
FPT ALGORITHMS, PART I:

KERNELIZATION ALGORITHMS

Problems considered:

Vertex cover
Max Satisfiability

d-Hitting Set
Max Leaves Spanning Tree

An improved kernel for vertex cover



Introduction / Motivation

• Kernelization is a technique to obtain FPT algorithms.
• Kernelization also gives a theoretical framework for theoretically
evaluating preprocessing algorithms.
• Kernelization algorithms are related to approximation algorithms.



ALGORITHM 1: Vertex Cover, Buss’ kernel

• A vertex cover in a graph G = (V ,E ) is a set S ⊆ V such that
every edge of G is incident with at least one vertex from S .
It is a k-VC if |S | = k.

k-Vertex Cover (k-VC):
INSTANCE: A graph G and integer k.
PARAMETER: k
QUESTION: Does G have a vertex cover S with |S | ≤ k?



• An isolated vertex has degree zero.

Observation (1)

Let (G , k) be a k-VC instance, and let v be an isolated vertex.
Then the k-VC instance (G − v , k) is equivalent.

Observation (2)

Let (G , k) be a k-VC instance. If v ∈ V (G ) has degree at least
k + 1, the k-VC instance (G − v , k − 1) is equivalent.

Observation (3)

Let G be a graph with maximum degree k that admits a vertex
cover with at most k vertices. Then |E (G )| ≤ k2.



Theorem
Let (G , k) be a k-VC instance. In polynomial time we can obtain
an equivalent k-VC instance (G ′, k ′) with |E (G ′)| ≤ O(k2).

Proof: Iteratively remove isolated vertices and vertices with degree
at least k + 1, decreasing the parameter by one in the second case.
By Observation 2, the resulting instance (G ′, k ′) is equivalent to
the original instance.
By Observation 3, if |E (G ′)| > k ′2, we may return a trivial small
NO-instance, which is again equivalent.
If |E (G ′)| ≤ k ′2, we return (G ′, k ′), which satisfies the bound since
k ′ ≤ k. �



Theorem
Let (G , k) be a k-VC instance. In polynomial time we can obtain
an equivalent k-VC instance (G ′, k ′) with |E (G ′)| ≤ O(k2).

• This preprocessing algorithm is easily extended to an
FPT-algorithm:

Let (G , k) be a k-VC instance on n vertices. Preprocessing yields
equivalent instance (G ′, k ′), with (roughly speaking!) at most
k ′2 ≤ k2 vertices. Consider all vertex subsets of size at most k ′ of
G ′: if one of these is a VC, return YES. If not, return NO.

Complexity:
• Preprocessing takes polynomial time nO(1).

• There are at most
(

k′2

k′

)

∈ O(k2k) vertex sets of G ′ to test.
• Testing whether vertex sets are vertex covers can be done in
polynomial time k ′O(1).
Total complexity: nO(1) + k2kkO(1) ≈ nO(1) + O(k2k).



• This preprocessing algorithm used a parameter dependent
preprocessing rule: not so nice (not immediately applicable to
optimization problem).

• Preprocessing algorithms of this type (kernelization algorithms)
always give FPT algorithms with nice ‘additive’ complexities.



Kernelization: definition

An algorithm A for a parameterized problem (Q, κ) is a
kernelization algorithm if for every instance X , in polynomial time
(in |X |), A returns an equivalent instance X ′ with |X ′| ≤ f (κ(X )),
for some function f : N → N.

This is also called an f (κ)-kernel.

• Usually, κ(X ′) ≤ κ(X ). This property is sometimes added to the
definition.



The above algorithm for k-VC is a kernelization algorithm that
returns an instance G ′ with m = |E (G )| ∈ O(k2) and
n = |V (G )| ∈ O(k2).

We will sometimes (sloppily) ignore log factors, and call this an
O(k2)-kernel; note however that at least m log n = Θ(k2 log k) bits
may be needed to encode G ′.

For graph problems, vertex kernels are important: e.g. suppose a
graph G ′ is returned with |E (G ′)| ≤ k2 and |V (G ′)| ≤ ck : this is
an O(k2)-(size) kernel, but a ck-vertex kernel .

Edge kernels are defined similarly.



Theorem
A problem P admits an FPT algorithm ⇔ there is a kernelization
algorithm for P.

• The ⇐ direction is important: kernelization algorithms give FPT
algorithms.
• However, the ⇒ direction is just of theoretical importance: here
no actual preprocessing is done, so the kernelization algorithm is
practically irrelevant.
• We are usually only interested in polynomial kernels (where f (κ)
is polynomial).
• Polynomial kernelization algorithms are only known for
parameterized problems obtained from optimization problems with
the standard parameterization.



ALGORITHM 2: Maximum Satisfiability

Example:

(x ∨ ¬y ∨ z) ∧ (¬x ∨ a) is a boolean formula in CNF consisting of
two clauses, where x , y , z , a are the variables, which can occur as
positive or negative literals (x resp. ¬x).

k-Max Sat:
INSTANCE: a boolean CNF-formula F =

∧m
i=1 Ci and integer k.

PARAMETER: k.
QUESTION: Does there exist a variable assignment satisfying at
least k clauses?

• The size of a CNF-formula is the sum of clause lengths (#
literals); we ignore log-factors again.



Trivial clauses

• A clause in F is trivial if it contains both a positive and negative
literal in the same variable.

Observation
Trivial clauses are satisfied in any truth assignment.

Observation
Let Fn be obtained from formula F by removing all t trivial
clauses, let k ′ = k − t. Then (Fn, k

′) and (F , k) are equivalent.



Long clauses

• For instance (Fn, k
′), a clause in Fn is long if it contains at least

k ′ literals, and short otherwise.

Observation
If Fn contains at least k ′ long clauses, (Fn, k

′) is a YES-instance.

Proof: Satisfy long clauses one by one by setting one of their
literals appropriately. After x clauses have been satisfied, every
(non-trivial) long clause contains still at least k ′ − x free variables,
so we can continue until at least k ′ clauses are satisfied. �



Observation
Let Fs be obtained from formula Fn by removing all l ≤ k ′ long
clauses, and k ′′ = k ′ − l . Then (Fs , k

′′) and (Fn, k
′) are equivalent.

Proof: Clearly a truth assignment for Fn satisfying at least k ′

clauses satisfies at least k ′ − l clauses of Fs .
In a truth assignment for Fs satisfying k ′ − l clauses, all variables
except at most k ′ − l are free to be changed. This allows to satisfy
the remaining l long clauses. �

Observation
If (Fs , k

′′) contains at least 2k ′′ clauses, it is a YES-instance.

Proof: Take an arbitrary truth assignment T and its complement
T̄ obtained by flipping all variables. Every clause of Fs is satisfied
in T or in T̄ (or in both). �



An O(k2)-kernel for MaxSat

An O(k2)-kernelization algorithm on instance (F , k):

(1) Remove all t trivial clauses to obtain Fn, set k ′ = k − t.
(2) If (Fn, k

′) has at least k ′ long clauses, return YES.
(3) Remove all l long clauses to obtain Fs , set k ′′ = k ′ − l .
(4) If (Fs , k

′′) contains at least 2k ′′ clauses, return YES.
(5) kernel (Fs , k

′′) now contains at most 2k ′′ clauses with at most
k ′ literals, so has size O(k ′ · k ′′) = O(k2).



ALGORITHM 3: d -Hitting Set

• Vertex Cover is equivalent to 2-Hitting Set:

d-Hitting Set:
INSTANCE: A hypergraph H = (V ,E ). with |e| ≤ d for all e ∈ E .
SOLUTION: A subset S ⊆ V that intersects every e ∈ E (a hitting
set).
OBJECTIVE: Minimize |S |.

k-d-Hitting Set:
INSTANCE: A hypergraph H = (V ,E ). with |e| ≤ d for all e ∈ E ,
and integer k.
PARAMETER: k.
QUESTION: Does H have a hitting set S with |S | ≤ k?

• The kernel for k-VC can be generalized to k-d-Hitting Set: for
every fixed d , a O(kd)-kernel exists.



Sunflowers

• Let H = (V ,E ) be a hypergraph. A k-sunflower in H consists of
a set S = {e1, . . . , ek} ⊆ E and core C ⊆ V such that for all i 6= j ,
ei ∩ ej = C .

• Hypergraph H = (V ,E ) is d-uniform if |e| = d for all e ∈ E .

Lemma (Sunflower Lemma)

Let H = (V ,E ) be a d-uniform hypergraph with more than
(k − 1)dd ! edges. Then H has a k-sunflower (which can be found
in polynomial time).



Proof of the Sunflower Lemma:

By induction on d .

If d = 1, then H has more than k − 1 (disjoint) edges, which gives
a k-sunflower.

If d ≥ 2, then we use the following induction hypothesis:

• Every (d − 1)-uniform hypergraph with more than
(k − 1)d−1(d − 1)! edges contains a k-sunflower.

Let F = {f1, . . . , fl} be a maximal set of disjoint hyperedges in H.
If l ≥ k, then F is a sunflower with core ∅.
Otherwise, let W = f1 ∪ . . . ∪ fl , which has |W | ≤ (k − 1)d .



Proof, continued:

Let W = f1 ∪ . . . ∪ fl , which has |W | ≤ (k − 1)d .
H contains more than (k − 1)dd ! edges, and every edge of H is
covered by W .
Thus there is an element w ∈ W that hits more than

(k − 1)dd !

(k − 1)d
= (k − 1)d−1(d − 1)!

edges.
Taking all of these edges and removing w from them yields a
(d − 1)-uniform hypergraph H ′ with more than (k − 1)d−1(d − 1)!
edges. By induction, H ′ contains a k-sunflower S . Let C be its
core.
Taking the corresponding edges in H yields a k-sunflower in H,
with core C ∪ {w}. �

• The above proof is easily translated to a polynomial time
algorithm that constructs a k-sunflower.



A kernel for k-d -Hitting Set
Let F be a (k + 1)-sunflower with core C in hypergraph H, and let
S be a hitting set of H.

• If S ∩C = ∅, then C instead hits all ‘petals’ of F , so |S | ≥ k + 1.
• Therefore, H has a hitting set of size k ⇔ the hypergraph H ′

with edge set (E (H) \ F ) ∪ {C} has a hitting set of size k.
• Reduction rule: replace (H, k) by (H ′, k).

By the sunflower lemma, a reduced hypergraph H contains
• at most (k − 1) edges of size 1,
• at most (k − 1)22! edges of size 2,
• ...
• at most (k − 1)dd ! edges of size d ,
So it contains at most (k − 1)dd !d edges in total.

Theorem
The above algorithm is a (k − 1)dd !d-edge kernelization for
k-d-Hitting Set.



ALGORITHM 4: Maximum Leaves Spanning Tree

• A subgraph H of a graph G is spanning if V (H) = V (G ).

• A graph H is a tree if it is connected and has no cycles.

• A leaf of a graph (tree) is a vertex v with degree 1. d(v)
denotes the degree of v .

Max-Leaves Spanning Tree:
INSTANCE: A connected graph G .
SOLUTION: a spanning tree T of G .
OBJECTIVE: maximize the number of leaves of T .

By k-Leaf Spanning Tree or k-LST we denote the standard
parameterization of this problem.



Reduction Rules

Observation (Degree 2 Rule)

Let (G , k) be a k-LST instance, and let uv ∈ E (G ) with
d(u) = d(v) = 2. If G − uv is connected, then (G − uv , k) is an
equivalent instance.

• A bridge in a connected graph G is an edge uv such that G − uv
is disconnected.

Observation (Bridge Rule)

Let (G , k) be a k-LST instance, and let uv ∈ E (G ) with
d(u) ≥ d(v) ≥ 2. If uv is a bridge, then contracting uv gives an
equivalent instance (G ′, k).

• Conclusion: a reduced instance (G , k) contains no adjacent
vertices of degree 2, and no bridges between degree ≥ 2 vertices.



Theorem
A connected simple graph G on n vertices, with no adjacent
vertices of degree 2 and no bridges between two non-leaves,
contains a spanning tree with at least n/5 leaves.

Proof: For any (possibly non-spanning) tree subgraph T of G we
define

• n(T )= |V (T )|,
• l(T ) is the number of leaves of T , and
• d(T ) is the number of dead leaves, which are leaves of T with
no neighbors outside of T .

A tree T with 4l(T ) + d(T ) ≥ n(T ) exists: w.l.o.g. G contains a
vertex v with d(v) ≥ 3; consider v and all its neighbors.



Proof, continued:

Given a tree T with 4l(T ) + d(T ) ≥ n(T ), a larger tree T ′ with
4l(T ′) + d(T ′) ≥ n(T ′) exists if:

(A) T contains a vertex with d ≥ 2 neighbors not in T , or a
non-leaf with one neighbor not in T .
(∆l ≥ d − 1, ∆n ≤ d , resp. ∆d = 1 = ∆n, ∆l = 0.)

(B) If (A) does not apply but there is a v ∈ V (G ) \ V (T ) with
either at least two neighbors in T , or d(v) = 1.
(∆d ≥ 1, ∆n = 1.)

(C) If there is a v ∈ V (G ) \ V (T ) with exactly one neighbor in T
and d = d(v) ≥ 3.
(∆l ≥ d − 2, ∆n ≤ d .)



Proof, continued:

Given a tree T with 4l(T ) + d(T ) ≥ n(T ), a larger tree T ′ with
4l(T ′) + d(T ′) ≥ n(T ′) exists if:

(D) If (B) and (C) do not apply but T is not yet spanning: there is
a u ∈ V (T ) with neighbor in T .

• d(u) = 2 (by (B) and (C)), and
• u has a neighbor v ∈ V (G ) \ V (T ) (by (B)).
d(v) 6= 2 (no degree 2 neighbors) and d(v) 6= 1 (u and its other
neighbor w 6= v would form a bridge uw), so d = d(v) ≥ 3, and v
has no neighbors in T (by (C)).

Therefore: ∆l ≥ d − 2, ∆n ≤ d + 1.

We conclude that a spanning tree T with 4l(T ) + d(T ) ≥ n(T )
exists. In a spanning tree, d(T ) = l(T ), and n(T ) = n, so
l(T ) ≥ n/5. �



A 5k-vertex kernel for k-Leaf Spanning Tree

The following algorithm gives a 5k-vertex-kernel for a k-LST
instance (G , k):

• Apply the degree 2 rule and bridge rule until an equivalent,
irreducible instance (G ′, k) is obtained.

If |V (G ′)| ≥ 5k, it is a YES instance (Theorem 5). Otherwise
(G ′, k) is the kernel.



ALGORITHM 5: a 2k-vertex kernel for Vertex Cover

• Nemhauser-Trotter

• Linear Programming

• Crown Decompositions



Vertex Cover - Integer Program

Goal: find a minimum vertex cover for graph G = (V ,E ), with
V = {v1, . . . , vn}.

The 0/1 variable xi indicates whether vi is chosen in the vertex
cover.

Integer linear programming formulation of Vertex Cover:

VC-IP :
min

∑n
i=1 xi

s.t. xi + xj ≥ 1 ∀vivj ∈ E

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}



Vertex Cover - Relaxed

Goal: find a minimum vertex cover for graph G = (V ,E ), with
V = {v1, . . . , vn}.

The 0/1 variable xi indicates whether vi is chosen in the vertex
cover.

Half-integer linear programming relaxation of Vertex Cover:

VC-Rel :
min

∑n
i=1 xi

s.t. xi + xj ≥ 1 ∀vivj ∈ E

xi ∈ {0, 1
2 , 1} ∀i ∈ {1, . . . , n}



• An optimal solution to VC-Rel can be found in polynomial time.

(Q1) How does this give a 2k-vertex kernel?

(Q2) How exactly can VC-Rel be solved in polynomial time?



Properties of a vertex partition

Given an optimal solution x to VC-Rel on graph G = (V ,E ),
partition V as follows:

C0= {vi : xi = 1}
I0= {vi : xi = 0}
V0= {vi : xi = 1

2}

Lemma
Let vertex partition {C0, I0,V0} be deduced from an optimal
VC-Rel solution. Then:
(1) If D is a VC for G [V0], then D ∪ C0 is a VC for G .
(2) G [V0] has no VC of size less than |V0|/2.
(3) There is a minimum VC C of G with C0 ⊆ C.

Observation (11)

Vertices in I0 only have neighbors in C0.



Proof of Property (1):

C0= {vi : xi = 1}
I0= {vi : xi = 0}
V0= {vi : xi = 1

2}

Property (1): If D is a VC for G [V0], then D ∪ C0 is a VC for G .

Proof: Consider an edge not covered by D, so
vivj ∈ E (G ) \ E (G [V0]).
If it has at least one end vertex in C0 it is clearly covered by D ∪C0.
Since edges with one end vertex in I0 have their other end vertex in
C0 (Observation 11), we have considered all types of edges. �



Proof of Property (2):

C0= {vi : xi = 1}
I0= {vi : xi = 0}
V0= {vi : xi = 1

2}

Property (2): G [V0] has no VC of size less than |V0|/2.

Proof: If C ∗ is a VC of G [V0] with |C ∗| < |V0|/2, then by (1),
setting yi = 1 for all vi ∈ C ∗ ∪ C0 is a VC of G with
∑

i yi = |C0| + |C ∗| < |C0| +
1
2 |V0|, contradicting the optimality of

x . �



Proof of Property (3):

C0= {vi : xi = 1}
I0= {vi : xi = 0}
V0= {vi : xi = 1

2}

Property (3): There is a minimum VC C of G with C0 ⊆ C .

Proof: Let S be a minimum VC of G .
We first show that |S ∩ I0| ≥ |C0 \ S |:

Construct a new solution y to VC-Rel as follows:
• yi = 1

2 if vi ∈ (S ∩ I0) ∪ (C0 \ S).
• yi = xi otherwise.

Claim
y is a feasible solution to VC-Rel.



Construct a new solution y to VC-Rel as follows:
• yi = 1

2 if vi ∈ (S ∩ I0) ∪ (C0 \ S).
• yi = xi otherwise.

Claim
y is a feasible solution to VC-Rel.

Proof: Consider an edge vivj .
If {vi , vj} ⊆ V0 ∪ C0 then xi + xj ≥

1
2 + 1

2 .
So w.l.o.g vi ∈ I0. Then vj ∈ C0 (Observation 11). If vj ∈ S then
yj = 1.
Otherwise, since S is a VC, vi ∈ S , so xi + xj ≥

1
2 + 1

2 . �



Proof of Property (3), continued:

Since x is an optimal solution to VC-Rel, we have

0 ≤
∑

i

yi −
∑

i

xi =
1

2
|S ∩ I0| −

1

2
|C0 \ S |,

so |C0 \ S | ≤ |S ∩ I0|.

Now let C = (S \ I0) ∪ C0.

The above inequality shows that |C | ≤ |S |.

C is a VC:
it covers all edges incident with C0, and
therefore all edges incident with I0 (Observation 11), and
all edges with both end vertices in V0 (since S is a VC). �



A 2k-vertex kernel for Vertex Cover

Properties:
(1) If D is a VC for G [V0], then D ∪ C0 is a VC for G .
(2) G [V0] has no VC of size less than |V0|/2.
(3) There is a minimum VC C of G with C0 ⊆ C .

(Q): Assuming we can solve VC-Rel in polynomial time, how does
this give a 2k-vertex kernel for VC?

(A): Consider (G ′, k ′) = (G [V0], k − |C0|).
If k ′ ≥ |V (G ′)|/2 then return (G ′, k ′), otherwise return NO.

• If G ′ has a k ′-VC, then G has a k-VC (Property (1)).
• If G has a k-VC S , then there is one that contains C0

(Property (3)), so S \ C0 is a k ′-VC of G ′.
• If k ′ < |V (G ′)|/2, then (G ′, k ′) is a NO-instance by
Property (2). Otherwise, |V (G ′)| ≤ 2k ′ ≤ 2k.



The only question that remains:

(Q2) How can VC-Rel be solved in polynomial time?

(A1) Using linear programming techniques (sketch):

• Relax VC-Rel further by allowing all values 0 ≤ xi ≤ 1.
• This yields a linear program without (half-)integer variables,
which can be solved in polynomial time.
• Any such solution can efficiently be transformed to a VC-Rel
solution of the same value. (See Flum and Grohe 2006, p.218-219.)

(A2) Using matchings in bipartite graphs.



• A graph B = (V ,E ) is bipartite if a partition {L,R} of V exists
such that all edges of B have one end vertex in L and one end
vertex in R .
L and R are the sides of the bipartition. (For connected graphs,
these are basically unique.)

Let G = (V ,E ) be the VC instance.

Construct a bipartite graph B as follows:

• For all v ∈ V , V (B) contains a vertex v and a vertex v ′.
(Notation: for any S ⊆ V , S ′= {v ′ : v ∈ S}, so V (B) = V ∪V ′.)

• For all uv ∈ E , E (B) contains an edge uv ′ and an edge u′v .

Lemma
VC-Rel on G has a solution x with

∑

i xi = z ⇔ B has a vertex
cover S with |S | = 2z.



Lemma proof, first direction

Lemma
VC-Rel on G has a solution x with

∑

i xi = z ⇒ B has a vertex
cover S with |S | = 2z.

Proof: Construct S as follows from x :

• for all i with xi = 1: add vi and v ′

i to S .
• for all i with xi = 1

2 : add vi to S .

Consider viv
′

j ∈ E (B).

S covers this edge unless xi = 0.
But then xj = 1 (since vivj ∈ E (G )), so v ′

j ∈ S . �



Lemma proof, second direction

Lemma
VC-Rel on G has a solution x with

∑

i xi = z ⇐ B has a vertex
cover S with |S | = 2z.

Proof: Construct x as follows from S :
• for all i with vi ∈ S and v ′

i ∈ S : xi = 1
• for all i with either vi ∈ S or v ′

i ∈ S : xi = 1
2 .

• for all other i : xi = 0.

Consider vivj ∈ E (G ).

Since S covers both viv
′

j and vjv
′

i , one of these cases holds:
• vi ∈ S and v ′

i ∈ S . Then xi = 1.
• vj ∈ S and v ′

j ∈ S . Then xj = 1.

• vi ∈ S and vj ∈ S . Then xi ≥
1
2 and xj ≥

1
2 .

• v ′

i ∈ S and v ′

j ∈ S . Then xi ≥
1
2 and xj ≥

1
2 . �



Finding a Minimum Vertex Cover in a bipartite graph:

König’s Theorem

• A matching in a graph G is a set of edges M ⊆ E (G ) that share
no end vertices (every v ∈ V (G ) is incident with at most one edge
of M).
A vertex v ∈ V (G ) is saturated by M if it is incident with an edge
of M.

Theorem (König)

For a bipartite graph B, the size of a minimum vertex cover equals
the size of a maximum matching, and both can be found in
polynomial time.



A proof sketch of Koenig’s Theorem

Theorem (König)

For a bipartite graph B, the size of a minimum vertex cover equals
the size of a maximum matching, and both can be found in
polynomial time.

• Clearly, since every matching edge needs to be covered,
|M| ≤ |C | holds for any matching M and any VC C , so the
challenge lies in proving equality.

• Let B be a graph with matching M. A path P in B is alternating
if its edges are alternatingly in M / not in M. An alternating path
in B is augmenting if its end vertices are not saturated by M.

• If there is an augmenting path P , a larger matching M ′ can be
found by ‘flipping all edges of P ’ (that is,
M ′ = (M \ E (P)) ∪ (E (P) \ M)).



When given a bipartite graph B with sides V and V ′, the following
algorithm finds a matching M and vertex cover C with |C | = |M|:

(1) Start with C = V , M = ∅.

(2) If |C | = |M| then return C and M, halt.

(3) Choose an unsaturated vertex v ∈ C , and construct an
alternating search tree subgraph T of B , rooted at v .

(4) If T contains an augmenting path P , then augment M using
P , goto (2).

(5) Otherwise, find a vertex set S with v ∈ S such that
• N(S) is saturated by M, and
• |N(S)| ≤ |S | − 1.
Then C ′ = (C \ S) ∪ N(S) is a VC with |C ′| < |C |. Set

C := C ′, goto (2).



Hall’s Theorem

The following theorem also follows:

Theorem (Hall)

A bipartite graph B with sides V and V ′ has a matching
saturating V if and only if there is no S ⊆ V with |N(S)| < |S |.



Summary

• In polynomial time, we can find a matching M and VC C with
|M| = |C |, which therefore are maximum resp. minimum.

• Applying this procedure to the bipartite graph B constructed
from G , we can solve VC-Rel on G in polynomial time.

• This concludes the 2k-vertex kernelization for k-Vertex Cover.



Crowns

• A crown in a graph G is a pair (C0, I0) of sets C0 and I0 such that

(a) all neighbors of I0 are part of C0,
(b) the edges between C0 and I0 contain a matching M that
saturates all vertices of C0.

• Property (a) is satisfied by the C0 and I0 returned by VC-Rel
(Observation 11).
• In the proof of Lemma 2, we showed that C0 is a minimum VC
for G [C0 ∪ I0], which by Koenig’s Theorem implies property (b).

• Therefore, an optimal solution to VC-Rel yields a crown in G if
C0 6= ∅.
• Conversely, if G contains a crown (C , I ) with |C | < |I |, VC-Rel
has a solution with objective at most |C | + 1

2 |V \ C \ I | < |V |/2,
so we will find a crown in polynomial time.



• Our earlier arguments showed that if (C , I ) is a crown of G , then
(G , k) and (G − C − I , k − |C |) are equivalent k-VC instances.

• If G = (V ,E ) contains no crown (C , I ) with |C | < |I |, then
every VC S of G has |S | ≥ |V |/2.

Conclusion: A different way to express this 2k-vertex kernel for
k-VC: find crowns (C , I ) with |C | < |I | in polynomial time if they
exist, and reduce them. A crownless graph is a 2k-kernel.

• Crown reductions have also been used to find kernelizations for
different problems.



Corollary: a 2-approximation algorithm for Vertex Cover

• A polynomial time algorithm for a minimization (maximization)
problem is an α-approximation algorithm if it returns a feasible
solution S with value(S) ≤ αvalue(opt) (resp.
value(S) ≥ 1

α
value(opt)).

The following is a 2-approximation for Minimum Vertex Cover on
graph G with n = |V (G )|:

• Apply the 2k-kernelization algorithm to (G , n), which yields
(G ′, n − |C0|).

• G contains an optimal vertex cover C opt
G with C0 ⊆ C opt

G .

• V0 ∪ C0 is a vertex cover for G with

|V0 ∪ C0| ≤ |C0| + 2|C opt
G ′ | ≤ |C0| + 2|C opt

G \ C0| ≤ 2|C opt
G |.



• ck-vertex kernels for ‘vertex subset’ problems usually yield
c-approximation algorithms for the corresponding optimization
problem.

Example: For Maximum Leaves Spanning Tree, the 5k-vertex
kernelization gives a 5-approximation algorithm.



Kernelization: summary

• For parameterized decision problems obtained from optimization
problems, kernelization algorithms are a method to obtain FPT
algorithms.

• These are preprocessing algorithms that can add to any
algorithmic method (e.g. approximation algorithms).

• Kernelization algorithms usually consist of reduction rules, which
reduce simple local structures (degree 1 vertices / high degree
vertices / long clauses, etc), and a bound f (k) for irreducible
instances (X , k) that allows us to
-return NO if |X | > f (k) for minimization problems, or
-return YES if |X | > f (k) for maximization problems.



Designing kernelization algorithms

• What are the trivial substructures, where an optimal solution of
a certain form can be guaranteed?

• Is there a reduction rule reflecting this?

• Can a bound be proved for irreducible instances? If not, which
structures are problematic? Etc...


