Lovasz's Perfect Graph Theorem

Let $\mathbb{R}_{+}=\{x \in \mathbb{R}: x \geq 0\}$. We view an elements of \mathbb{R}_{+}^{V} as vectors, but use function notation, so if $x \in \mathbb{R}_{+}^{V}$ and $v \in V$ we write $x(v)$ instead of x_{v}. For $S \subseteq V$ we define $x(S)=\sum_{v \in S} x(v)$.

Independent set polytopes: For every graph $G=(V, E)$ we define the polytopes
$P(G)=\left\{x \in \mathbb{R}_{+}^{V}: x(K) \leq 1\right.$ for every clique $\left.K\right\}$
$P_{I}(G)=\left\{x \in \mathbb{R}_{+}^{V}: x\right.$ is a convex combination of characteristic vectors of independent sets $\}$.
Integral: A polytope is integral if every vertex has all coordinates integers.

Observation $1 P(G)$ is integral if and only if $P(G)=P_{I}(G)$.

Proof: This follows from the observation that the integral points in $P(G)$ are precisely the characteristic vectors of independent sets. (Thus $P_{I}(G) \subseteq P(G)$, and $P(G)=P_{I}(G)$ if and only if every vertex of $P(G)$ is a vertex of $P_{I}(G)$.)

Observation 2 If $P(G)$ is integral and $X \subseteq V(G)$, then $P(G \backslash X)$ is integral.

Proof: It suffices to show that $P(G \backslash v)$ is integral for an arbitrary vertex $v \in V(G)$. To see this, note that $P(G \backslash v)$ is precisely the intersection of $P(G)$ with the hyperplane $\left\{x \in \mathbb{R}^{V}: x(v)=0\right\}$. Since $x(v) \geq 0$ is a constraint of $P(G)$, it follows that $P(G \backslash v)$ is a face of $P(G)$. It is an immediate consequence of this that $P(G \backslash v)$ is integral.

Perfect Graphs: We say that a graph G is perfect if $\omega(G \backslash X)=\chi(G \backslash X)$ for every $X \subseteq V(G)$. Note that if G is perfect, then $G \backslash Y$ is perfect for every $Y \subseteq V(G)$.

Replication: Let G be a graph and let $v \in V(G)$. To replicate v, we add a new vertex v^{\prime} to the graph add an edge between v^{\prime} and every neighbor of v and then add an edge between v^{\prime} and v.

Lovasz Weightings: If $w \in \mathbb{Z}_{+}^{V}$, we let G_{w} be the graph obtained from G by deleting every vertex v with $w(v)=0$ and replicating each vertex v with $w(v)>0$ exactly $w(v)-1$ times (note that the resulting graph does not depend on the order of operations).

Lemma 3 If G is perfect and $w \in \mathbb{Z}_{+}^{V}$, then G_{w} is perfect.

Proof: Since G_{w} is obtained from a sequence of vertex deletions and replications, it suffices to show that if the graph G^{\prime} is obtained from G by replicating the vertex v, then G^{\prime} is perfect. To prove this, it is enough to show that $\chi\left(G^{\prime}\right)=\omega\left(G^{\prime}\right)$ since for any induced subgraph of G^{\prime} a similar argument works. In fact, $\chi\left(G^{\prime}\right) \geq \omega\left(G^{\prime}\right)$ trivially, so we need only prove that $\chi\left(G^{\prime}\right) \leq \omega\left(G^{\prime}\right)$. If v is contained in a maximum clique of G, then we have $\omega\left(G^{\prime}\right)=\omega(G)+1=\chi(G)+1 \geq \chi\left(G^{\prime}\right)$. Thus, we may now assume that v is not contained in a maximum clique of G. Next, let $\omega=\omega(G)$, choose a colouring of G with colour classes $A_{1}, A_{2}, \ldots, A_{\omega}$, and assume that $v \in A_{\omega}$. Since the graph $G \backslash\left(A_{\omega} \backslash\{v\}\right)$ is a perfect graph which has no clique of size ω (why!), we may choose a colouring of this graph with colour classes $B_{1}, B_{2}, \ldots, B_{\omega-1}$. Now, $B_{1}, B_{2}, \ldots, B_{\omega-1}, A_{\omega}$ is a list of independent sets in G which use v twice, and every other vertex once. By replacing one occurence of v with v^{\prime}, we get a colouring of G^{\prime} with ω colours. Thus $\chi\left(G^{\prime}\right) \leq \omega=\omega\left(G^{\prime}\right)$ and we are finished.

Theorem 4 (Lovasz's Perfect Graph Theorem) For every graph $G=(V, E)$, the following are equivalent.
(i) G is perfect.
(ii) $P(G)$ is integral.
(iii) \bar{G} is perfect.

Proof: It suffices to show (i) \Rightarrow (ii) \Rightarrow (iii), since $\overline{\bar{G}}=G$ then yields (iii) \Rightarrow (i).
(i) \Rightarrow (ii): To prove (ii), we shall show that $P(G)=P_{I}(G)$. Let $x \in P(G) \cap \mathbb{Q}^{V}$. Now it suffices to show $x \in P_{I}$. Choose a positive integer N so that $w=N x \in \mathbb{Z}^{V}$, and consider the graph G_{w}. For every $i \in V$, let Y_{i} be the set of vertices in G_{w} which are equal to i or obtained by replicating i and let $\pi: V\left(G_{w}\right) \rightarrow V$ be given by the rule that $\pi(u)=i$ if $u \in Y_{i}$. Let \tilde{K} be a maximum size clique in G_{w} and let $K=\pi(\tilde{K})$. Then, K is a clique of G and further,

$$
\omega\left(G_{w}\right)=|\tilde{K}| \leq \sum_{i \in K}\left|Y_{i}\right|=w(K)=N x(K) \leq N
$$

(here the last inequality follows from $x \in P(G)$). Since G_{w} is perfect, we may choose a colouring of it with colour classes $A_{1}, A_{2}, \ldots, A_{N}$. Now, consider $\pi\left(A_{1}\right), \pi\left(A_{2}\right), \ldots, \pi\left(A_{N}\right)$.

This is a list of independent sets in G which use every vertex $i \in V$ exactly $w(i)$ times. It follows from this that $x=\frac{1}{N} w=\frac{1}{N} \sum_{\ell=1}^{N} \mathbb{1}_{\pi\left(A_{\ell}\right)}$ where $\mathbb{1}_{A}$ is the characteristic vector of $A \subseteq V$. Thus $x \in P_{I}$ as desired.
(ii) \Rightarrow (iii): It follows from Observation 2 that property (ii) holds for any subgraph obtained from G by deleting vertices. In light of this, it suffices to prove $\chi(\bar{G})=\omega(\bar{G})$. We shall prove this by induction on $|V|$. As a base, observe that the result holds for the trivial graph. Let $\alpha=\alpha(G)$ be the size of the largest independent set in G. Since $P(G)$ is integral (i.e. $P(G)=P_{I}(G)$), every vertex of $P(G)$ is the characteristic vector of an independent set. It follows from this that $F=P(G) \cap\left\{x \in \mathbb{R}^{V}: x^{\top} 1=\alpha\right\}$ is a face of $P(G)$. Consider a generic point x in the face F. There must be a constraint of the form $x(K) \leq 1$ which is tight for x (otherwise, the only tight constraints are nonnegativity constraints, and we could freely increase any positive coordinate of x while staying in $P(G)$ - which is contradictory). Now the constraint $x(K) \leq 1$ must be tight for every point in F, and it follows that the clique K has nonempty intersection with every independent set of G of size α. This gives us $\alpha(G \backslash K)=\alpha(G)-1$ or equivalently, $\omega(\bar{G} \backslash K)=\omega(\bar{G})-1$. By induction, we may choose a colouring of $\bar{G} \backslash K$ using $\omega(\bar{G})-1$ colours. Adding the set K (which is independent in \bar{G}) to this, gives us a colouring of \bar{G} using $\omega(\bar{G})$ colours, thus completing the proof.

