
Lovasz’s Perfect Graph Theorem

Let R+ = {x ∈ R : x ≥ 0}. We view an elements of RV
+ as vectors, but use function notation,

so if x ∈ RV
+ and v ∈ V we write x(v) instead of xv. For S ⊆ V we define x(S) =

∑
v∈S x(v).

Independent set polytopes: For every graph G = (V,E) we define the polytopes

P (G) = {x ∈ RV
+ : x(K) ≤ 1 for every clique K}

PI(G) = {x ∈ RV
+ : x is a convex combination of characteristic vectors of independent sets}.

Integral: A polytope is integral if every vertex has all coordinates integers.

Observation 1 P (G) is integral if and only if P (G) = PI(G).

Proof: This follows from the observation that the integral points in P (G) are precisely the

characteristic vectors of independent sets. (Thus PI(G) ⊆ P (G), and P (G) = PI(G) if and

only if every vertex of P (G) is a vertex of PI(G).) �

Observation 2 If P (G) is integral and X ⊆ V (G), then P (G \X) is integral.

Proof: It suffices to show that P (G \ v) is integral for an arbitrary vertex v ∈ V (G).

To see this, note that P (G \ v) is precisely the intersection of P (G) with the hyperplane

{x ∈ RV : x(v) = 0}. Since x(v) ≥ 0 is a constraint of P (G), it follows that P (G \ v) is a

face of P (G). It is an immediate consequence of this that P (G \ v) is integral. �

Perfect Graphs: We say that a graph G is perfect if ω(G \ X) = χ(G \ X) for every

X ⊆ V (G). Note that if G is perfect, then G \ Y is perfect for every Y ⊆ V (G).

Replication: Let G be a graph and let v ∈ V (G). To replicate v, we add a new vertex v′

to the graph add an edge between v′ and every neighbor of v and then add an edge between

v′ and v.

Lovasz Weightings: If w ∈ ZV
+, we let Gw be the graph obtained from G by deleting every

vertex v with w(v) = 0 and replicating each vertex v with w(v) > 0 exactly w(v)− 1 times

(note that the resulting graph does not depend on the order of operations).
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Lemma 3 If G is perfect and w ∈ ZV
+, then Gw is perfect.

Proof: Since Gw is obtained from a sequence of vertex deletions and replications, it suffices

to show that if the graph G′ is obtained from G by replicating the vertex v, then G′ is

perfect. To prove this, it is enough to show that χ(G′) = ω(G′) since for any induced

subgraph of G′ a similar argument works. In fact, χ(G′) ≥ ω(G′) trivially, so we need

only prove that χ(G′) ≤ ω(G′). If v is contained in a maximum clique of G, then we have

ω(G′) = ω(G) + 1 = χ(G) + 1 ≥ χ(G′). Thus, we may now assume that v is not contained

in a maximum clique of G. Next, let ω = ω(G), choose a colouring of G with colour classes

A1, A2, . . . , Aω, and assume that v ∈ Aω. Since the graph G \ (Aω \ {v}) is a perfect graph

which has no clique of size ω (why!), we may choose a colouring of this graph with colour

classes B1, B2, . . . , Bω−1. Now, B1, B2, . . . , Bω−1, Aω is a list of independent sets in G which

use v twice, and every other vertex once. By replacing one occurence of v with v′, we get a

colouring of G′ with ω colours. Thus χ(G′) ≤ ω = ω(G′) and we are finished. �

Theorem 4 (Lovasz’s Perfect Graph Theorem) For every graph G = (V,E), the fol-

lowing are equivalent.

(i) G is perfect.

(ii) P (G) is integral.

(iii) Ḡ is perfect.

Proof: It suffices to show (i) ⇒ (ii) ⇒ (iii), since ¯̄G = G then yields (iii) ⇒ (i).

(i) ⇒ (ii): To prove (ii), we shall show that P (G) = PI(G). Let x ∈ P (G) ∩ QV . Now

it suffices to show x ∈ PI . Choose a positive integer N so that w = Nx ∈ ZV , and consider

the graph Gw. For every i ∈ V , let Yi be the set of vertices in Gw which are equal to i or

obtained by replicating i and let π : V (Gw)→ V be given by the rule that π(u) = i if u ∈ Yi.
Let K̃ be a maximum size clique in Gw and let K = π(K̃). Then, K is a clique of G and

further,

ω(Gw) = |K̃| ≤
∑
i∈K

|Yi| = w(K) = Nx(K) ≤ N

(here the last inequality follows from x ∈ P (G)). Since Gw is perfect, we may choose a

colouring of it with colour classes A1, A2, . . . , AN . Now, consider π(A1), π(A2), . . . , π(AN).
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This is a list of independent sets in G which use every vertex i ∈ V exactly w(i) times.

It follows from this that x = 1
N
w = 1

N

∑N
`=1 1π(A`) where 1A is the characteristic vector of

A ⊆ V . Thus x ∈ PI as desired.

(ii) ⇒ (iii): It follows from Observation 2 that property (ii) holds for any subgraph

obtained from G by deleting vertices. In light of this, it suffices to prove χ(Ḡ) = ω(Ḡ). We

shall prove this by induction on |V |. As a base, observe that the result holds for the trivial

graph. Let α = α(G) be the size of the largest independent set in G. Since P (G) is integral

(i.e. P (G) = PI(G)), every vertex of P (G) is the characteristic vector of an independent

set. It follows from this that F = P (G) ∩ {x ∈ RV : x>1 = α} is a face of P (G). Consider

a generic point x in the face F . There must be a constraint of the form x(K) ≤ 1 which is

tight for x (otherwise, the only tight constraints are nonnegativity constraints, and we could

freely increase any positive coordinate of x while staying in P (G) - which is contradictory).

Now the constraint x(K) ≤ 1 must be tight for every point in F , and it follows that the

clique K has nonempty intersection with every independent set of G of size α. This gives us

α(G \K) = α(G)− 1 or equivalently, ω(Ḡ \K) = ω(Ḡ)− 1. By induction, we may choose

a colouring of Ḡ \K using ω(Ḡ)− 1 colours. Adding the set K (which is independent in Ḡ)

to this, gives us a colouring of Ḡ using ω(Ḡ) colours, thus completing the proof. �


