, by augmenting,

we saturate a previously-unsaturated vertex from B without doing anything to the
vertices which are already saturated. So we need at most |B0| ≤ n

2
stages.

2. At each stage we may need to do several DFS, one starting from each vertex in B0.
The maximum number of times we need to do DFS is |B0|, as in the worst-case, only
the last vertex from B0 that we apply DFS to may lead to a path in A0. Recollect
that a single DFS can be done in O(n+m) time.

3. Once an augmenting path is found, we can augment the matching easily in O(m) time.

Thus the Total Time taken by algorithm is at most
n

2

[
O(m) + |B0| ∗ O(n + m)

]
. However

now we use a trick to shave off the |B0| factor. Add a super-vertex β and draw edges directed
from β to every point in B0. Thus we need to apply DFS only once, for vertex β. Thus the

time complexity becomes O
(n

2
[m + (n + m)]

)
= O

(
n2 + nm

)
. Since a bipartite graph on

n vertices can contain at most (n2

4
) edges, the time complexity of our algorithm is O(n3).

6 Hopcroft-Karp Algorithm for finding a maximum

matching in bipartite graphs in O(n2.5) time

In the preceding algorithm, we looked for a single augmenting path at a time and augmented
it. Instead we will now find a maximal family of vertex-disjoint shortest-length augmenting
paths and augment all of them together in a single stage. This improvement will help us to
bring the time complexity down to O(n2.5).

4

Consider the following algorithm.

1. M = ∅

2. while (there is an M -augmenting path),
do find a maximal family F of vertex-disjoint shortest M -augmenting paths);

set M ←M ⊕F

3. return M

The correctness of the algorithm follows from Lemma 14.
We now show that using a maximal family F of shortest augmenting paths instead of

a single augmenting path significantly reduces the number of stages (Lemma 21), and also
that the time per stage due to having to find such families does not increase (Lemma 22).
We need some technical lemmas.

Lemma 18 Let M be a matching of G and let P be an M-augmenting path of shortest
length. Let P ′ be an (M ⊕P)-augmenting path. Then |P ′| ≥ |P |+ |P ∩P ′|, where |P | is the
number of edges in P .

Proof: Consider N = (M ⊕ P) ⊕ P ′. Then N is clearly a matching and |N | = |M | + 2.
Thus by Corollary 15, there are 2 vertex-disjoint M -augmenting paths, say P1 and P2, with
the non-M edges in N . That is, P1 ∪P2 ⊆M ⊕N . Note that M ⊕N = P ⊕P ′ and thus we
have |P ⊕ P ′| ≥ |P1| + |P2|. But P1, P2 are both M -augmenting paths and P is a shortest
M -augmenting path. Therefore |P ⊕ P ′| ≥ 2|P |. However |P ⊕ P ′| = |P | + |P ′| − |P ∩ P ′|
and so the desired inequality follows.

Lemma 19 Let M0 = ∅, and consider the sequence M0,M1,M2,M3, ... where ∀i, Pi is a
shortest Mi-augmenting path, and Mi+1 = Mi ⊕ Pi. Then, for i < j, |Pi| ≤ |Pj|. Further,
|Pi| = |Pj| implies that Pi and Pj are vertex-disjoint.

Proof: It follows from Lemma 18 that for i < j, |Pi| ≤ |Pj|.
Suppose now that for some i < j, Pi and Pj are not vertex-disjoint, and assume to the

contrary that |Pi| = |Pj|. This implies that |Pi| = |Pi+1| = . . . = |Pj−1| = |Pj|. Then there
exist some k, l such that i ≤ k < l ≤ j and Pk and Pl are not vertex-disjoint and further for
all m between l and k we have Pm is vertex-disjoint from both Pk and Pl. Therefore Pl is
an (Mk)-augmenting path and so by Lemma 18 we have |Pl| ≥ |Pk|+ |Pl ∩ Pk|. However we
are given that |Pl| = |Pk| which implies that |Pl ∩ Pk| = 0 i.e. Pl and Pk have no edges in
common. However since Pl and Pk are not vertex-disjoint, they have a common vertex say x
and then they must have in common the edge from Mk ⊕ Pk which is incident on x leading
to a contradiction.

5

Lemma 20 Let F be an inclusion-maximal family of vertex-disjoint shortest M-augmenting
paths, all of length l1. Let l2 be the length of a shortest (M ⊕ F)-augmenting path. Then
l2 ≥ l1 + 2.

Proof: Let F = {P1, P2, .., Pr}. Let P ′ be a shortest (M ⊕F)-augmenting path. Note that
M ⊕ F = (..(M ⊕ P1) ⊕ P2)..) ⊕ Pr. Suppose P ′ is disjoint from each element of F . Then
P ′ is also an M -augmenting path, but by maximality of F , it is not a shortest augmenting
path. So l2 > l1. Next, suppose that P ′ has a vertex in common with at least one path in
F . By Lemma 19 we have l2 > l1. Finally note that l1, l2 are both lengths of augmenting
paths and hence must both be odd; hence l2 > l1 =⇒ l2 ≥ l1 + 2.

Let us look at the graph H considered at beginning of Section 5. Let |A ∪ B| = n and
|E| = m. Note that Claim 17 holds.

Lemma 21 The algorithm described at start of Section 6 makes atmost 2
√
n iterations

Proof: Let M∗ be a maximum matching and let M be the matching after
√
n iterations.

By Lemma 20, the length of the shortest M -augmenting path is at least (2
√
n − 1) ≥

√
n.

By Corollary 16 we have
√
n ≤ (length of shortest M -augmenting path)≤ n

|M∗|−|M | , and so

|M∗| − |M | ≤
√
n. From this point onwards, even if we augment just one path in each

iteration, we need at most
√
n more iterations, as each augmenatation increases size of

matching by 1. Thus overall we need no more than 2
√
n iterations. iterations

Lemma 22 Each iteration of the algorithm can be implemented in O(m) time.

Proof: First we will use breadth-first-search BFS to find the length k of a shortest path from
B0 to A0. Simultaneosuly, we produce the sequence of disjoint layers B0 = L0, L1, L2, ..., Lk ⊆
A0 where

• for all 0 ≤ i < k, Li is the set of vertices at distance i from B0, and

• Lk is the subset of A0 which is at distance k from B0.

To avoid multiple BFSs from each vertex in B0, we add a super-vertex β and draw edges
from it to all vertices of B0. Start a BFS from β to get distance of β from A0. Subtract one
to get length of shortest path from B0 to A0. This takes O(m) time.

Now consider a modified DFS which starts at a vertex v ∈ B0 and stops as soon as it
reaches a vertex say w in Lk and outputs this v → w path. Add this M -augmenting path to
F and delete all vertices visited in the modified DFS. This is crucial: we delete not just the
augmenting path but also other vertices visited in the modified DFS. Why is this reasonable?
Let x be a vertex seen at some Lj in the DFS started from v ∈ B0. If x does not lead to an
M -augmenting path of length k starting at v, then x cannot be on any M -augmenting path
of length k: any such path has to begin at some vertex in B0 and it has to use i edges to
reach x.

6

Redo the whole procedure now starting at another vertex in B0. Continue until all vertices
of B0 are explored. This clearly gives us a maximal family of vertex-disjoint shortest-length
augmenting paths.

Let mi be the number of edges visited in the ith DFS which takes O(mi) time. Noting
that m ≥

∑
imi, the time taken is O(m).

Theorem 23 The algorithm runs in O(n2.5) time.

Proof: From Lemma 22 we know that each phase can be implemented in O(m) time. Also
from Lemma 21 we know that there are atmost 2

√
n iterations. Thus time taken by our

algorithm is O(
√
n) ∗O(m) = O(n2.5)

References

[KR98] Marek Karpinski and Wojciech Rytter. Fast parallel algorithms for graph matching
problems. Oxford University Press, Oxford, 1998. Oxford Lecture Series in Mathe-
matics and its Applications 9.

7

