FPT ALGORITHMS, PART I:
KERNELIZATION ALGORITHMS

Problems considered:

Vertex cover
Max Satisfiability
d-Hitting Set
Max Leaves Spanning Tree
An improved kernel for vertex cover



Introduction / Motivation

e Kernelization is a technique to obtain FPT algorithms.

e Kernelization also gives a theoretical framework for theoretically
evaluating preprocessing algorithms.

e Kernelization algorithms are related to approximation algorithms.



ALGORITHM 1: Vertex Cover, Buss' kernel

e A vertex cover in a graph G = (V,E) is aset S C V such that
every edge of G is incident with at least one vertex from S.
Itis a k-VCif |S| = k.

k-Vertex Cover (k-VC):

INSTANCE: A graph G and integer k.

PARAMETER: k

QUESTION: Does G have a vertex cover S with |S| < k?



e An isolated vertex has degree zero.

Observation (1)

Let (G, k) be a k-VC instance, and let v be an isolated vertex.
Then the k-VC instance (G — v, k) is equivalent.

Observation (2)
Let (G, k) be a k-VC instance. If v € V(G) has degree at least
k + 1, the k-VC instance (G — v, k — 1) is equivalent.

Observation (3)

Let G be a graph with maximum degree k that admits a vertex
cover with at most k vertices. Then |E(G)| < k2.



Theorem

Let (G, k) be a k-VC instance. In polynomial time we can obtain
an equivalent k-VC instance (G', k') with |E(G')| < O(k?).

Proof: Iteratively remove isolated vertices and vertices with degree
at least k + 1, decreasing the parameter by one in the second case.
By Observation 2, the resulting instance (G’, k') is equivalent to
the original instance.

By Observation 3, if |[E(G’)| > k"2, we may return a trivial small
NO-instance, which is again equivalent.

If |E(G")| < k2, we return (G', k'), which satisfies the bound since
k' < k. O



Theorem

Let (G, k) be a k-VC instance. In polynomial time we can obtain
an equivalent k-VC instance (G', k') with |E(G")| < O(k?).

e This preprocessing algorithm is easily extended to an
FPT-algorithm:

Let (G, k) be a k-VC instance on n vertices. Preprocessing yields
equivalent instance (G’, k), with (roughly speaking!) at most

k2 < k? vertices. Consider all vertex subsets of size at most k’ of
G’: if one of these is a VC, return YES. If not, return NO.

Complexity:

e Preprocessing takes polynomial time n©),

e There are at most (I;(lf) € O(k?k) vertex sets of G’ to test.
e Testing whether vertex sets are vertex covers can be done in
polynomial time k(1)

Total complexity: n©() 4+ k2kkO) ~ nO) 1 O(k2).



e This preprocessing algorithm used a parameter dependent
preprocessing rule: not so nice (not immediately applicable to
optimization problem).

e Preprocessing algorithms of this type (kernelization algorithms)
always give FPT algorithms with nice ‘additive’ complexities.



Kernelization: definition

An algorithm A for a parameterized problem (Q, k) is a
kernelization algorithm if for every instance X, in polynomial time
(in |X]), A returns an equivalent instance X’ with |X'| < f(k(X)),
for some function f : N — N.

This is also called an f(k)-kernel.

e Usually, k(X") < k(X). This property is sometimes added to the
definition.



The above algorithm for k-VC is a kernelization algorithm that
returns an instance G’ with m = |E(G)| € O(k?) and
n=|V(G)| € O(k?).

We will sometimes (sloppily) ignore log factors, and call this an
O(k?)-kernel; note however that at least mlog n = ©(k? log k) bits
may be needed to encode G'.

For graph problems, vertex kernels are important: e.g. suppose a
graph G’ is returned with |E(G’)| < k? and |V(G’)| < ck: this is
an O(k?)-(size) kernel, but a ck-vertex kernel.

Edge kernels are defined similarly.



Theorem
A problem P admits an FPT algorithm < there is a kernelization
algorithm for P.

e The < direction is important: kernelization algorithms give FPT
algorithms.

e However, the = direction is just of theoretical importance: here
no actual preprocessing is done, so the kernelization algorithm is
practically irrelevant.

e We are usually only interested in polynomial kernels (where (k)
is polynomial).

e Polynomial kernelization algorithms are only known for
parameterized problems obtained from optimization problems with
the standard parameterization.



ALGORITHM 2: Maximum Satisfiability

Example:

(x V=y Vz)A(—xVa)is a boolean formula in CNF consisting of
two clauses, where x, y, z, a are the variables, which can occur as
positive or negative literals (x resp. —x).

k-Max Sat:

INSTANCE: a boolean CNF-formula F = A”; C; and integer k.
PARAMETER: k.

QUESTION: Does there exist a variable assignment satisfying at
least k clauses?

e The size of a CNF-formula is the sum of clause lengths (#
literals); we ignore log-factors again.



Trivial clauses

e A clause in F is trivial if it contains both a positive and negative
literal in the same variable.

Observation
Trivial clauses are satisfied in any truth assignment.

Observation
Let F,, be obtained from formula F by removing all t trivial
clauses, let k' = k — t. Then (F,, k") and (F, k) are equivalent.



Long clauses

e For instance (Fp, k'), a clause in F, is long if it contains at least
k' literals, and short otherwise.

Observation
If F, contains at least k' long clauses, (Fp, k") is a YES-instance.

Proof: Satisfy long clauses one by one by setting one of their
literals appropriately. After x clauses have been satisfied, every
(non-trivial) long clause contains still at least k' — x free variables,
so we can continue until at least k’ clauses are satisfied. O



Observation
Let Fs be obtained from formula F,, by removing all | < k' long
clauses, and k" = k' — |. Then (Fs, k") and (F,, k") are equivalent.

Proof: Clearly a truth assignment for F,, satisfying at least k’
clauses satisfies at least k' — / clauses of Fs.

In a truth assignment for Fs satisfying k" — I clauses, all variables
except at most k' — | are free to be changed. This allows to satisfy
the remaining / long clauses. O

Observation
If (Fs, k") contains at least 2k” clauses, it is a YES-instance.

Proof: Take an arbitrary truth assignment T and its complement
T obtained by flipping all variables. Every clause of F; is satisfied
in T orin T (or in both). O



An O(k?)-kernel for MaxSat

An O(k?)-kernelization algorithm on instance (F, k):

(1) Remove all ¢ trivial clauses to obtain F,, set k' = k — t.

(2) If (Fn, k") has at least k’ long clauses, return YES.

(3) Remove all / long clauses to obtain Fs, set k" = k" — .

(4) If (Fs, k") contains at least 2k” clauses, return YES.

(5) kernel (Fs, k") now contains at most 2k” clauses with at most
k' literals, so has size O(k’ - k") = O(k?).



ALGORITHM 3: d-Hitting Set

e Vertex Cover is equivalent to 2-Hitting Set:

d-Hitting Set:

INSTANCE: A hypergraph H = (V, E). with |e| < d for all e € E.
SOLUTION: A subset S C V that intersects every e € E (a hitting
set).

OBJECTIVE: Minimize |S].

k-d-Hitting Set:

INSTANCE: A hypergraph H = (V, E). with |e| < d for all e € E,
and integer k.

PARAMETER: k.

QUESTION: Does H have a hitting set S with |S] < k?

e The kernel for k-VC can be generalized to k-d-Hitting Set: for
every fixed d, a O(k9)-kernel exists.



Sunflowers

e Let H=(V,E) be a hypergraph. A k-sunflower in H consists of
aset S={e1,...,ec} C E and core C C V such that for all i # J,
ene = C.

e Hypergraph H = (V/, E) is d-uniform if |e| = d for all e € E.

Lemma (Sunflower Lemma)

Let H= (V,E) be a d-uniform hypergraph with more than
(k —1)9d! edges. Then H has a k-sunflower (which can be found
in polynomial time).



Proof of the Sunflower Lemma:

By induction on d.

If d =1, then H has more than k — 1 (disjoint) edges, which gives
a k-sunflower.

If d > 2, then we use the following induction hypothesis:

e Every (d — 1)-uniform hypergraph with more than
(k —1)971(d — 1)! edges contains a k-sunflower.

Let F = {f1,...,f;} be a maximal set of disjoint hyperedges in H.
If | > k, then F is a sunflower with core (.
Otherwise, let W = f; U... U f;, which has |[W/| < (k — 1)d.



Proof, continued:

Let W =fU...Uf;, which has |W| < (k —1)d.

H contains more than (k — 1)?d! edges, and every edge of H is
covered by W.

Thus there is an element w € W that hits more than

_1\d
7(’(‘1( _li);“ = (k —1)97Y(d —1)!

edges.

Taking all of these edges and removing w from them yields a

(d — 1)-uniform hypergraph H' with more than (k — 1)?=1(d — 1)!
edges. By induction, H' contains a k-sunflower S. Let C be its
core.

Taking the corresponding edges in H yields a k-sunflower in H,
with core C U {w}. O

e The above proof is easily translated to a polynomial time
algorithm that constructs a k-sunflower.



A kernel for k-d-Hitting Set

Let F be a (k + 1)-sunflower with core C in hypergraph H, and let
S be a hitting set of H.

o If SN C =1, then C instead hits all ‘petals’ of F, so |S| > k+ 1.
e Therefore, H has a hitting set of size k < the hypergraph H’
with edge set (E(H) \ F) U {C} has a hitting set of size k.

e Reduction rule: replace (H, k) by (H', k).

By the sunflower lemma, a reduced hypergraph H contains
e at most (k — 1) edges of size 1,

e at most (k — 1)?2! edges of size 2,

o ...

e at most (k — 1)?d! edges of size d,

So it contains at most (k — 1)9d!d edges in total.

Theorem
The above algorithm is a (k — 1)?d!d-edge kernelization for
k-d-Hitting Set.



ALGORITHM 4: Maximum Leaves Spanning Tree

e A subgraph H of a graph G is spanning if V(H) = V(G).
e A graph H is a tree if it is connected and has no cycles.

e A leaf of a graph (tree) is a vertex v with degree 1. d(v)
denotes the degree of v.

Max-Leaves Spanning Tree:

INSTANCE: A connected graph G.

SOLUTION: a spanning tree T of G.
OBJECTIVE: maximize the number of leaves of T.

By k-Leaf Spanning Tree or k-LST we denote the standard
parameterization of this problem.



Reduction Rules

Observation (Degree 2 Rule)

Let (G, k) be a k-LST instance, and let uv € E(G) with
d(u) =d(v) =2. If G — uv is connected, then (G — uv, k) is an
equivalent instance.

e A bridge in a connected graph G is an edge uv such that G — uv
is disconnected.

Observation (Bridge Rule)

Let (G, k) be a k-LST instance, and let uv € E(G) with
d(u) > d(v) > 2. If uv is a bridge, then contracting uv gives an
equivalent instance (G', k).

e Conclusion: a reduced instance (G, k) contains no adjacent
vertices of degree 2, and no bridges between degree > 2 vertices.



Theorem

A connected simple graph G on n vertices, with no adjacent
vertices of degree 2 and no bridges between two non-leaves,
contains a spanning tree with at least n/5 leaves.

Proof: For any (possibly non-spanning) tree subgraph T of G we
define

o n(T)=[V(T)],

e /(T) is the number of leaves of T, and

e d(T) is the number of dead leaves, which are leaves of T with
no neighbors outside of T.

A tree T with 4/(T)+ d(T) > n(T) exists: w.l.o.g. G contains a
vertex v with d(v) > 3; consider v and all its neighbors.



Proof, continued:

Given a tree T with 4/(T)+d(T) > n(T), a larger tree T’ with
4I(T")+d(T') > n(T') exists if:

(A) T contains a vertex with d > 2 neighbors not in T, or a
non-leaf with one neighbor not in T.
(Al>d—1, An<d, resp. Ad =1= An, Al =0.)

(B) If (A) does not apply but there isa v € V(G)\ V(T) with
either at least two neighbors in T, or d(v) = 1.
(Ad >1, An=1)

(C) If there is a v € V(G) \ V(T) with exactly one neighbor in T
and d = d(v) > 3.
(Al>d—2 An<d)



Proof, continued:

Given a tree T with 4/(T)+d(T) > n(T), a larger tree T’ with
4I(T")+d(T') > n(T') exists if:

(D) If (B) and (C) do not apply but T is not yet spanning: there is
a u € V(T) with neighbor in T.

e d(u) =2 (by (B) and (C)), and

e u has a neighbor v € V(G)\ V(T) (by (B)).

d(v) # 2 (no degree 2 neighbors) and d(v) # 1 (u and its other
neighbor w # v would form a bridge uw), so d = d(v) > 3, and v
has no neighbors in T (by (C)).

Therefore: Al > d —2, An<d + 1.
We conclude that a spanning tree T with 4/(T)+d(T) > n(T)

exists. In a spanning tree, d(T) = /(T), and n(T) = n, so
I(T) > n/5. O



A 5k-vertex kernel for k-Leaf Spanning Tree

The following algorithm gives a 5k-vertex-kernel for a k-LST
instance (G, k):

e Apply the degree 2 rule and bridge rule until an equivalent,
irreducible instance (G’, k) is obtained.

If [V(G')| > 5k, it is a YES instance (Theorem 5). Otherwise
(G', k) is the kernel.



ALGORITHM 5: a 2k-vertex kernel for Vertex Cover

e Nemhauser-Trotter
e Linear Programming

e Crown Decompositions



Vertex Cover - Integer Program

Goal: find a minimum vertex cover for graph G = (V, E), with
V={w,...,vq}.

The 0/1 variable x; indicates whether v; is chosen in the vertex
cover.

Integer linear programming formulation of Vertex Cover:

VC-IP:
min - Y7 ;X

st. xi+x,>21  VviyyeE

x; € {0,1} Vie{l,...,n}



Vertex Cover - Relaxed

Goal: find a minimum vertex cover for graph G = (V, E), with
V={w,...,vq}.

The 0/1 variable x; indicates whether v; is chosen in the vertex
cover.

Half-integer linear programming relaxation of Vertex Cover:

VC-Rel:
min Y7 ;X

st. xi+x,>21  VviyyeE

x€{0,3,1} Vvie{l,...,n}



e An optimal solution to VC-Rel can be found in polynomial time.
(Q1) How does this give a 2k-vertex kernel?

(Q2) How exactly can VC-Rel be solved in polynomial time?



Properties of a vertex partition

Given an optimal solution x to VC-Rel on graph G = (V, E),
partition V as follows:

Co={vi: x; =1}
/(): {V,' X = 0}
\/0: {V,' X = %}

Lemma

Let vertex partition {Cy, lp, Vo} be deduced from an optimal
VC-Rel solution. Then:

(1) If D is a VC for G[W,], then DU Gy is a VC for G.

(2) G[Vo] has no VC of size less than |Vy|/2.

(3) There is a minimum VC C of G with Gy C C.

Observation (11)

Vertices in Iy only have neighbors in (.



Proof of Property (1):

Co={vi:x; =1}
lo={vi : x; =0}
Vo= {vi : x; = 1}

Property (1): If D is a VC for G[Vp], then DU Gy is a VC for G.

Proof: Consider an edge not covered by D, so

viv; € E(G)\ E(G[Val).

If it has at least one end vertex in (j it is clearly covered by DU (.
Since edges with one end vertex in Iy have their other end vertex in
Co (Observation 11), we have considered all types of edges. O



Proof of Property (2):

GC={vi:x; =1}
lo={vi : x; =0}
\/(): {V,' X = %}

Property (2): G[Vo] has no VC of size less than |Vy|/2.

Proof: If C* is a VC of G[V,] with |C*| < |Vp]|/2, then by (1),
setting y; =1 for all v; € C* U (p is a VC of G with

S vi=|Co| +|C*| < |Go| + 3| Vo, contradicting the optimality of
X. g



Proof of Property (3):

GC=A{vi:xi =1}
/(): {V,' X = 0}
Vo={vi : xi = 3}

Property (3): There is a minimum VC C of G with Gy C C.

Proof: Let S be a minimum VC of G.
We first show that [S N lh| > |G \ S|

Construct a new solution y to VC-Rel as follows:
oy,-:% ifV,'E(Sﬁ/o)U(Co\S).
e y; = X; otherwise.

Claim
y is a feasible solution to VC-Rel.



Construct a new solution y to VC-Rel as follows:
oy,-:% ifV,'E(Sﬁ/o)U(Co\S).
e y; = X; otherwise.

Claim
y Is a feasible solution to VC-Rel.

Proof: Consider an edge v;v;.

If{v,-,vj} C Vo U ( then Xi + xj = %—i—%

So w.l.o.g vj € ly. Then v; € Cy (Observation 11). If v; € S then
yj =L

Otherwise, since Sisa VC, v; € 5, so x; + x; > %—i— % O



Proof of Property (3), continued:

Since x is an optimal solution to VC-Rel, we have

0= Y = Yxi =350kl 31Go\ S,
so |Go\ S| < [SN .
Now let C = (S \ h) U G.
The above inequality shows that |C| < |S].
Cisa VC
it covers all edges incident with Cy, and

therefore all edges incident with Iy (Observation 11), and
all edges with both end vertices in Vg (since S is a VC).



A 2k-vertex kernel for Vertex Cover

Properties:

(1) If D is a VC for G[Vp], then DU Gy is a VC for G.
(2) G[Wo] has no VC of size less than |Vp|/2.

(3) There is a minimum VC C of G with Gy C C.

(Q): Assuming we can solve VC-Rel in polynomial time, how does
this give a 2k-vertex kernel for VC?

(A): Consider (G', k") = (G[W], k — | Gol)-
If K" >|V(G’)|/2 then return (G’, k'), otherwise return NO.

e If G’ has a k’-VC, then G has a k-VC (Property (1)).
e If G has a k-VC S, then there is one that contains C
(Property (3)), so S\ Gy is a k’-VC of G'.

o If K < |V(G")|/2, then (G’, k') is a NO-instance by
Property (2). Otherwise, |V(G')| < 2k’ < 2k.



The only question that remains:

(Q2) How can VC-Rel be solved in polynomial time?

(A1) Using linear programming techniques (sketch):

e Relax VC-Rel further by allowing all values 0 < x; < 1.

e This yields a linear program without (half-)integer variables,
which can be solved in polynomial time.

e Any such solution can efficiently be transformed to a VC-Rel

solution of the same value. (See Flum and Grohe 2006, p.218-219.)

(A2) Using matchings in bipartite graphs.



e A graph B = (V,E) is bipartite if a partition {L, R} of V exists
such that all edges of B have one end vertex in L and one end
vertex in R.

L and R are the sides of the bipartition. (For connected graphs,
these are basically unique.)

Let G = (V, E) be the VC instance.
Construct a bipartite graph B as follows:
e For all v € V, V(B) contains a vertex v and a vertex v'.

(Notation: forany S C V, S'={v': v e S}, so V(B)=VUV")
e For all uv € E, E(B) contains an edge uv’ and an edge v'v.

Lemma
VC-Rel on G has a solution x with ). x; = z < B has a vertex
cover S with |S| = 2z.



Lemma proof, first direction

Lemma
VC-Rel on G has a solution x with ). x; = z = B has a vertex
cover S with |S| = 2z.

Proof: Construct S as follows from x:

e for all i with x; = 1: add v; and v/ to S.

e for all i with x; = 3: add v; to S.

Consider v;v; € E(B).

S covers this edge unless x; = 0.
But then x; = 1 (since v;v; € E(G)), so v/ € S.



Lemma proof, second direction

Lemma
VC-Rel on G has a solution x with ) _; x; = z <= B has a vertex
cover S with |S| = 2z.

Proof: Construct x as follows from S:
e for all i with vy € Sand v/ € §: x; =1
e for all j with either v; € Sor v/ € S: x; = %

e for all other i: x; = 0.
Consider v;v; € E(G).

Since S covers both v,-va and v;jv/, one of these cases holds:
evieSand v/ €S. Then x; =1.

evi€Sandv/€S. Thenx; =1
evieSand v €S. Then x; > % and x; > 3.
ev/eSand v/ €S Thenx >3 and x; > 3.



Finding a Minimum Vertex Cover in a bipartite graph:
Konig's Theorem

e A matching in a graph G is a set of edges M C E(G) that share
no end vertices (every v € V(G) is incident with at most one edge
of M).
A vertex v € V(G) is saturated by M if it is incident with an edge
of M.

Theorem (Konig)

For a bipartite graph B, the size of a minimum vertex cover equals
the size of a maximum matching, and both can be found in
polynomial time.



A proof sketch of Koenig's Theorem

Theorem (Konig)

For a bipartite graph B, the size of a minimum vertex cover equals
the size of a maximum matching, and both can be found in
polynomial time.

e Clearly, since every matching edge needs to be covered,
M| < |C| holds for any matching M and any VC C, so the
challenge lies in proving equality.

e Let B be a graph with matching M. A path P in B is alternating
if its edges are alternatingly in M / not in M. An alternating path
in B is augmenting if its end vertices are not saturated by M.

e If there is an augmenting path P, a larger matching M’ can be
found by ‘flipping all edges of P’ (that is,
M" = (M\ E(P))U (E(P)\ M)).



When given a bipartite graph B with sides V and V’, the following
algorithm finds a matching M and vertex cover C with |C| = |M|:
1) Start with C =V, M = 0.

2) If |C| = |M] then return C and M, halt.

)

3) Choose an unsaturated vertex v € C, and construct an
alternating search tree subgraph T of B, rooted at v.

(
(

(4) If T contains an augmenting path P, then augment M using
P, goto (2).

(5) Otherwise, find a vertex set S with v € S such that

e N(S) is saturated by M, and

o IN(S)| < |S] -1

Then C"'= (C\ S)UN(S) is a VC with |C'| < |C|. Set
C := C’, goto (2).



Hall's Theorem

The following theorem also follows:

Theorem (Hall)

A bipartite graph B with sides VV and V' has a matching
saturating V' if and only if there is no S C V with |[N(S)| < |S|.



Summary

e In polynomial time, we can find a matching M and VC C with
M| = | C|, which therefore are maximum resp. minimum.

e Applying this procedure to the bipartite graph B constructed
from G, we can solve VC-Rel on G in polynomial time.

e This concludes the 2k-vertex kernelization for k-Vertex Cover.



Crowns

e A crown in a graph G is a pair (Co, Ip) of sets Cy and Iy such that

(a) all neighbors of Iy are part of Co,
(b) the edges between Cy and Iy contain a matching M that
saturates all vertices of (.

e Property (a) is satisfied by the Cy and Iy returned by VC-Rel
(Observation 11).

e In the proof of Lemma 2, we showed that Cp is a minimum VC
for G[Co U Ip], which by Koenig's Theorem implies property (b).

e Therefore, an optimal solution to VC-Rel yields a crown in G if
Co # 0.

e Conversely, if G contains a crown (C, /) with |C| < |/|, VC-Rel
has a solution with objective at most |C| + 1|V \ C\ /| < |V|/2,
so we will find a crown in polynomial time.



e Our earlier arguments showed that if (C, /) is a crown of G, then
(G,k) and (G — C — I,k — |C]) are equivalent k-VC instances.

e If G = (V, E) contains no crown (C, /) with |C| < |/], then
every VC S of G has |S| > |V/|/2.

Conclusion: A different way to express this 2k-vertex kernel for
k-VC: find crowns (C, /) with |C| < |/| in polynomial time if they
exist, and reduce them. A crownless graph is a 2k-kernel.

e Crown reductions have also been used to find kernelizations for
different problems.



Corollary: a 2-approximation algorithm for Vertex Cover

e A polynomial time algorithm for a minimization (maximization)
problem is an a-approximation algorithm if it returns a feasible
solution S with value(S) < avalue(opt) (resp.

value(S) > Lvalue(opt)).

The following is a 2-approximation for Minimum Vertex Cover on
graph G with n = |V(G)|:

e Apply the 2k-kernelization algorithm to (G, n), which yields
(G/v n— |C0|)

e G contains an optimal vertex cover Cg- with Gy C COpt

e Vo U ( is a vertex cover for G with

Vo U Go| < |Gol +2|CZ| < |Go| +2|CPFF\ Gof < 2|CFF).



e ck-vertex kernels for ‘vertex subset’ problems usually yield

c-approximation algorithms for the corresponding optimization
problem.

Example: For Maximum Leaves Spanning Tree, the bk-vertex
kernelization gives a 5-approximation algorithm.



Kernelization: summary

e For parameterized decision problems obtained from optimization
problems, kernelization algorithms are a method to obtain FPT
algorithms.

e These are preprocessing algorithms that can add to any
algorithmic method (e.g. approximation algorithms).

e Kernelization algorithms usually consist of reduction rules, which
reduce simple local structures (degree 1 vertices / high degree
vertices / long clauses, etc), and a bound f(k) for irreducible
instances (X, k) that allows us to

-return NO if |[X| > f(k) for minimization problems, or

-return YES if | X| > f(k) for maximization problems.



Designing kernelization algorithms

e What are the trivial substructures, where an optimal solution of
a certain form can be guaranteed?

e |s there a reduction rule reflecting this?

e Can a bound be proved for irreducible instances? If not, which
structures are problematic? Etc...



