FPT ALGORITHMS, PART I: KERNELIZATION ALGORITHMS

Problems considered:

Vertex cover Max Satisfiability *d*-Hitting Set Max Leaves Spanning Tree An improved kernel for vertex cover

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Introduction / Motivation

- Kernelization is a technique to obtain FPT algorithms.
- Kernelization also gives a theoretical framework for theoretically evaluating preprocessing algorithms.
- Kernelization algorithms are related to approximation algorithms.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ALGORITHM 1: Vertex Cover, Buss' kernel

• A vertex cover in a graph G = (V, E) is a set $S \subseteq V$ such that every edge of G is incident with at least one vertex from S. It is a k-VC if |S| = k.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

k-Vertex Cover (*k*-VC): INSTANCE: A graph *G* and integer *k*. PARAMETER: *k* QUESTION: Does *G* have a vertex cover *S* with $|S| \le k$?

• An *isolated vertex* has degree zero.

Observation (1)

Let (G, k) be a k-VC instance, and let v be an isolated vertex. Then the k-VC instance (G - v, k) is equivalent.

Observation (2)

Let (G, k) be a k-VC instance. If $v \in V(G)$ has degree at least k + 1, the k-VC instance (G - v, k - 1) is equivalent.

Observation (3)

Let G be a graph with maximum degree k that admits a vertex cover with at most k vertices. Then $|E(G)| \le k^2$.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Theorem

Let (G, k) be a k-VC instance. In polynomial time we can obtain an equivalent k-VC instance (G', k') with $|E(G')| \le O(k^2)$.

Proof: Iteratively remove isolated vertices and vertices with degree at least k + 1, decreasing the parameter by one in the second case. By Observation 2, the resulting instance (G', k') is equivalent to the original instance.

By Observation 3, if $|E(G')| > k'^2$, we may return a trivial small NO-instance, which is again equivalent.

If $|E(G')| \le k'^2$, we return (G', k'), which satisfies the bound since $k' \le k$.

Theorem

Let (G, k) be a k-VC instance. In polynomial time we can obtain an equivalent k-VC instance (G', k') with $|E(G')| \le O(k^2)$.

• This preprocessing algorithm is easily extended to an FPT-algorithm:

Let (G, k) be a k-VC instance on n vertices. Preprocessing yields equivalent instance (G', k'), with (roughly speaking!) at most $k'^2 \leq k^2$ vertices. Consider all vertex subsets of size at most k' of G': if one of these is a VC, return YES. If not, return NO.

Complexity:

- Preprocessing takes polynomial time $n^{O(1)}$.
- There are at most $\binom{k'^2}{k'} \in O(k^{2k})$ vertex sets of G' to test.

• Testing whether vertex sets are vertex covers can be done in polynomial time $k'^{O(1)}$.

Total complexity: $n^{O(1)} + k^{2k} k^{O(1)} \approx n^{O(1)} + O(k^{2k})$.

• This preprocessing algorithm used a *parameter dependent preprocessing rule*: not so nice (not immediately applicable to optimization problem).

• Preprocessing algorithms of this type (*kernelization* algorithms) always give FPT algorithms with nice 'additive' complexities.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

An algorithm A for a parameterized problem (Q, κ) is a *kernelization algorithm* if for every instance X, in *polynomial time* (in |X|), A returns an *equivalent instance* X' with $|X'| \leq f(\kappa(X))$, for some function $f : \mathbb{N} \to \mathbb{N}$.

This is also called an $f(\kappa)$ -kernel.

• Usually, $\kappa(X') \leq \kappa(X)$. This property is sometimes added to the definition.

The above algorithm for k-VC is a kernelization algorithm that returns an instance G' with $m = |E(G)| \in O(k^2)$ and $n = |V(G)| \in O(k^2)$.

We will sometimes (sloppily) ignore log factors, and call this an $O(k^2)$ -kernel; note however that at least $m \log n = \Theta(k^2 \log k)$ bits may be needed to encode G'.

For graph problems, *vertex kernels* are important: e.g. suppose a graph G' is returned with $|E(G')| \le k^2$ and $|V(G')| \le ck$: this is an $O(k^2)$ -(size) kernel, but a *ck*-*vertex kernel*.

Edge kernels are defined similarly.

Theorem

A problem P admits an FPT algorithm \Leftrightarrow there is a kernelization algorithm for P.

• The \Leftarrow direction is important: kernelization algorithms give FPT algorithms.

• However, the \Rightarrow direction is just of theoretical importance: here no actual preprocessing is done, so the kernelization algorithm is practically irrelevant.

• We are usually only interested in *polynomial* kernels (where $f(\kappa)$ is polynomial).

• Polynomial kernelization algorithms are only known for parameterized problems obtained from optimization problems with the *standard parameterization*.

ALGORITHM 2: Maximum Satisfiability

Example:

 $(x \lor \neg y \lor z) \land (\neg x \lor a)$ is a boolean formula in *CNF* consisting of two *clauses*, where x, y, z, a are the variables, which can occur as *positive or negative literals* (x resp. $\neg x$).

k-Max Sat: INSTANCE: a boolean CNF-formula $F = \bigwedge_{i=1}^{m} C_i$ and integer *k*. PARAMETER: *k*. QUESTION: Does there exist a variable assignment satisfying at least *k* clauses?

• The *size* of a CNF-formula is the sum of clause lengths (# literals); we ignore log-factors again.

Trivial clauses

• A clause in *F* is *trivial* if it contains both a positive and negative literal in the same variable.

Observation Trivial clauses are satisfied in any truth assignment.

Observation Let F_n be obtained from formula F by removing all t trivial clauses, let k' = k - t. Then (F_n, k') and (F, k) are equivalent.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Long clauses

• For instance (F_n, k') , a clause in F_n is *long* if it contains at least k' literals, and *short* otherwise.

Observation

If F_n contains at least k' long clauses, (F_n, k') is a YES-instance.

Proof: Satisfy long clauses one by one by setting one of their literals appropriately. After x clauses have been satisfied, every (non-trivial) long clause contains still at least k' - x free variables, so we can continue until at least k' clauses are satisfied.

Observation

Let F_s be obtained from formula F_n by removing all $l \le k'$ long clauses, and k'' = k' - l. Then (F_s, k'') and (F_n, k') are equivalent.

Proof: Clearly a truth assignment for F_n satisfying at least k' clauses satisfies at least k' - l clauses of F_s . In a truth assignment for F_s satisfying k' - l clauses, all variables except at most k' - l are free to be changed. This allows to satisfy the remaining l long clauses.

Observation

If (F_s, k'') contains at least 2k'' clauses, it is a YES-instance.

Proof: Take an arbitrary truth assignment T and its complement \overline{T} obtained by flipping all variables. Every clause of F_s is satisfied in T or in \overline{T} (or in both).

An $O(k^2)$ -kernelization algorithm on instance (F, k):

(1) Remove all t trivial clauses to obtain F_n, set k' = k - t.
 (2) If (F_n, k') has at least k' long clauses, return YES.
 (3) Remove all l long clauses to obtain F_s, set k'' = k' - l.
 (4) If (F_s, k'') contains at least 2k'' clauses, return YES.
 (5) kernel (F_s, k'') now contains at most 2k'' clauses with at most k' literals, so has size O(k' · k'') = O(k²).

ALGORITHM 3: d-Hitting Set

• Vertex Cover is equivalent to 2-Hitting Set:

```
d-Hitting Set:
INSTANCE: A hypergraph H = (V, E). with |e| \le d for all e \in E.
SOLUTION: A subset S \subseteq V that intersects every e \in E (a hitting set).
OBJECTIVE: Minimize |S|.
```

```
k-d-Hitting Set:
INSTANCE: A hypergraph H = (V, E). with |e| \le d for all e \in E, and integer k.
PARAMETER: k.
QUESTION: Does H have a hitting set S with |S| \le k?
```

• The kernel for k-VC can be generalized to k-d-Hitting Set: for every fixed d, a $O(k^d)$ -kernel exists.

Sunflowers

• Let H = (V, E) be a hypergraph. A *k*-sunflower in H consists of a set $S = \{e_1, \ldots, e_k\} \subseteq E$ and core $C \subseteq V$ such that for all $i \neq j$, $e_i \cap e_j = C$.

• Hypergraph H = (V, E) is *d*-uniform if |e| = d for all $e \in E$.

Lemma (Sunflower Lemma)

Let H = (V, E) be a *d*-uniform hypergraph with more than $(k-1)^d d!$ edges. Then H has a k-sunflower (which can be found in polynomial time).

Proof of the Sunflower Lemma:

By induction on d.

If d = 1, then H has more than k - 1 (disjoint) edges, which gives a k-sunflower.

If $d \ge 2$, then we use the following induction hypothesis:

• Every (d-1)-uniform hypergraph with more than $(k-1)^{d-1}(d-1)!$ edges contains a k-sunflower.

Let $F = \{f_1, \ldots, f_l\}$ be a maximal set of disjoint hyperedges in H. If $l \ge k$, then F is a sunflower with core \emptyset . Otherwise, let $W = f_1 \cup \ldots \cup f_l$, which has $|W| \le (k-1)d$.

<ロ> <@> < E> < E> E のQの

Proof, continued:

Let $W = f_1 \cup \ldots \cup f_l$, which has $|W| \le (k-1)d$. H contains more than $(k-1)^d d!$ edges, and every edge of H is covered by W.

Thus there is an element $w \in W$ that hits more than

$$\frac{(k-1)^d d!}{(k-1)d} = (k-1)^{d-1}(d-1)!$$

edges.

Taking all of these edges and removing w from them yields a (d-1)-uniform hypergraph H' with more than $(k-1)^{d-1}(d-1)!$ edges. By induction, H' contains a k-sunflower S. Let C be its core.

Taking the corresponding edges in *H* yields a *k*-sunflower in *H*, with core $C \cup \{w\}$.

• The above proof is easily translated to a polynomial time algorithm that constructs a k-sunflower.

A kernel for k-d-Hitting Set

Let F be a (k + 1)-sunflower with core C in hypergraph H, and let S be a hitting set of H.

- If $S \cap C = \emptyset$, then C instead hits all 'petals' of F, so $|S| \ge k + 1$.
- Therefore, *H* has a hitting set of size $k \Leftrightarrow$ the hypergraph *H'* with edge set $(E(H) \setminus F) \cup \{C\}$ has a hitting set of size *k*.
- Reduction rule: replace (H, k) by (H', k).

By the sunflower lemma, a reduced hypergraph H contains

• at most (k-1) edges of size 1,

• at most
$$(k-1)^2 2!$$
 edges of size 2,

• at most $(k-1)^d d!$ edges of size d,

So it contains at most $(k-1)^d d! d$ edges in total.

Theorem

The above algorithm is a $(k-1)^d d! d$ -edge kernelization for k-d-Hitting Set.

ALGORITHM 4: Maximum Leaves Spanning Tree

• A subgraph H of a graph G is spanning if V(H) = V(G).

• A graph H is a *tree* if it is connected and has no cycles.

• A *leaf* of a graph (tree) is a vertex v with degree 1. d(v) denotes the degree of v.

Max-Leaves Spanning Tree: INSTANCE: A connected graph G. SOLUTION: a spanning tree T of G. OBJECTIVE: maximize the number of leaves of T.

By k-Leaf Spanning Tree or k-LST we denote the standard parameterization of this problem.

Reduction Rules

Observation (Degree 2 Rule) Let (G, k) be a k-LST instance, and let $uv \in E(G)$ with d(u) = d(v) = 2. If G - uv is connected, then (G - uv, k) is an equivalent instance.

• A *bridge* in a connected graph G is an edge uv such that G - uv is disconnected.

Observation (Bridge Rule)

Let (G, k) be a k-LST instance, and let $uv \in E(G)$ with $d(u) \ge d(v) \ge 2$. If uv is a bridge, then contracting uv gives an equivalent instance (G', k).

• Conclusion: a *reduced instance* (G, k) contains no adjacent vertices of degree 2, and no bridges between degree ≥ 2 vertices.

Theorem

A connected simple graph G on n vertices, with no adjacent vertices of degree 2 and no bridges between two non-leaves, contains a spanning tree with at least n/5 leaves.

Proof: For any (possibly non-spanning) tree subgraph T of G we define

- n(T) = |V(T)|,
- I(T) is the number of leaves of T, and

• d(T) is the number of *dead leaves*, which are leaves of T with no neighbors outside of T.

A tree T with $4I(T) + d(T) \ge n(T)$ exists: w.l.o.g. G contains a vertex v with $d(v) \ge 3$; consider v and all its neighbors.

Proof, continued:

Given a tree T with $4I(T) + d(T) \ge n(T)$, a larger tree T' with $4I(T') + d(T') \ge n(T')$ exists if:

(A) *T* contains a vertex with $d \ge 2$ neighbors not in *T*, or a non-leaf with one neighbor not in *T*. ($\Delta l \ge d - 1$, $\Delta n \le d$, resp. $\Delta d = 1 = \Delta n$, $\Delta l = 0$.)

(B) If (A) does not apply but there is a $v \in V(G) \setminus V(T)$ with either at least two neighbors in T, or d(v) = 1. ($\Delta d \ge 1$, $\Delta n = 1$.)

(C) If there is a $v \in V(G) \setminus V(T)$ with exactly one neighbor in T and $d = d(v) \ge 3$. $(\Delta l \ge d - 2, \ \Delta n \le d.)$

Proof, continued:

Given a tree T with $4I(T) + d(T) \ge n(T)$, a larger tree T' with $4I(T') + d(T') \ge n(T')$ exists if:

(D) If (B) and (C) do not apply but T is not yet spanning: there is a $u \in V(T)$ with neighbor in T.

•
$$d(u) = 2$$
 (by (B) and (C)), and
• u has a neighbor $v \in V(G) \setminus V(T)$ (by (B)).
 $d(v) \neq 2$ (no degree 2 neighbors) and $d(v) \neq 1$ (u and its other
neighbor $w \neq v$ would form a bridge uw), so $d = d(v) \ge 3$, and v
has no neighbors in T (by (C)).

Therefore: $\Delta l \ge d - 2$, $\Delta n \le d + 1$.

We conclude that a spanning tree T with $4/(T) + d(T) \ge n(T)$ exists. In a spanning tree, d(T) = l(T), and n(T) = n, so $l(T) \ge n/5$. A 5k-vertex kernel for k-Leaf Spanning Tree

The following algorithm gives a 5k-vertex-kernel for a k-LST instance (G, k):

• Apply the degree 2 rule and bridge rule until an equivalent, irreducible instance (G', k) is obtained.

If $|V(G')| \ge 5k$, it is a YES instance (Theorem 5). Otherwise (G', k) is the kernel.

ALGORITHM 5: a 2k-vertex kernel for Vertex Cover

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

- Nemhauser-Trotter
- Linear Programming
- Crown Decompositions

Vertex Cover - Integer Program

Goal: find a minimum vertex cover for graph G = (V, E), with $V = \{v_1, \ldots, v_n\}$.

The 0/1 variable x_i indicates whether v_i is chosen in the vertex cover.

Integer linear programming formulation of Vertex Cover:

VC-IP:

min
$$\sum_{i=1}^{n} x_i$$

s.t. $x_i + x_j \ge 1$ $\forall v_i v_j \in E$
 $x_i \in \{0, 1\}$ $\forall i \in \{1, \dots, n\}$

Vertex Cover - Relaxed

Goal: find a minimum vertex cover for graph G = (V, E), with $V = \{v_1, \ldots, v_n\}$.

The 0/1 variable x_i indicates whether v_i is chosen in the vertex cover.

Half-integer linear programming relaxation of Vertex Cover:

VC-Rel:

min
$$\sum_{i=1}^{n} x_i$$

s.t. $x_i + x_j \ge 1$ $\forall v_i v_j \in E$
 $x_i \in \{0, \frac{1}{2}, 1\}$ $\forall i \in \{1, \dots, n\}$

An optimal solution to VC-Rel can be found in polynomial time.
(Q1) How does this give a 2k-vertex kernel?

(ロ)、(型)、(E)、(E)、 E、 の(の)

(Q2) How exactly can VC-Rel be solved in polynomial time?

Properties of a vertex partition

Given an optimal solution x to VC-Rel on graph G = (V, E), partition V as follows:

$$C_0 = \{v_i : x_i = 1\}$$

$$I_0 = \{v_i : x_i = 0\}$$

$$V_0 = \{v_i : x_i = \frac{1}{2}\}$$

Lemma

Let vertex partition $\{C_0, I_0, V_0\}$ be deduced from an optimal VC-Rel solution. Then:

- (1) If D is a VC for $G[V_0]$, then $D \cup C_0$ is a VC for G.
- (2) $G[V_0]$ has no VC of size less than $|V_0|/2$.
- (3) There is a minimum VC C of G with $C_0 \subseteq C$.

Observation (11)

Vertices in I_0 only have neighbors in C_0 .

Proof of Property (1):

$$C_0 = \{v_i : x_i = 1\}$$

$$I_0 = \{v_i : x_i = 0\}$$

$$V_0 = \{v_i : x_i = \frac{1}{2}\}$$

Property (1): If D is a VC for $G[V_0]$, then $D \cup C_0$ is a VC for G.

Proof: Consider an edge not covered by D, so $v_i v_j \in E(G) \setminus E(G[V_0])$.

If it has at least one end vertex in C_0 it is clearly covered by $D \cup C_0$. Since edges with one end vertex in I_0 have their other end vertex in C_0 (Observation 11), we have considered all types of edges.

Proof of Property (2):

$$C_0 = \{v_i : x_i = 1\}$$

$$I_0 = \{v_i : x_i = 0\}$$

$$V_0 = \{v_i : x_i = \frac{1}{2}\}$$

Property (2): $G[V_0]$ has no VC of size less than $|V_0|/2$.

Proof: If C^* is a VC of $G[V_0]$ with $|C^*| < |V_0|/2$, then by (1), setting $y_i = 1$ for all $v_i \in C^* \cup C_0$ is a VC of G with $\sum_i y_i = |C_0| + |C^*| < |C_0| + \frac{1}{2}|V_0|$, contradicting the optimality of x.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Proof of Property (3):

 $C_0 = \{v_i : x_i = 1\}$ $l_0 = \{v_i : x_i = 0\}$ $V_0 = \{v_i : x_i = \frac{1}{2}\}$

Property (3): There is a minimum VC C of G with $C_0 \subseteq C$.

Proof: Let S be a minimum VC of G. We first show that $|S \cap I_0| \ge |C_0 \setminus S|$:

Construct a new solution y to VC-Rel as follows: • $y_i = \frac{1}{2}$ if $v_i \in (S \cap I_0) \cup (C_0 \setminus S)$. • $y_i = x_i$ otherwise.

Claim y is a feasible solution to VC-Rel. Construct a new solution y to VC-Rel as follows: • $y_i = \frac{1}{2}$ if $v_i \in (S \cap I_0) \cup (C_0 \setminus S)$.

• $y_i = x_i$ otherwise.

Claim

y is a feasible solution to VC-Rel.

Proof: Consider an edge $v_i v_j$. If $\{v_i, v_j\} \subseteq V_0 \cup C_0$ then $x_i + x_j \ge \frac{1}{2} + \frac{1}{2}$. So w.l.o.g $v_i \in I_0$. Then $v_j \in C_0$ (Observation 11). If $v_j \in S$ then $y_j = 1$. Otherwise, since S is a VC, $v_i \in S$, so $x_i + x_j \ge \frac{1}{2} + \frac{1}{2}$.

Proof of Property (3), continued:

Since x is an optimal solution to VC-Rel, we have

$$0\leq \sum_{i}y_{i}-\sum_{i}x_{i}=\frac{1}{2}|S\cap I_{0}|-\frac{1}{2}|C_{0}\setminus S|,$$

so $|C_0 \setminus S| \leq |S \cap I_0|$.

Now let $C = (S \setminus I_0) \cup C_0$.

The above inequality shows that $|C| \leq |S|$.

C is a VC: it covers all edges incident with C_0 , and therefore all edges incident with I_0 (Observation 11), and all edges with both end vertices in V_0 (since *S* is a VC).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A 2k-vertex kernel for Vertex Cover

Properties: (1) If D is a VC for $G[V_0]$, then $D \cup C_0$ is a VC for G. (2) $G[V_0]$ has no VC of size less than $|V_0|/2$. (3) There is a minimum VC C of G with $C_0 \subseteq C$.

(Q): Assuming we can solve VC-Rel in polynomial time, how does this give a 2k-vertex kernel for VC?

(A): Consider $(G', k') = (G[V_0], k - |C_0|)$. If $k' \ge |V(G')|/2$ then return (G', k'), otherwise return NO.

If G' has a k'-VC, then G has a k-VC (Property (1)).
If G has a k-VC S, then there is one that contains C₀ (Property (3)), so S \ C₀ is a k'-VC of G'.
If k' < |V(G')|/2, then (G', k') is a NO-instance by Property (2). Otherwise, |V(G')| ≤ 2k' ≤ 2k.

The only question that remains:

(Q2) How can VC-Rel be solved in polynomial time?

(A1) Using linear programming techniques (sketch):

- Relax VC-Rel further by allowing all values $0 \le x_i \le 1$.
- This yields a linear program without (half-)integer variables, which can be solved in polynomial time.
- Any such solution can efficiently be transformed to a VC-Rel solution of the same value. (See Flum and Grohe 2006, p.218-219.)

(A2) Using matchings in bipartite graphs.

• A graph B = (V, E) is *bipartite* if a partition $\{L, R\}$ of V exists such that all edges of B have one end vertex in L and one end vertex in R.

L and R are the *sides* of the bipartition. (For connected graphs, these are basically unique.)

Let G = (V, E) be the VC instance.

Construct a bipartite graph B as follows:

- For all $v \in V$, V(B) contains a vertex v and a vertex v'. (Notation: for any $S \subseteq V$, $S' = \{v' : v \in S\}$, so $V(B) = V \cup V'$.)
- For all $uv \in E$, E(B) contains an edge uv' and an edge u'v.

Lemma

VC-Rel on G has a solution x with $\sum_i x_i = z \Leftrightarrow B$ has a vertex cover S with |S| = 2z.

Lemma proof, first direction

Lemma

VC-Rel on G has a solution x with $\sum_i x_i = z \Rightarrow B$ has a vertex cover S with |S| = 2z.

Proof: Construct *S* as follows from *x*:

- for all *i* with $x_i = 1$: add v_i and v'_i to *S*.
- for all *i* with $x_i = \frac{1}{2}$: add v_i to *S*.

Consider $v_i v'_i \in E(B)$.

S covers this edge unless $x_i = 0$. But then $x_j = 1$ (since $v_i v_j \in E(G)$), so $v'_i \in S$.

Lemma proof, second direction

Lemma

VC-Rel on G has a solution x with $\sum_i x_i = z \Leftarrow B$ has a vertex cover S with |S| = 2z.

Proof: Construct x as follows from S:

- for all *i* with $v_i \in S$ and $v'_i \in S$: $x_i = 1$
- for all *i* with either $v_i \in S$ or $v'_i \in S$: $x_i = \frac{1}{2}$.
- for all other *i*: $x_i = 0$.

Consider $v_i v_j \in E(G)$.

Since S covers both $v_i v'_j$ and $v_j v'_i$, one of these cases holds: • $v_i \in S$ and $v'_i \in S$. Then $x_i = 1$. • $v_j \in S$ and $v'_j \in S$. Then $x_j = 1$. • $v_i \in S$ and $v_j \in S$. Then $x_i \ge \frac{1}{2}$ and $x_j \ge \frac{1}{2}$. • $v'_i \in S$ and $v'_j \in S$. Then $x_i \ge \frac{1}{2}$ and $x_j \ge \frac{1}{2}$.

Finding a Minimum Vertex Cover in a bipartite graph: König's Theorem

• A matching in a graph G is a set of edges $M \subseteq E(G)$ that share no end vertices (every $v \in V(G)$ is incident with at most one edge of M). A vertex $v \in V(G)$ is saturated by M if it is incident with an edge of M.

Theorem (König)

For a bipartite graph B, the size of a minimum vertex cover equals the size of a maximum matching, and both can be found in polynomial time.

A proof sketch of Koenig's Theorem

Theorem (König)

For a bipartite graph B, the size of a minimum vertex cover equals the size of a maximum matching, and both can be found in polynomial time.

• Clearly, since every matching edge needs to be covered, $|M| \leq |C|$ holds for any matching M and any VC C, so the challenge lies in proving equality.

• Let B be a graph with matching M. A path P in B is *alternating* if its edges are alternatingly in M / not in M. An alternating path in B is *augmenting* if its end vertices are not saturated by M.

• If there is an augmenting path P, a larger matching M' can be found by 'flipping all edges of P' (that is, $M' = (M \setminus E(P)) \cup (E(P) \setminus M)).$ When given a bipartite graph *B* with sides *V* and *V'*, the following algorithm finds a matching *M* and vertex cover *C* with |C| = |M|:

(1) Start with C = V, $M = \emptyset$.

(2) If |C| = |M| then return C and M, halt.

(3) Choose an unsaturated vertex $v \in C$, and construct an *alternating search tree* subgraph T of B, rooted at v.

(4) If T contains an augmenting path P, then augment M using P, goto (2).

(5) Otherwise, find a vertex set S with $v \in S$ such that • N(S) is saturated by M, and • $|N(S)| \le |S| - 1$. Then $C' = (C \setminus S) \cup N(S)$ is a VC with |C'| < |C|. Set C := C', goto (2).

The following theorem also follows:

Theorem (Hall)

A bipartite graph B with sides V and V' has a matching saturating V if and only if there is no $S \subseteq V$ with |N(S)| < |S|.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Summary

- In polynomial time, we can find a matching M and VC C with |M| = |C|, which therefore are maximum resp. minimum.
- Applying this procedure to the bipartite graph B constructed from G, we can solve VC-Rel on G in polynomial time.

• This concludes the 2k-vertex kernelization for k-Vertex Cover.

Crowns

• A crown in a graph G is a pair (C_0, I_0) of sets C_0 and I_0 such that

(a) all neighbors of I_0 are part of C_0 , (b) the edges between C_0 and I_0 contain a matching M that saturates all vertices of C_0 .

• Property (a) is satisfied by the C_0 and I_0 returned by VC-Rel (Observation 11).

• In the proof of Lemma 2, we showed that C_0 is a minimum VC for $G[C_0 \cup I_0]$, which by Koenig's Theorem implies property (b).

• Therefore, an optimal solution to VC-Rel yields a crown in G if $C_0 \neq \emptyset$.

• Conversely, if G contains a crown (C, I) with |C| < |I|, VC-Rel has a solution with objective at most $|C| + \frac{1}{2}|V \setminus C \setminus I| < |V|/2$, so we will find a crown in polynomial time.

• Our earlier arguments showed that if (C, I) is a crown of G, then (G, k) and (G - C - I, k - |C|) are equivalent k-VC instances.

• If G = (V, E) contains no crown (C, I) with |C| < |I|, then every VC S of G has $|S| \ge |V|/2$.

Conclusion: A different way to express this 2k-vertex kernel for k-VC: find crowns (C, I) with |C| < |I| in polynomial time if they exist, and reduce them. A crownless graph is a 2k-kernel.

• Crown reductions have also been used to find kernelizations for different problems.

Corollary: a 2-approximation algorithm for Vertex Cover

• A polynomial time algorithm for a minimization (maximization) problem is an α -approximation algorithm if it returns a feasible solution S with value(S) $\leq \alpha$ value(opt) (resp. value(S) $\geq \frac{1}{\alpha}$ value(opt)).

The following is a 2-approximation for Minimum Vertex Cover on graph G with n = |V(G)|:

• Apply the 2k-kernelization algorithm to (G, n), which yields $(G', n - |C_0|)$.

- G contains an optimal vertex cover C_G^{opt} with $C_0 \subseteq C_G^{opt}$.
- $V_0 \cup C_0$ is a vertex cover for *G* with $|V_0 \cup C_0| < |C_0| + 2|C_{C'}^{opt}| < |C_0| + 2|C_C^{opt} \setminus C_0| < 2|C_C^{opt}|.$

• *ck*-vertex kernels for 'vertex subset' problems usually yield *c*-approximation algorithms for the corresponding optimization problem.

Example: For Maximum Leaves Spanning Tree, the 5*k*-vertex kernelization gives a 5-approximation algorithm.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Kernelization: summary

• For parameterized decision problems obtained from optimization problems, kernelization algorithms are a method to obtain FPT algorithms.

• These are preprocessing algorithms that can add to any algorithmic method (e.g. approximation algorithms).

• Kernelization algorithms usually consist of *reduction rules*, which reduce simple local structures (degree 1 vertices / high degree vertices / long clauses, etc), and a bound f(k) for *irreducible* instances (X, k) that allows us to -return NO if |X| > f(k) for minimization problems, or -return YES if |X| > f(k) for maximization problems.

Designing kernelization algorithms

• What are the trivial substructures, where an optimal solution of a certain form can be guaranteed?

• Is there a reduction rule reflecting this?

• Can a bound be proved for irreducible instances? If not, which structures are problematic? Etc...