
SOME PRIMAL-DUAL THEOREMS IN

GRAPH THEORY - A STUDY

A THESIS
Submitted by

VENKATA HARISH IMMADI

In partial fulfillment for the award of the degree of

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE AND ENGINEERING (INFORMATION
SECURITY)

Under the guidance of
Dr. K. Murali Krishnan

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

NIT CAMPUS PO, CALICUT
KERALA, INDIA 673601

May, 2012

ii

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my guide Dr.K Murali

Krishnan, Department of Computer science and Engineering, National Institute

of Technology, Calicut for his inspiring guidance, motivation, support and encour-

agement. His strenuous efforts and valuable pieces of advice were available to me

throughout my endeavor without which it would have been impossible for me to

complete this work in time.

I would like to express my sincere thanks to the project coordinator Mr. G

Gopa Kumar for allowing me to do this project.

I take this opportunity to express my sincere thanks to, Dr.M. N. Bandy-

opadhyay, Director, National Institute of Technology, Calicut for providing me

with the facilities to carry out the work.

I am thankful to the teaching and non teaching staff for their support and

encouragement throughout my work.

I Venkata Harish

DECLARATION

“I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which has been accepted for the award of any other
degree or diploma of the university or other institute of higher learning, except
where due acknowledgment has been made in the text”.

Place: Calicut
Date:

Signature :
Name : I Venkata Harish
Reg.No: M100170CS

CERTIFICATE

This is to certify that the thesis entitled: “SOME PRIMAL-DUAL THEO-
REMS IN GRAPH THEORY - A STUDY” submitted by Sri VENKATA
HARISH IMMADI to National Institute of Technology Calicut towards partial
fulfillment of the requirements for the award of Degree of Master of Technology in
Computer Science Engineering is a bona fide record of the work carried out by him
under my supervision and guidance.

Signed by Thesis Supervisor with name and date

Place: Calicut
Date:

Signature of Head of the Department

Office Seal

v

Contents

Chapter

1 Introduction 1

1.1 The Max-flow Min-cut Theorem . 2

1.1.1 Preliminaries . 2

1.1.2 Bounds . 6

1.1.3 Proof of the Max-flow Min-cut Theorem 6

2 Proving Graph Theorems using Max-flow Min-cut Theorem 9

2.1 Preliminaries . 9

2.2 Menger’s Theorem . 10

2.3 Konig-Egervary Therorem . 14

3 Max-flow Min-cut Theorem and Konig’s Theorem using Total Unimodular-

ity 16

3.1 Preliminaries . 16

3.2 Konig’s Theorem . 19

3.3 The Max-Flow Min-Cut Theorem 24

4 The Concurrent Multi-commodity Flow Problem 31

4.1 Preliminaries . 31

4.2 Linear Programming Formulation 32

vi

5 Conclusion 39

Bibliography 41

vii

Abstract

The objective of this report is to present some central min-max theorems

in graph theory from the view point of linear programming. In the introduc-

tory chapter, we review the well known Max-flow Min-cut theorem and discuss

the standard proof using Ford-Fulkerson algorithm. The next chapter will discuss

some graph theoretic consequences of the Max-flow Min-cut theorem in combi-

natorial optimization. In the third chapter we present the proof of the Max-flow

Min-cut theorem and Konig’s theorem using the properties of total unimodular

matrices in linear programming. In the fourth chapter, we discuss the problem

of Concurrent Multi-commodity Flow(CMFP) and present a linear programming

formulation.

viii

Figures

Figure

1.1 (a) A network with edge capacities. (b) The corresponding flow network

with |f | = 4. The dotted line forms a cut which is also a minimum cut . 3

1.2 (a) A network N of positive integral edge capacities. (b) The residual

graph obtained after pushing a flow of 1 through the path s− c− b− a− t 5

1.3 (a) The initial graph(network) G. (b) The residual graph G′ after sending

a flow of 1 unit along the path s− c− d− t. (c) The final residual graph

G′′ after sending a flow of 1 unit along the path s− a− d− c− b− t. . . 8

2.1 (a) The paths P1 and P2 where (a, b) ∈ P1, (b, a) ∈ P2. (b) The corre-

sponding paths P3 and P4. 11

2.2 (a) A bipartite graph with partitions {a, b, c} and {d, e, f}. (b) The

resulting network after transformation. 15

4.1 An example of a two commodity flow network with unit demands on the

commodities. 34

Chapter 1

Introduction

In this report, we study some min-max theorems in combinatorial optimiza-

tion. One of the earliest and well recognised result is the Max-flow Min-cut theorem

by Ford and Fulkerson [5] in 1956. This theorem states the equivalence between

the maximum flow and minimum cut in a network. In this chapter we review the

Max-flow Min-cut theorem and its proof using Ford-Fulkerson algorithm. This

theorem had several implications in combinatorial optimization, several other the-

orems can be viewed as a consequence of this theorem [11]. In second chapter,

we presen Konig’s and Menger’s theorems as consequences of Max-flow Min-cut

theorem. The Menger’s theorem provide bounds on the connectivity of a graph.

There are two versions of Menger’s theorem [1], edge version and vertex version.

This theorem is a special case of the Maximum flow problem and can be proved by

using the Max-flow Min-cut theorem. Konig’s theorem [13, 9] states the equality

between maximum matching and minimum vertex cover in bipartite graph.

All the above theorems are min-max theorems, that is, if one of the problem is

a maximization problem then the other is a minimization problem. These problems

can be encoded as linear programs. A Chandra Babu et al.[2] has given new proofs

for Max-flow Min-cut theorem and Konig’s theorem using total unimodularity of

the coefficient matrix in their linear programming formulations. The third chapter

is a study of the proofs given by A Chandra Babu et al.[2]. We have filled a few

missig links while presenting this material.

2

The Multi-commodity flow problem is a more generalized network flow prob-

lem. The problem of finding a maximum flow in a multi-commodity network arises

in many network instances. In a Multi-commodity flow problem, there exists k ≥ 1

commodities each having its own source and sink. In the fourth chapter, we give

an introduction to the Concurrent Multi-commodity Flow problem(CMFP) [15] 1

and present the linear programming formulation for the problem and it’s dual.

In CMFP, every commodity is assigned a demand Di, our objective is to assign

flows to the commodities so as to maximize a fraction λ such that the flow for any

commodity is at least λDi units.

1.1 The Max-flow Min-cut Theorem

1.1.1 Preliminaries

Definition 1.1.1. (Network) A Network is a directed graph G(V,E, c, s, t) with

vertex set V and an arc set E in which every directed edge (i, j) ∈ E, has a non

negative capacity c(i, j) ≥ 0, c : V × V −→ R+. The vertices s ∈ V, t ∈ V are the

source vertex and the sink vertex of the network.

Definition 1.1.2. (s,t-cut) An s, t-cut is a partitioning of the vertices of a Network

into two sets, say A and B, such that s ∈ A and t ∈ B.

The capacity of a cut (A,B) is given as

C(A,B) =
∑

u∈A,v∈B c(u, v)

Definition 1.1.3. (Flow) A flow is a mapping f : E −→ R, denoted by fuv or

f(u, v), subject to the following constraints:

(1) f(u, v) ≤ c(u, v) for each (u, v) ∈ E (capacity constraint)

(2) f(u, v) = −f(v, u) (skew symmetry)

1 It is also referred to as “ The Maximum Concurrent Flow Problem ”.

3

(3)
∑

v∈V f(u, v) = 0 ∀ u ∈ V \ {s, t} (conservation of flow).

The value of flow is defined by |f | =
∑

v∈V f(s, v) , where s is the source of

N . It represents the amount of flow passing out of the source to the sink. Figure

1.1 shows a typical network and a flow in that network. Here f can be viewed as

a vector over the directed edges 2 of the network.

1

4

2

5
1

1

4

2

s t

a b

c d

(a)

1/1

1/1

1/1

1/22/2

2/4

2/5

3/4

s t

a b

c d

(b)

Figure 1.1: (a) A network with edge capacities. (b) The corresponding flow network
with |f | = 4. The dotted line forms a cut which is also a minimum cut

Definition 1.1.4. (Flow across a cut) If (A,B) is any cut in the network, then

the flow across the cut is defined as

f(A,B) =
∑

u∈A,v∈B

f(u, v)

Lemma 1.1.1. If f is a flow in a network G, then for any s, t-cut (A,B), f(A,B) =

|f |.

Proof. We can prove this by considering the flow over the cut and reducing it to

the flow from the source vertex which is the actual flow.

2 The terms directed edge and arc may be used interchangeably.

4

f(A,B) =
∑

u∈A,v∈B

f(u, v)

=
∑

u∈A,v∈B

f(u, v) +
∑

{w,w′}∈A

f(w,w′)

Since,
∑
{w,w′}∈A f(w,w′) = 0. Because for every {x, y} ∈ A both f(x, y) and

f(y, x) are added.

=
∑

u∈A,v∈V

f(u, v)

=
∑
v∈V

f(s, v) +
∑

u∈A\{s},v∈V

f(u, v)

=
∑
v∈V

f(s, v)

= |f |

Definition 1.1.5. (Residual Graph) If f is a flow in a graph G, then the residual

graph is defined as Gf with cf (u, v) = c(u, v)− f(u, v).

For a directed edge (a, b) ∈ E, if c(a, b) = 0 then in Gf , the residual capacity

will be cf (a, b) = 0− f(a, b) = −f(a, b). Figure 1.2 gives an example for a residual

graph(network).

Lemma 1.1.2. f ′ is a flow in Gf iff f + f ′ is a flow in G.

Proof. We prove this by proving the following two conditions.

(1) A flow f ′ is a flow in Gf iff it satisfies f ′(u, v) ≤ cf (u, v).

f ′(u, v) ≤ cf (u, v)

⇔ f ′(u, v) ≤ c(u, v)− f(u, v)

⇔ f(u, v) + f ′(u, v) ≤ c(u, v)

⇔ f + f ′(u, v) ≤ c(u, v)

5

s

b

t

a

c
1

2

2

1

3 3

(a)

s

b

t

a

c

0

0

2

3

1

1

11

1

2

(b)

Figure 1.2: (a) A network N of positive integral edge capacities. (b) The residual graph
obtained after pushing a flow of 1 through the path s− c− b− a− t

(2) |f ± f ′| = |f | ± |f ′|

|f ± f ′| =
∑
v∈V

(f ± f ′)(s, v)

=
∑
v∈V

[f(s, v)± f ′(s, v)]

=
∑
v∈V

f(s, v)±
∑
v∈V

f ′(s, v)

= |f | ± |f ′|

Lemma 1.1.3. If f ∗ is maximum in Gf , then f + f ∗ is maximum in G.

Proof. Suppose if some flow |g| > |f + f ∗| in G, then it is easy to see that g − f

is a flow in Gf

⇒ |g − f | = |g| − |f | > |f + f ∗| − |f |

= |f |+ |f ∗| − |f | = |f ∗|

But, this leads to a contradiction to the fact that |f ∗| is maximum in Gf .

6

Definition 1.1.6. (Capacity of a path) The capacity of a path P is given as,

C(P) = Min(u,v)∈P c(u, v)

Definition 1.1.7. (Augmenting Path) An augmenting path P is an s, t-path of

positive capacity.3

1.1.2 Bounds

Let (A,B) be any s, t-cut, then the value of the flow is at most the capacity

of the cut.

|f | ≤ C(A,B)

Since, from Lemma 1.1.1

|f | = f(A,B)

=
∑

u∈A,v∈B

f(u, v)

≤
∑

u∈A,v∈B

c(u, v) = C(A,B)

1.1.3 Proof of the Max-flow Min-cut Theorem

Theorem 1. (Ford-Fulkerson, 1956) [5] In a Network G, let f be any maximum

flow in G, then ∃ a cut (A,B) for which f(A,B) = c(A,B)

Proof. The proof given by Ford-Fulkerson is an algorithmic proof. Here, we give

the algorithm that iteratively finds an augmenting path and augments the flow

and computes the residual graph.

The total value of the resulting flow will be f1 + f2 + f3 . . . + fk, where k

is the number of iterations and fi is the flow obtained in the ith iteration. The

above algorithm terminates by producing a maximum flow and also we can show

the existence of a cut which will be the minimum cut. The figure 1.3 shows the

execution of the Ford-Fulkerson algorithm on an example network.

3 Here path means a directed path from s to t.

7Algorithm 1 Maxflow(G)

Find an augmenting path P in G
if P does not exist then

return 0
else

let f be a flow of value C(P) along P
return (f +Maxflow(Gf))

end if

In order to prove this theorem, we first consider the following three state-

ments. And by showing a circular dependency between them, we prove the theo-

rem.

(1) G has a Maximum flow |f |

(2) Gf has no augmenting path

(3) Some cut of G is saturated

As we can see, 1 ⇒ 2 and 3 ⇒ 1. These two are trivial. Because, if

there exists an augmenting path, the flow can be further increased by augmenting

through that path. But, this contradicts the fact that f is maximum. And, for the

second, since the flow can not exceed the capacity of a cut, if some cut is saturated,

then the flow has to be maximum.

What remains is to prove is that 2⇒ 3. For this, consider two sets of vertices

A and B in Gf where A consists of all the vertices reachable from s and B consists

of all the vertices from which t is reachable. Note that the graph we consider is

the residual graph Gf . Now, we can say that s /∈ B and t /∈ A. If any of the two

are not correct, it implies that there exists an augmenting path, which contradicts

the hypothesis. Now, consider the cut (A,B), this forms a saturated cut. Hence

proved.

8

s t

a b

c d

(a)

1

1

1

1

1

1 1

(b)

s

1

a b

t

dc
1

0 0

1

1

11

1

0

t

(c)

b

c d
00

1

0

1

1

0

0

1
a

s

1

0

1
1

0

Figure 1.3: (a) The initial graph(network) G. (b) The residual graph G′ after sending
a flow of 1 unit along the path s− c− d− t. (c) The final residual graph G′′

after sending a flow of 1 unit along the path s− a− d− c− b− t.

Chapter 2

Proving Graph Theorems using Max-flow Min-cut Theorem

In the previous chapter we’ve seen the proof for Max-flow Min-cut theorem.

In this chapter we will present other theorems in graph theory that can be viewed

as special cases of the Max-flow Min-cut theorem. The Menger’s theorem [1]

characterizes the connectivity of a finite graph. There are two versions of it, the

edge version and the vertex version. Below, we present a proof of both the versions

using the Max-flow Min-cut theorem. The Konig-Egervary theorem [9] describes

an equivalence between the maximum matching problem and the minimum vertex

cover problem in a bipartite graph. A proof of this theorem is also presented using

the above Max-flow Min-cut theorem. The results or the proofs presented are not

unknown previously. The work presented here is only a consolidation of the known

facts scattered in literature to present complete and comprehensive proofs for the

graph theoretic min-max results discussed here.

2.1 Preliminaries

Definition 2.1.1. (Bipartite Graph) A graph G(V,E) in which there exists a par-

titioning of vertices into two sets X and Y such that ∀(x, y) ∈ E ⇒ x ∈ X, y ∈ Y

Definition 2.1.2. (Vertex cover) A vertex cover in a graph G(V,E) is a set S of

vertices such that ∀(x, y) ∈ E ⇒ either x ∈ S or y ∈ S.

10

Definition 2.1.3. (Minimum Vertex Cover) A vertex cover that contains the min-

imum number of vertices.

Definition 2.1.4. (Matching) A matching in a graph G(V,E) is a set M of edges

such that no two edges contain a common vertex.

Definition 2.1.5. (Maximum matching) A maximum matching is a matching that

contains the maximum number of edges.

A graph may contain more than one maximum matching and one minimum

vertex cover.

Definition 2.1.6. (Internally-disjoint paths) Two paths are internally-disjoint if

neither of them contains a non-endpoint vertex of the other.

Definition 2.1.7. (Edge-disjoint paths) Two paths are edge-disjoint if neither of

them contains a common edge.

Definition 2.1.8. (x,y-separator) Given x, y ∈ V (G), a set S ∈ V (G)− {x, y} is

an x, y-separator if G− S has no x, y-path.

Definition 2.1.9. (x,y-cut) Given x, y ∈ V (G), a set C ∈ E(G) is an x, y-cut if

G− C has no x, y-path.

2.2 Menger’s Theorem

In order to apply the Max-flow Min-cut theorem, we may need to transform

the given undirected graph G into a directed graph G′. This can be done by

replacing every undirected edge (a, b) in G with two directed edges (a, b) and

(b, a), one forward and backward, in G′.

Lemma 2.2.1. In a graph G(V,E), the number of pairwise edge-disjoint x, y-paths

in G′ are equal to the number of pairwise edge-disjoint paths in G, where G′ is the

corresponding directed graph.

11

Proof. It is easy to see that there will be at least as many pairwise edge-disjoint

x, y-paths in G′ as there are in G. Because if two paths are edge disjoint in G,

they are edge-disjoint in G′ also.

1P

P2

P2

1P

y

a

b

x

(a)

3P P3

P4 4P

y

a

b

x

(b)

Figure 2.1: (a) The paths P1 and P2 where (a, b) ∈ P1, (b, a) ∈ P2. (b) The correspond-
ing paths P3 and P4.

To show that there can be no more in G′, consider two edge-disjoint paths

P1, P2 in G′. If there is no edge (a, b) such that (a, b) ∈ P1 and (b, a) ∈ P2, then

the paths have to be edge-disjoint in G also. But, if such an edge exists, then we

can form two new paths that does not have either (a, b) or (b, a). A path P3 can

be formed by joining the x, a-path in P1 with a, y-path in P2 and a path P4 can

be formed by joining the x, b-path in P2 with b, y-path in P1. Now, the paths P3

and P4 does not contain either (a, b) or (b, a). So, all such edges can be eliminated

and we can construct two paths corresponding to P1 and P2 that are edge-disjoint

in G′ and these have to be edge-disjoint in G also. In this way all the pairwise

edge-disjoint x, y-paths in G′ correspond to pairwise edge-disjoint x, y-paths in G.

Hence the lemma is proved.

Lemma 2.2.2. In a graph G(V,E), the number of pairwise internally-disjoint

x, y-paths in G′ are equal to the number of pairwise internally-disjoint paths in G,

where G′ is the corresponding directed graph.

12

Proof. Let k be the maximum number of pairwise internally-disjoint x, y-paths in

G and U be the set of these paths. Then the corresponding directed paths in G′

will also be pairwise internally-disjoint. Let U ′ be the corresponding set of paths

in G′. Then there can not exist any more paths in G′ that are pairwise internally-

disjoint to all the paths in U ′. Suppose there exists such a path P in G′ that is

internally-disjoint to every path in U ′. Then it implies that P does not have a

vertex in common with any of the paths in U ′. Then the corresponding undirected

path in G should also be pairwise internally-disjoint to all the paths in U . But,

this leads to a contradiction to the maximality of U in G. Hence |U ′| = k.

Theorem 2. (Menger’s,[1927])(Edge version) If x, y are two vertices in a graph

G and (x, y) /∈ E(G), then the minimum size of an x, y-cut equals the maximum

number of pairwise edge-disjoint x,y-paths

Proof. The graph G(V,E) is an undirected graph. Let k be the maximum number

of pairwise edge-disjoint x, y-paths(undirected) in G. The necessary part of the

theorem can be easily verified. Since the minimum x, y-cut should contain at least

one edge from each x, y-path, it should be at least k. Therefore, the size of the

minimum x, y-cut is ≥ k.

In order to prove sufficiency, we first transform the given undirected graph

into a network with x as source and y as sink. Let G′ be the new directed

graph(Network). Assign unit capacities to all the directed edges in G′. Then

by lemma 2.2.1 the number of pairwise edge-disjoint x, y-paths in G′ is equal to

k. Since the edges are of unit capacity, the maximum flow possible will be equal

to the number of pairwise edge-disjoint x, y-paths. So maximum flow in G′ is k.

Now, by applying the Max-flow Min-cut theorem, we can see that the size of the

minimum cut(directed) in G′ is k. It is easy to see that the corresponding set of

undirected edges in G also form a cut in G. And since every cut in G is at least

k, this will be minimum.

13

Theorem 3. (Vertex version) If x, y are two vertices in a graph G and (x, y) /∈

E(G), then the minimum size of an x, y-separator equals the maximum number of

pairwise internally-disjoint x, y-paths.

Proof. Let k be the maximum number of pairwise internally-disjoint x, y-paths in

G. Then the size of the minimum x, y-separator should be at least k since it should

include at least one vertex from each path.

In order to prove sufficiency, we will use the Max-flow Min-cut theorem.

First, we will transform the undirected graph G to a directed graph G′. From

lemma 2.2.2, the number of pairwise internally-disjoint paths in G′ are k. Now,

we will transform the directed graph G′ as follows. Let G′′ be the new graph. For

every vertex v ∈ G′, include two vertices in G′′, vin and vout. vin consists of all

the inward edges to v and vout consists of all the outward edges from v. Add a

directed edge from vin to vout. Assign unit capacity to all the edges of G′′. xin and

yout can be left out because there will be no flow into the source vertex and out of

sink vertex.

Now, we show that the maximum flow in G′′ is k. Clearly, every path in

G′ correspond to unique path in G′′. A path entering a vertex vin has to leave

through the directed edge (vin, vout) and this edge is of unit capacity. This implies,

no two augmenting paths in G′′ can have a common vertex. The k paths in G′′ that

correspond to the pairwise internally-disjoint x, y-paths in G′ will each allow for a

flow of one unit. There can not be any more flow. If the flow is more than k, then

there exists an augmenting path that is pairwise internally-disjoint to all other

augmenting paths in G′′. Then the corresponding path in G′ will also be pairwise

internally-disjoint to all other paths in G′′. But, this leads to a contradiction to

the fact that k is maximum in G′.

Now, by applying the Ford Fulkerson algorithm, we can get a cut of size k.

14

Select a set S of vertices for each edge in the cut as follows:

(1) If the edge is (vin, vout), select v.

(2) If the edge is (vout, uin) where {u, v} /∈ {s, t}, select either u or v.

(3) In case of (xout, vin) or (vout, yin), select the vertex v.

Clearly, the size of S is k. This set also forms a separator in the network

G′. Otherwise, there exists at least one more x, y-path in G′ from which no edge

is included in S. But, the corresponding path in the modified network G′′ will be

a x, y-augmenting path. This contradicts the fact that f is maximum in G′′. Also

it is easy to see that this set S will be a separator in original graph G. And since

the size of the minimum separator is at least k, this is minimum. Hence proved.

2.3 Konig-Egervary Therorem

Theorem 4. (Konig’s theorem,[1931]) In any bipartite graph, the number of edges

in a maximum matching equals the number of vertices in a minimum vertex cover.

Proof. Let G(V,E) be the bipartite graph with partitions X, Y . Let k be the size

of a maximum matching, M . Then, the size of the minimum vertex cover is at

least k. Since, no two edges in a matching has a common vertex, a vertex cover

should consist of at least one vertex for each edge.

What remains is to show that there exists a vertex cover of k. For this, we first

transform the given graph as below. Construct the new graph G′(V ′, E ′), where V ′

consists of all the vertices from G along with two new vertices s, t corresponding

to source and sink and add edges to E ′ as below:

(1) ∀u ∈ X, v ∈ Y add a directed edge (u, v)

(2) ∀u ∈ X add the directed edge (s, u)

15

(3) ∀v ∈ Y add the directed edge (v, t)

Assign unit capacities to all the edges in E ′.

e

f

da

b

c

(a) Original Graph

s

a

b

d

e

f

t

c

(b) Transformed

Figure 2.2: (a) A bipartite graph with partitions {a, b, c} and {d, e, f}. (b) The resulting
network after transformation.

We now show that the no of pairwise internally-disjoint s, t-paths in G′ is

equal to the size of the maximum matching in G. Since no two edges in M have

a common vertex, all the s, t-paths corresponding to the edges in M are pairwise

internally-disjoint. There can not be any other path that is internally-disjoint to

all these paths. Because, if there exists such a path, say s−x−y− t, then the size

of matching M can be increased by adding the edge (x, y). Note that every path

in G′ is of length three. This contradicts the fact that M is a maximum matching

in G. Therefore, number of pairwise internally-disjoint paths in G′ is k.

By applying Menger’s Theorem(Vertex version) to G′, the size of minimum

s, t-separator, say W , is k. We show that W forms a vertex cover in G. Since, for

every edge (x, y) ∈ G there exists a s, t-path in G′. For every s, t-path, s−x−y−t,

the s, t-separator consists of either x or y or both. So, W forms a vertex cover of

size k in G.

Chapter 3

Max-flow Min-cut Theorem and Konig’s Theorem using Total

Unimodularity

In this chapter, we will use a different proof technique to prove the Konig’s

theorem and Max-flow Min-cut theorem. We consider the linear programming

formulation of the problem and show that the optimal values of primal and dual

are equal. We use the total unimodularity property of coefficient matrix and the

fundamental theorem of duality in linear program to drive this equivalence. The

total unimodularity of the coefficient matrix helps in determining the integrality

of the solution. The proof was given by A Chandra Babu et al.[2]. We have filled

a few missing links in this material.

3.1 Preliminaries

Definition 3.1.1. (Unimodular Matrix) A matrix M over real numbers is said to

be unimodular if every square sub matrix of M has determinant equal to 0,1 or -1.

Examples of totally unimodular matrices,

1 1 0

0 1 1

0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

17

−1 −1 0 0 0 1

1 0 −1 −1 0 0

0 1 1 0 −1 0

0 0 0 1 1 −1

Definition 3.1.2. (Linear Program) Let P be a maximization problem. Consider

this as the primal. Then the linear program formulation can be given as

Maximize cTx

Subject to Ax ≤ b

x ≥ 0

(3.1.1)

Where A is a m × n matrix and c, x, b are column vectors of order n, n,m

respectively. cT denotes the transpose of c.

A =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

x =

x1

x2
...

xn

c =

c1

c2
...

cn

b =

b1

b2
...

bn

Definition 3.1.3. (Dual of a Linear Program) The dual of the LPP(P), say D(P),

can be given as

Minimize bTy

Subject to ATy ≥ c

y ≥ 0

18

Where y is a column vector of order m.

y =

y1

y2
...

ym

Theorem 5. (Weak Duality) For any feasible solutions x′ and y′ of P and D(P),

cTx′ is always less than or equal to bTy′.

Proof. For a feasible x′ and y′ of P and D(P), the inequality constraints will be

satisfied. Consider the inequalities in P and multiply with y′T on both sides.

Ax′ ≤ b

⇒ y′TAx′ ≤ y′T b

(3.1.2)

Now, consider the objective function cTx′ of P . We have,

ATy′ ≥ c

⇒ (ATy′)Tx′ ≥ cTx′

y′TAx′ ≥ cTx′

(3.1.3)

Now, from equations 3.1.2 and 3.1.3 we have

cTx′ ≤ y′TAx′ ≤ y′T b (3.1.4)

19

We can see that y′T b = bTy′. Since,

y′T b =

[
y1 y2 . . . ym

]
×

b1

b2
...

bn

=

[
b1y1 + b2y2 + . . .+ bmym

]

=

[
b1 b2 . . . bn

]
×

y1

y2
...

ym

= bTy′

(3.1.5)

Therefore,

cTx′ ≤ y′TAx′ ≤ bTy′ (3.1.6)

Theorem 6. (Strong Duality) [?] If the primal P has an optimal solution, x∗,

then the dual D(P) also has an optimal solution, y∗, such that cTx∗ = bTy∗.

Theorem 7. (Unimodular LP) For the LPP(P), if A is a unimodular matrix and

b is integral then some optimal solution is integral.

The proof of the above two theorems is beyond the scope of this report. The

proof of the Theorem 6 is found in [?] and the proof of the Theorem 7 is found in

[2].

3.2 Konig’s Theorem

Theorem 8. (Konig’s theorem,[1931]) In any bipartite graph, the number of edges

in a maximum matching equals the number of vertices in a minimum vertex cover.

20

Proof. Let G(V,E) be a bipartite graph and X, Y be the two partitions of V . Let

|X| = m, |Y | = n and {1, 2, . . . , n} ∈ X,{m+ 1,m+ 2, . . . ,m+ n} ∈ Y .

If E is empty, then the size of both the minimum vertex cover and maximum

matching is zero. Without loss of generality we shall assume that E is non empty

and |E| = r. We shall introduce two variables p and q corresponding to every

vertex and edge respectively. The linear program(P) for finding the maximum

matching is as follows,

Maximize
∑

(i,j)∈E

qij (3.2.1a)

Subject to
∑

j:(i,j)∈E

qij ≤ 1 ∀i ∈ X (3.2.1b)

∑
i:(i,j)∈E

qij ≤ 1 ∀j ∈ Y (3.2.1c)

qij ∈ {0, 1} ∀(i, j) ∈ E (3.2.1d)

The first two constraints imply that at most one edge can be selected corre-

sponding to every node.

Here, the given problem is an Integer Linear Program. We relax the inte-

grality constraints on qij so that it can take on decimal values. The resulting LPP,

say P ′, is

Maximize
∑

(i,j)∈E

qij

Subject to ∑
j:(i,j)∈E

qij ≤ 1 ∀i ∈ X

∑
i:(i,j)∈E

qij ≤ 1 ∀j ∈ Y

qij ≥ 0 ∀(i, j) ∈ E

(3.2.2)

Let A be the coefficient matrix of the LPP(P ′). By Theorem 3.2.1 below,

21

A is unimodular. Hence by Lemma 7, there exists an optimal integral solution to

P ′. Obviously, every element of the solution is either 0 or 1. Otherwise it would

violate the constraints. Hence optimal solution of P ′ is also optimal solution of P .

This is the size of the maximum matching in G.

Consider the LP in equation 3.2.2. We shall derive the dual of this LP

formulation. Let pi and pj where i ∈ X, j ∈ Y be the dual variables corresponding

to the first and second set of constraints, respectively. The matrices corresponding

to the primal formulation 3.1.1 and dual formulation 3.1.3 problems are as follows,

x =

qij
...

...

...

c =

1

1

...

1

b =

1

1

...

1

y =

p1
...

pm

pm+1

...

pm+n

(3.2.3)

Where the order of the matrices are, x is r × 1, c is r × 1, b is (m + n) × 1

and y is (m + n) × 1. The optimization function with respect to definition 3.1.3

can be given as,

bTy =

1

1

...

...

...

1

T

×

p1
...

pm

pm+1

...

pm+n

(3.2.4)

From Theorem 3.2.1, we know the coefficient matrix is unimodular. In the

matrix A, with respect to a variable qij, every column has exactly two ones corre-

sponding to ith and jth rows. Thus, in AT every row has two ones, one in the ith

22

column and other in the jth column. So, the set of constraints, ATy ≥ c, for the

dual can be given as follows,

pi + pj ≥ 1 ∀(i, j) ∈ E (3.2.5)

Along with the non-negativity constraints, the dual can be given as,

Minimize
∑
i∈X

pi +
∑
j∈Y

pj

Subject to,

pi + pj ≥ 1 ∀(i, j) ∈ E

pi ≥ 0 ∀i ∈ X

pj ≥ 0 ∀j ∈ Y

(3.2.6)

This actually is the LP formulation for the relaxed minimum vertex cover

problem that we see below.

Now, consider the problem for finding the minimum vertex cover in G. Then

the LPP formulation, say Q, is given as follows,

Minimize
∑
i∈X

pi +
∑
j∈Y

pj

Subject to,

pi + pj ≥ 1 ∀(i, j) ∈ E

pi ∈ {0, 1} ∀i ∈ X

pj ∈ {0, 1} ∀j ∈ Y

(3.2.7)

The above given problem is an ILP(Integer Linear Program). We shall relax

the integrality constraints on xi, xj in order to obtain a LP. Let Q′ be the new LP.

23

The new LP is as follows,

Minimize
∑
i∈X

pi +
∑
j∈Y

pj

Subject to,

pi + pj ≥ 1 ∀(i, j) ∈ E

pi ≥ 0 ∀i ∈ X

pj ≥ 0 ∀j ∈ Y

(3.2.8)

Let B be the coefficient matrix of Q′. It is easy to see that B is the transpose

of A. Since A is unimodular, B is also unimodular. Therefore, by Theorem 3.2.1,

Q′ has an optimal integral solution in which all pi and qj are either 0 or 1. Hence,

optimal solution to Q′ is also optimal solution to Q. That is equal to the size of

the minimum vertex cover.

Now, by the Theorem 6, both the problems have same optimal solution.

Lemma 3.2.1. The coefficient matrix A of the LPP (P ′) is totally unimodular.

Proof. Clearly, A has m + n rows and r columns in which first m equations con-

tribute the first m rows and second n equations contribute the remaining n rows.

Each column of A has exactly two 1’s, one in the first m rows and one in the last

n rows. All other elements are 0. Let D be a square sub-matrix of order k. We

will prove the theorem by using induction on k.

Clearly, for k = 1, |D| = 0 or 1. Assume that all square sub-matrices of

order k−1 have determinant equal to 0, 1 or −1. We shall consider different cases,

(1) If D has at least one column containing only zeros, then |D| = 0.

(2) If D has at least one column containing only one one. Then |D| = ±|E|,

where E is the sub-matrix obtained from D by deleting the corresponding

column and the row containing the one. By induction, |E| = 0, 1 or −1.

Hence |D| = 0, 1 or −1.

24

(3) If every column of D has exactly two 1. In this case, the first 1 comes from

the first m rows of A and the second 1 comes from the later n rows of A.

Strictly, every column has exactly a single 1 within the rows that belong

to the first m rows of A. So, the by performing row addition on all these

rows, we obtain a row with all ones. The same argument applies for the

remaining rows of D that came from the last n rows of A. Hence the rows

of D are linearly dependent and |D| = 0.

Hence A is unimodular.

3.3 The Max-Flow Min-Cut Theorem

Theorem 9. (Ford-Fulkerson, 1956) In a Network G, let f be any maximum flow

in G, then ∃ a cut (A,B) for which f(A,B) = c(A,B)

Proof. Let N(V,E, c, s, t) be the network with |V | = n and |E| = m. We shall

write the linear programming formulation for the maximum flow.

We want to find the maximal flow that can be sent from the source vertex s

to the sink vertex t. Let v be the value of any flow from s to t and xij be the flow

sent along the arc (i, j). Let the vertices be labeled using integers 1 to n such that

the source s is labeled as 1 and the sink t is labeled with n. Then the LPP(R)

25

corresponding to the maximum flow is,

Maximize v

Subject to ∑
(i,j)∈E

xij −
∑

(k,i)∈E

xki − v = 0 if i = 1

∑
(i,j)∈E

xij −
∑

(k,i)∈E

xki + v = 0 if i = n

∑
(i,j)∈E

xij −
∑

(k,i)∈E

xki = 0 if i = 2, 3, . . . , n− 1

xij ≤ cij ∀(i, j) ∈ E

xij ≥ 0 ∀(i, j) ∈ E

v ≥ 0

(3.3.1)

The first constraint imply that the net flow out of the source vertex 1 is equal

to v and the second constraint imply that the net flow into the sink vertex n is

v. The third constraint imply that the total flow into any intermediate vertex is

equal to the total outflow of that vertex. By relaxing the equality in these three

constraints, we will obtain the following inequalities.

∑
(i,j)∈E

xij −
∑

(k,i)∈E

xki − v ≤ 0 if i = 1

∑
(i,j)∈E

xij −
∑

(k,i)∈E

xki + v ≤ 0 if i = n

∑
(i,j)∈E

xij −
∑

(k,i)∈E

xki ≤ 0 if i = 2, 3, . . . , n− 1

(3.3.2)

Let R′ be the resulting LPP. In any optimal solution of R′, the above three

inequalities should satisfy with equality. Otherwise, by adding all the LHS and

RHS we get 0 < 0, a contradiction. Since, on the LHS for every arc (i, j), xij is

added once and subtracted once, so the sum will result in a zero. So, they will

satisfy with equality. Therefore, the optimal solution of R′ will also be the optimal

solution of R.

26

Consider the LP for Max-flow in equation 3.3.1. If we try to convert this

into matrix form, the corresponding matrices will be,

x =

xij
...

...

 b =

0

...

0

cij
...

c =

1

0

0

...

(3.3.3)

Now, we shall derive the dual for the above LP in equation 3.3.1. Let ui,

where 1 ≤ i ≤ n, be the dual variables corresponding to the first three set of

equations (flow constraints) and yij, where (i, j) ∈ E, be the dual variables corre-

sponding to the fourth set of constraints (capacity constraints). Then the matrix

y is,

y =

u1
...

un

yij
...

(3.3.4)

Therefore, the objective funtion for the dual can be given as,

bTy =

0

...

0

cij
...

T

×

u1
...

un

yij
...

(3.3.5)

Consider the coefficient matrix, say A, of the LP formulation for Max-flow.

We shall see the properties of this matrix. There will be (n+m) rows corresponding

27

to the (n + m) constraints and m + 1 columns corresponding to m xij variables.

The coefficient matrix A, will look as below,

1 2 3 . . . m+ 1

1 1 a2,1 a3,1 . . . am+1,1

2 0 a2,2 a3,2 . . . am+1,2

...
...

...
...

. . .
...

n −1 a2,n a3,n . . . am+1,n

xij 0 1 0 . . . 0

... 0 0 1 . . . 0

...
...

...
...

. . .
...

... 0 0 0 . . . 1

where ai,j = −1 or 0 or 1 2 ≤ i ≤ (m + 1), ∀ 1 ≤ j ≤ n. This matrix is

actually the transpose of the coefficient matrix for the Min-cut LP that we see

below in equation 3.3.6. The objective function of the Min-cut is also the same

as the function in equation 3.3.5. From this, it is easy to see that the dual of the

Max-flow problem is Min-cut.

Now we shall formulate the linear program(T) for finding the minimum cut

capacity as follows,

Minimize
∑

(i,j)∈E

cijyij

Subject to

− u1 + un ≥ 1

ui − uj + yij ≥ 0 ∀(i, j) ∈ E

ui ∈ {0, 1} ∀i

yij ∈ {0, 1} ∀i, j

(3.3.6)

The solution to the above LPP will result in a cut such that, corresponding

28

to a cut (S, S̄) of the network N ,

ui = 0 if vertex i ∈ S

= 1 if vertex i ∈ S̄

yij = 1 if i ∈ S, j ∈ S̄

= 0 otherwise

(3.3.7)

Now, relax the integrality constraints on ui and yij. The resulting LPP(T ′)

will be

Minimize
∑

(i,j)∈E

cijyij

Subject to

− u1 + un ≥ 1

ui − uj + yij ≥ 0 ∀(i, j) ∈ E

ui ≥ 0 ∀i

yij ≥ 0 ∀i, j

(3.3.8)

In any optimal solution to T , (ui, uj) = (0.0) or (1, 0) or (1, 1) will imply

yij = 0 and (ui, uj) = (0, 1) imply yij = 1 and hence T will give the capacity of the

cut (S, S̄).

Now, consider the LPP(T ′). Clearly, this is the dual of the LPP(R′). Let B

be the coefficient matrix of T ′. From Lemma 3.3.1 below, B is unimodular. The

column vector b of T ′ consists either 0’s or 1’s. Then the optimal solution of T ′ is

also the optimal solution of T .

Now, by Theorem 6, the optimal values of R′ and T ′ are equal. Hence, the

optimal values of R and T are also equal. Therefore, the maximum flow in the

network is equal to the minimum cut in the network.

Lemma 3.3.1. The coefficient matrix B of the LPP(T) is unimodular.

Proof. Consider the matrix B. Clearly B has m+1 rows and n+m columns. Now,

let D and E be two partitions of B, such that D consists of the first n columns

29

and E consists of the second m columns. The matrix D is of order (m + 1) × n

and E is of order (m+ 1)×m. The matrix D will be as below,

u1 u2 . . . un

1 1 0 . . . −1

2 a2,1 a2,2 . . . a2,n
...

...
...

. . .
...

m+ 1 am+1,1 am+1,2 . . . am+1,n

where ai,j = −1 or 0 or 1 ∀ 2 ≤ i ≤ (m + 1), 1 ≤ j ≤ n. And the matrix E

will be as below,

yij

1 0 0 . . . 0

2 1 0 . . . 0

3 0 1 . . . 0

...
...

...
. . .

...

m+ 1 0 0 . . . 1

Every row of C contains exactly one 1 and one -1. Every column of D will

contain exactly one 1. Now, we shall prove this by induction on the size of the

sub-matrix. let U be the square sub-matrix of order k of B. For, k=1, the element

can only be either 1 or 0 or -1. Assume that all square sub-matrices of order k− 1

have determinant equal to 0, 1 or −1. Considering for k, the different cases can be

as,

(1) U consists of at least one column from D. Every column of D has exactly

one 1. Then by deleting that column and the corresponding row, we can

get a matrix of order k − 1. Hence, |U | = −1 or 0 or 1.

(2) U consists of columns only from C. Now, if there exists a row with all zeros

or one 1 or one -1, then by induction we can see that the determinant of U

30

will be 1 or 0 or -1. Otherwise, every row of U should contain exactly one

1 and one -1. Then by performing the column addition on all the columns

will result in a column with all zeros. Then |U | = 0.

Chapter 4

The Concurrent Multi-commodity Flow Problem

This chapter consists of introduction to Multi-commodity flow problem. The

Multi-commodity flow problem is a more generalized network flow problem. In

a multi-commodity flow problem there are k ≥ 1 commodities each having its

own source and sink pair. Because of the multiplicity of the commodities, the

problem to be optimized can be defined in several ways. Hence, there exists several

variants of the Multi-commodity flow. The problem we are going to discuss is called

Concurrent Multi-commodity Flow Problem(CMFP) [15][12]. In this problem,

every ith commodity is assigned a demand Di. Our objective is to maximize a

fraction λ, such that there exists a flow of λDi units for every commodity i. The

previously studied maximum flow problem is a special case of Multi-commodity

flow problem in which the number of commodities is one(k = 1). Below, we will

give formal definitions and linear program formulation of the problem.

4.1 Preliminaries

Definition 4.1.1. (Multi-commodity Network) A Multi-commodity Network is a

directed graph G(V,E, c) with vertex set V and an arc set E in which every directed

edge (i, j) ∈ E, has a non negative capacity c(i, j) ≥ 0, c : V × V −→ R+. There

are k ≥ 1 commodities K1, K2, . . . , Kk. For each commodity i, there is an ordered

pair (si, ti) representing the source and sink of that commodity where (si, ti) ∈ V×V

and si 6= ti.

32

The flow of a commodity is similar to that of a flow in a single-commodity

flow network. Let f i represent the flow of the ith commodity.

Definition 4.1.2. (Flow of a Commodity) A flow of a commodity is a mapping

f i : E −→ R denoted by f iuv or f i(u, v), subject to the following constraints:

(1) f i(u, v) ≤ c(u, v) for each (u, v) ∈ E (capacity constraint)

(2) f i(u, v) = −f i(v, u) (skew symmetry)

(3)
∑

v∈V f
i(u, v) = 0 ∀ u ∈ V \ {si, ti} (conservation of flow).

The value of the flow of a commodity i is given by |fi| =
∑

w∈V f
i(si, w).

Definition 4.1.3. (Concurrent Multi-commodity Flow Problem) Given a Multi-

commodity Network along with demands D1, D2, . . . , Dk corresponding to the k

commodities, the objective is to assign flow to commodities so as to maximize a

fraction λ such that for every commodity i, the value of the flow of the commodity

|fi| is at least λDi. The assignment should satisfy the following constraints along

with the flow constraints,

k∑
i=1

f i(u, v) ≤ c(u, v) ∀(u, v) ∈ E (4.1.1)

4.2 Linear Programming Formulation

Below, we give the LP formulation for the Concurrent Multi-commodity Flow

problem(CMFP).

33

Maximize λ

Subject to

k∑
i=1

f i(u, v) ≤ c(u, v) ∀(u, v) ∈ E

∑
w∈V

f i(u,w) = 0 ∀1 ≤ i ≤ k, ∀u ∈ V − {si, ti}

∑
w∈V

f i(si, w) ≥ λDi ∀1 ≤ i ≤ k

(4.2.1)

The above formulation is very intuitive and straight forward. We will now

see another formulation of the same problem which uses paths. Let P represent the

set of all non-trivial paths in the network and Pj be the set of paths corresponding

to the commodity j (paths from si to ti). Let x(α) be a variable corresponding to

every path α ∈ P . Then, the LPP formulation (primal) can be given as,

Maximize λ

Subject to ∑
α:e∈α

x(α) ≤ c(e) ∀e ∈ E

λDj −
∑
α∈Pj

x(α) ≤ 0 ∀1 ≤ j ≤ k

x(α) ≥ 0 ∀α ∈ P

(4.2.2)

The dual problem for the above linear program can be interpreted as assigning

weights(zj) to the commodities and lengths(y(e)) to edges such that for any com-

modity i, the length of every path from si to ti should be at least zi. The length

of a path is given as the sum of the lengths of all the edges in that path. The LPP

34

formulation for the dual is as follows,

Minimize
∑
e∈E

c(e)y(e)

Subject to∑
e∈α

y(e) ≥ zj ∀α ∈ Pj, ∀j

∑
1≤j≤k

Djzj ≥ 1

l(e) ≥ 0 ∀e ∈ E

zj ≥ 0 ∀j

(4.2.3)

We shall consider the example in the figure 4.1 with two commodities, say K1 and

K2. Let the demands be D1 and D2 respectively. First, the primal formulation of

the problem using paths is given. We shall then derive the dual formulation of the

problem.

s
1

s
2

t
1

t
2

e
1 e

2
e
3 e

4

e
5

e
6 e

7
e
8

a

b

c

d

Figure 4.1: An example of a two commodity flow network with unit demands on the
commodities.

In the example figure, there are two paths from source to sink for each of

the commodities K1 and K2. The edges are labeled e1, e2, . . . , e8. Let us name the

paths with respect to edges as follows,

35

α1 → e1 − e2 − e3 − e4

α2 → e1 − e6 − e7 − e4

α3 → e5 − e2 − e3 − e8

α4 → e5 − e6 − e7 − e8

(4.2.4)

The paths α1, α2 belong to commodity K1 and the paths α3, α4 belong to

commodity K2. The LP formulation for the example is as follows,

Maximize λ

Subject to

x(α1) + x(α2) ≤ c(e1)

x(α1) + x(α4) ≤ c(e2)

x(α1) + x(α4) ≤ c(e3)

x(α1) + x(α2) ≤ c(e4)

x(α3) + x(α4) ≤ c(e5)

x(α3) + x(α2) ≤ c(e6)

x(α3) + x(α2) ≤ c(e7)

x(α3) + x(α4) ≤ c(e8)

λD1 − x(α1)− x(α2) ≤ 0

λD2 − x(α3)− x(α4) ≤ 0

x(αi) ≥ 0 ∀1 ≤ i ≤ 4

(4.2.5)

Now, multiply the constraints with the dual variables(y(e) and zj) on both sides.

36

[x(α1) + x(α2) ≤ c(e1)] y(e1)

[x(α1) + x(α4) ≤ c(e2)] y(e2)

[x(α1) + x(α4) ≤ c(e3)] y(e3)

[x(α1) + x(α2) ≤ c(e4)] y(e4)

[x(α3) + x(α4) ≤ c(e5)] y(e5)

[x(α3) + x(α2) ≤ c(e6)] y(e6)

[x(α3) + x(α2) ≤ c(e7)] y(e7)

[x(α3) + x(α4) ≤ c(e8)] y(e8)

[λD1 − x(α1)− x(α2) ≤ 0] z1

[λD2 − x(α3)− x(α4) ≤ 0] z2

(4.2.6)

By combining the equations on the left hand and the right hand sides we get the

following inequality,

[x(α1) + x(α2)] y(e1) + [x(α1) + x(α4)] y(e2)+

[x(α1) + x(α4)] y(e3) + [x(α1) + x(α2)] y(e4)+

[x(α3) + x(α4)] y(e5) + [x(α3) + x(α2)] y(e6)+

[x(α3) + x(α2)] y(e7) + [x(α3) + x(α4)] y(e8)+

[λD1 − x(α1)− x(α2)] z1+

[λD2 − x(α3)− x(α4)] z2 ≤
8∑
i=1

c(ei)y(ei)

(4.2.7)

37

Now, represent the inequality in terms of x(α),

[y(e1) + y(e2) + y(e3) + y(e4)− z1] x(α1)+

[y(e1) + y(e6) + y(e7) + y(e4)− z1] x(α2)+

[y(e5) + y(e6) + y(e7) + y(e8)− z2] x(α3)+

[y(e5) + y(e2) + y(e3) + y(e8)− z2] x(α4)+

[D1z1 +D2z2] λ ≤
8∑
i=1

c(ei)y(ei)

(4.2.8)

Now, with respect to the objective function of the primal, the dual can be formu-

lated as below,

Minimize
8∑
i=1

c(ei)y(ei)

Subject to

y(e1) + y(e2) + y(e3) + y(e4)− z1 ≥ 0

y(e1) + y(e6) + y(e7) + y(e4)− z1 ≥ 0

y(e5) + y(e6) + y(e7) + y(e8)− z2 ≥ 0

y(e5) + y(e2) + y(e3) + y(e8)− z2 ≥ 0

D1z1 +D2z2 ≥ 1

y(ei) ≥ 0 ∀1 ≤ i ≤ 8

zj ≥ 0 ∀1 ≤ j ≤ k

(4.2.9)

This is the resulting LPP formulation for the dual of the example we consid-

ered in figure 4.1. The dual we have given in equation 4.2.3 is a generalization of

this resulting formulation.

The Multi commodity flow problem is very well studied in combinatorics.

Unlike single commodity flow, the structural properties of this problem are not

well known when the number of commodities is greater than two(k > 2). This

38

problem can be solved in polynomial time using linear programming. However,

the problem of finding an integer flow is NP-Complete when k ≥ 2.

Chapter 5

Conclusion

In this thesis, we reviewed the classical Max-flow Min-cut theorem and its

proof using Ford-Fulkerson algorithm. We have also presented the Konig’s the-

orem and Menger’s theorem as consequences of the Max-flow Min-cut theorem.

While the above proofs are very well established, they are proved in an algorithmic

perspective. In the third chapter, we have presented the proofs for Konig’s theo-

rem and Ma-flow Min-cut theorem using a complete different technique based on

the total unimodularity property of the coefficient matrix in their linear program

formulation. Finally, we have briefly discussed about Multi-commodity flow and

the Concurrent Multi-commodity Flow Problem(CMFP).

Although these results and the formulations are not new, an attempt was

made to present complete proofs for the results from first principles, and the mate-

rial does not seem to be consolidated and presented elsewhere in an easily accessible

form.

Many more primal-dual relations exist in graph theory and the approach

generalize to investigation into these relations and discovering LP based proofs for

those Min-Max relations in graph theory. Hence, this approach is a general tool

and the results presented here are just sample cases.

This study gives an insight into different techniques and tools that can be

used to prove primal-dual relations in Graph theory. Though we have not estab-

lished any new results, the treatment given in this thesis gives us a good scope of

40

applying these techniques in order to establish new results in both graph theory

and combinatorics. We have also attempted to apply a technique called Lagrangian

relaxation [7] from linear programming to some of these relations in order to gain

some insights into its effectiveness. But, the work related that is not included in

this thesis as it did not yield insightful results. A possibility is to apply different

techniques in combination and try to investigate the outcome which could lead to

interesting observations.

Bibliography

[1] Ron Aharoni and Eli Berger. Menger’s theorem for infinite graphs. Inventiones
Mathematicae, 176(1):1–62, 2009.

[2] A Chandra Babu, P.V. Ramakrishnan, and C.R. Seshan. New proofs of konig-
egervary theorem. and maximal flow-minimal cut capacity. theorem using o.r.
techniques., August 1990.

[3] Thomas Cormen. Introduction to algorithms. The MIT Press, Cambridge
Mass., 2. ed. edition, 2001.

[4] Thomas Cormen. Introduction to algorithms. The MIT Press, Cambridge
Mass., 2. ed. edition, 2001.

[5] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, January 1956.

[6] Anders Forsgren. Optimization online - an elementary proof of optimality
conditions for linear programming. Technical Report TRITA-MAT-2008-OS6,
Department of Mathematics, Royal Institute of Technology (KTH), SE-100
44 Stockholm, Sweden, June 2008.

[7] Arthur M. Geoffrion. Lagrangian relaxation for integer programming. In
Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A.
Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages 243–281.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[8] Alon Itai. Two-Commodity flow. Journal of the ACM, 25(4):596–611, October
1978.

[9] Dénes Kőnig. Gráfok és alkalmazásuk a determinánsok és a halmazok
elméletére. Matematikai és Természettudományi Érteśıtő, 34:104–119, 1916.

[10] Eugene Lawler and Eugene Lawler. Combinatorial optimization: Networks
and matroids. In 4.5. Combinatorial Implications of Max-Flow Min-Cut
Theorem, 4.6. Linear Programming Interpretation of Max-Flow Min-Cut
Theorem, pages 117–120. Dover, 2001.

42

[11] Eugène L. Lawler. Combinatorial Optimization: Networks and Matroids.
Courier Dover Publications, March 2001.

[12] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–832,
November 1999.

[13] László Lovász and M. D Plummer. Matching theory. North-Holland : Elsevier
Science Publishers B.V. ; Sole distributors for the U.S.A. and Canada, Elsevier
Science Pub. Co., Amsterdam; New York; New York, N.Y., 1986.

[14] Christos Papadimitriou. Combinatorial optimization : algorithms and
complexity. Dover Publications, Mineola N.Y., 1998.

[15] Farhad Shahrokhi and D. W. Matula. The maximum concurrent flow problem.
J. ACM, 37(2):318–334, April 1990.

[16] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition,
September 2000.

