
4
Integrality of Polyhedra

In this chapter we study properties of polyhedra P which ensure that the Linear Program
max

{
cTx : x ∈ P

}
has optimal integral solutions.

Definition 4.1 (Integral Polyhedron)
A polyhedron P is called integral if every nonempty face of P contains an integral point.

Informally speaking, if we are optimizing over an integral polyhedron we get integrality for
free: the set of optimal solutions of z= max

{
cTx : x ∈ P

}
is a face F=

{
x ∈ P : cTx= z

}

of P, and, if each face contains an integral point, then there is also an optimal solution
which is also integral. In other words, for integral polyhedra we have

max
{

cTx : x ∈ P
}

= max
{

cTx : x ∈ P∩Zn
}

. (4.1)

Thus, the IP on the right hand side of (4.1) can be solved by solving the Linear Program on
the left hand side of (4.1).

A large part of the study of polyhedral methods for combinatorial optimization problems
was motivated by a theorem of Edmonds on matchings in graphs. A matching in an undi-
rected graph G = (V ,E) is a set M⊆ E of edges such that none of the edges in M share a
common endpoint. Given a matching M we say that a vertex v ∈ V is M-covered if some
edge in M is incident with v. Otherwise, we call v M-exposed. Observe that the number
of M-exposed nodes is precisely |V |−2|M|. We define:

PM(G) :=
{

χM ∈ BE : M is a perfect matching in G
}

(4.2)

to be the set of incidence vectors of perfect matchings in G.

We will show in the next section that a polyhedron P is integral if and only if P = conv(P∩
Zn). Edmonds’ Theorem can be stated as follows:

Theorem 4.2 (Perfect Matching Polytope Theorem) For any graph G= (V ,E), the con-

vex hull conv(PM(G)) of the perfect matchings in G (i.e. each vertex v ∈ V is incident to

exactly one edge of the matching) is identical to the set of solutions of the following linear

system:

x(δ(v)) = 1 for all v ∈ V (4.3a)

x(δ(S))! 1 for all S⊆ V , |S|! 3 odd (4.3b)

xe ! 0 for all e ∈ E. (4.3c)
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Proof: See Theorem 4.23. !

Observe that any integral solution of (4.3) is a perfect matching. Thus, if P denotes the
polyhedron defined by (4.3), then by the equivalence shown in the next section the Perfect
Matching Polytope Theorem states that P is integral and P = conv(PM(G)). Edmond’s
results is very strong, since it gives us an explicit description of conv(PM(G)).

4.1 Equivalent Definitions of Integrality

We are now going to give some equivalent definitions of integrality which will turn out to
be quite useful later.

Theorem 4.3 Let P= P(A,b) be a pointed rational polyhedron. Then, the following state-

ments are equivalent:

(i) P is an integral polyhedron.

(ii) The LP max
{
cTx : x ∈ P

}
has an optimal integral solution for all c ∈ Rn where the

value is finite.

(iii) The LP max
{
cTx : x ∈ P

}
has an optimal integral solution for all c ∈ Zn where the

value is finite.

(iv) The value zLP = max
{
cTx : x ∈ P

}
is integral for all c ∈ Zn where the value is

finite.

(v) P = conv(P∩Zn).

Proof: We first show the equivalence of statements (i)-(iv):

(i)⇒(ii) The set of optimal solutions of the LP is a face of P. Since every face contains an
integral point, there is an integral optimal solution.

(ii)⇒(iii) trivial.

(iii)⇒(iv) trivial.

(iv)⇒(i) Suppose that (i) is false and let x0 be an extreme point which by assumption is
not integral, say component x0

j is fractional. By Theorem 3.37 there exists a vector
c∈ Zn such that x0 is the unique optimal solution of max

{
cTx : x ∈ P

}
. Since x0 is

the unique optimal solution, we can find a large ω ∈ N such that x0 is also optimal
for the objective vector c̄ := c+ 1

ωej, where ej is the jth unit vector. Clearly, x0 must
then also be optimal for the objective vector c̃ :=ωc̄=ωc+ej. Now we have

c̃Tx0 −ωcTx0 = (ωcTx0 +eTj x
0)−ωcTx0 = eTj x

0 = x0
j .

Hence, at least one of the two values c̃Tx0 and cTx0 must be fractional, which con-
tradicts (iv).

We complete the proof of the theorem by showing two implications:

(i)⇒(v) Since P is convex, we have conv(P∩Zn)⊆ P. Thus, the claim follows if we can
show that P ⊆ conv(P∩Zn). Let v ∈ P, then v =

∑

k∈Kλkx
k+

∑

j∈Jµjr
j, where

the xk are the extreme points of P and the rj are the extreme rays of P. By (i) every
xk is integral, thus

∑

k∈Kλkx
k ∈ conv(P ∩Zn). Since by Observation 3.67 the

extreme rays of P and conv(P∩Zn) are the same, we get that v ∈ conv(P∩Zn).
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4.2 Matchings and Integral Polyhedra I 47

(v)⇒(iv) Let c∈Zn be an integral vector. Since by assumption conv(P∩Zn) = P, the LP
max

{
cTx : x ∈ P

}
has an optimal solution in P∩Zn (If x=

∑

i x
i ∈ conv(P∩Zn)

is a convex combination of points in P∩Zn, then cTx ! maxi cTxi (cf. Observa-
tion 2.2)). Thus, the LP has an integral value for every integral c ∈ Zn where the
value is finite.

This shows the theorem. !

Recall that each minimal nonempty face of P(A,b) is an extreme point if and only if
rank(A) = n (Corollary 3.27). Thus, we have the following result:

Observation 4.4 A nonempty polyhedron P = P(A,b) with rank(A) = n is integral if and

only if all of its extreme points are integral. !

Moreover, if P(A,b) ⊆ Rn
+ is nonempty, then rank(A) = n. Hence, we also have the

following corollary:

Corollary 4.5 A nonempty polyhedron P ⊆ Rn
+ is integral if and only if all of its extreme

points are integral. !

4.2 Matchings and Integral Polyhedra I

As mentioned before, a lot of the interest about integral polyhedra and their applications in
combinatorial optimization was fueled by results on the matching polytope. As a warmup
we are going to prove a weaker form of the perfect matching polytope theorem due to
Birkhoff.

A graph G = (V ,E) is called bipartite, if there is a partition V = A∪B, A∩B = ∅ of the
vertex set such that every edge e is of the form e= (a,b) with a ∈A and b ∈ B.

Lemma 4.6 A graph G= (V ,E) is bipartite if and only if it does not contain an odd cycle.

Proof: Let G = (V ,E) be bipartite with bipartition V = A∪B. Assume for the sake of a
contradiction that C = (v1,v2, . . . ,v2k−1,v2k = v1) is an odd cycle in G. We can assume
that v1 ∈ A. Then (v1,v2) ∈ E implies that v2 ∈ B. Now (v2,v3) ∈ E implies v3 ∈ A.
Continuing we get that v2i−1 ∈A and v2i ∈ B for i= 1,2, . . .. But since v1 = v2k we have
v1 ∈A∩B=∅, which is a contradiction.

Assume conversely that G= (V ,E) does not contain an odd cycle. Since it suffices to show
that any connected component of G is bipartite, we can assume without loss of generality
that G is connected.

Choose r ∈ V arbitrary. Since G is connected, the shortest path distances from v to all
v ∈ V are finite. We let

A= {v ∈ V : d(v) is even}

B= {v ∈ V : d(v) is odd}

This gives us a partition of V with r ∈ A. We claim that all edges are between A and B.
Let (u,v) ∈ E and suppose that u,v ∈ A. Clearly, |d(u)−d(v)| ! 1 which gives us that
d(u) = d(v) = 2k. Let p = r,v1, . . . ,v2k = v and q = r,u1, . . . ,u2k = u be shortest paths
from r to v and u, respectively. The paths might share some common parts. Let vi and
uj be maximal with the property that vi = uj and the paths vi+1, . . . ,v and uj+1, . . . ,u are
node disjoint. Observe that we must have that i = j since otherwise one of the paths could
not be shortest. But then vi,vi+1, . . . ,v2k = v,u=u2k,u2k−1, . . . ,ui = vi is a cycle of odd
length, which is a contradiction. !
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Theorem 4.7 (Birkhoff’s Theorem) Let G be a bipartite graph. Then, conv(PM(G)) =
P, where P is the polytope described by the following linear system:

x(δ(v)) = 1 for all v ∈ V (4.4a)

xe ! 0 for all e ∈ E. (4.4b)

In particular, P is integral.

Proof: Clearly conv(PM(G)) ⊆ P. To show that conv(PM(G)) = P let x be any ex-
treme point of P. Assume for the sake of a contradiction that x is fractional. Define
Ẽ := {e ∈ E : 0 < xe < 1} to be set of “fractional edges”. Since x(δ(v)) = 1 for any v ∈ V ,
we can conclude that any vertex that has an edge from Ẽ incident with it, in fact is incident
to at least two such edges from Ẽ. Thus, Ẽ contains an even cycle C (by Lemma 4.6 the
graph G does not contain any odd cycle). Let y be a vector which is alternatingly ±1 for
the edges in C and zero for all other edges. For small ε> 0 we have x±εy ∈ P. But then,
x can not be an extreme point. !

Observe that we can view the assignment problem (see Example 1.6) as the problem of
finding a minimum cost perfect matching on a complete bipartite graph. Thus, Birkhoff’s
theorem shows that we can solve the assignment problem by solving a Linear Program.

Remark 4.8 The concept of total unimodularity derived in the next section will enable us
to give an alternative proof of Birkhoff’s Theorem.

4.3 Total Unimodularity

Proving that a given polyhedron is integral is usually a difficult task. In this section we
derive some conditions under which the polyhedron

P=(A,b) = {x :Ax= b,x! 0}

is integral for every integral right hand side b.

As a motivation for the following definition of total unimodularity, consider the Linear
Program

(LP)max
{

cTx :Ax= b,x! 0
}

, (4.5)

where rankA=m. From Linear Programming theory, we know that if (4.5) has a feasible
(optimal) solution, it also has a feasible (optimal) basic solution, that is, a solution of the
form x = (xB,xN), where xB = A−1

·,Bb and xN = 0 and A·,B is an m×m nonsingular
submatrix of A indexed by the columns in B⊆ {1, . . . ,n}, |B|=m. Here, N= {1, . . . ,n}\B.

Given such a basic solution x= (xB,xN) we have by Cramer’s rule:

xi =
det(Bi)

det(AB)
for i ∈ B,

where Bi is the matrix obtained from AB by replacing the ith column by the vector b.
Hence, we conclude that if det(AB) =±1, then each entry of xB will be integral (provided
b is integral as well).

Definition 4.9 (Unimodular matrix, totally unimodular matrix)
Let A be an m×n-matrix with full row rank. The matrix A is called unimodular if all

entries of A are integral and each nonsingular m×m-submatrix of A has determinant ±1.

The matrix A is called totally unimodular, if each square submatrix of A has determinant

±1 or 0.
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4.3 Total Unimodularity 49

Since every entry of a matrix forms itself a square submatrix, it follows that for a totally
unimodular matrix A every entry must be either ±1 or 0.

Observation 4.10 (i) A is totally unimodular, if and only if AT is totally unimodular.

(ii) A is totally unimodular, if and only if (A,I) is unimodular.

(iii) A is totally unimodular, if and only if









A
−A

I
−I









is totally unimodular.

We now show that a Linear Program with a (totally) unimodular matrix always has an
integral optimal solution provided the optimum is finite. Thus, by Theorem 4.3 we get that
the corresponding polyhedron must be integral.

Theorem 4.11 Let A be an m×n matrix with integer entries and linearly independent

rows. The polyhedron {x ∈ Rn :Ax= b,x! 0} is integral for all b ∈ Zm if and only if A
is unimodular.

Proof: Suppose that A is unimodular and b ∈ Zm is an integral vector. By Corollary 4.5
it suffices to show that all extreme points of {x :Ax= b,x! 0} are integral. Let x̄ be such
an extreme point. Since A has full row rank, there exists a basis B ⊆ {1, . . . ,n}, |B| = m
such that x̄B =A−1

·,Bb and x̄N = 0. Since A is unimodular, we have det(A·,B) =±1 and by
Cramer’s rule we can conclude that x̄ is integral.

Assume conversely that {x :Ax= b,x! 0} is integral for every integral vector b. Let B be
a basis of A. We must show that det(A·,B) =±1. Let x̄ be the extreme point corresponding
to the basis B. By assumption x̄B = A−1

·,Bb is integral for all integral b such that x̄B ! 0.
Consider for j ∈ {1, . . . ,m} and some z ∈ Zn the vector wj := A·,Bz+ej, where ej is the
jth unit vector. Then A−1

·,Bwj = z+A−1
·,Bej. We can choose z ∈ Zn such that A−1

·,Bwj ! 0
for all j = 1, . . . ,m. Thus from z ∈ Zn and A−1

·,Bwj ∈ Zn we can conclude that A−1
·,Bej is

integral for all j, which gives that A−1
·,B must be integral. Thus, it follows that det(A−1

·,B) =
1/det(A·,B) is integral. On the other hand, det(A·,B) is also integral by the integrality of A.
Hence, det(A·,B) =±1 as required. !

We use the result of the previous theorem to show the corresponding result for the polyhe-
dron {x :Ax" b,x! 0}.

Corollary 4.12 (Integrality-Theorem of Hoffmann and Kruskal) Let A be an m× n
matrix with integer entries. The matrix A is totally unimodular if and only if the poly-

hedron P(b) := {x :Ax" b,x! 0} is integral for all b ∈ Zm.

Proof: The proof is very simular to Theorem 4.11. It is easy to see that x is an extreme
point of P(b) if and only if (x,y) is an extreme point of

{(x,y) :Ax+ Iy= b,x,y,! 0},

where y is uniquely determined by y = b−Ax. Thus, if A is totally unimodular, then
(A,I) is (totally) unimodular and integrality of P(b) follows directly from Theorem 4.11.

Assume now conversely that P(b) is integral for each integral b. Let A1 be a k× k-
submatrix of A and let

Ā :=

(

A1 0
A2 Im−k

)
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be the m×m-submatrix of (A,I) generated from A1 by taking the appropriate m−k unit
vectors from I. Notice that Ā is nonsingular if and only if A1 is. Consider the vectors
wj := Āz+ej, j = 1, . . . ,m. Then Ā−1wj = z+ Ā−1ej. We can choose z ∈ Zn such that
Ā−1wj ! 0 for all j = 1, . . . ,m. Hence, z+ Ā−1ej is the vector of basis variables of an
extreme point of P(b) which by assumption is integral. Again, we can conclude that Ā−1

is integral and so must be A−1
1 . By the same argument as in Theorem 4.11 we get that

det(A1) ∈ {+1,−1}. !

The Integrality-Theorem of Hoffmann and Kruskal in conjunction with Observation 4.10
yields more characterizations of totally unimodular matrices.

Corollary 4.13 Let A be an integral matrix. Then the following statements hold:

(a) A is totally unimodular, if and only if the polyhedron {x : a"Ax" b, l" x" u} is

integral for all integral a,b, l,u.

(b) A is totally unimodular, if and only if the polyhedron {x :Ax= b,0 " x" u} is inte-

gral for all integral b,u.

!

4.4 Conditions for Total Unimodularity

In this section we derive sufficient conditions for a matrix to be totally unimodular.

Theorem 4.14 Let A be any m×n matrix with entries taken from {0,+1,−1} with the

property that any column contains at most two nonzero entries. Suppose also that there

exists a partition M1 ∪M2 = {1, . . . ,m} of the rows of A such that every column j with two

nonzero entries satisfies:
∑

i∈M1
aij =

∑

i∈M2
aij. Then, A is totally unimodular.

Proof: Suppose for the sake of a contradiction that A is not totally unimodular. Let B be a
smallest square submatrix such that det(B) /∈ {0,+1,−1}. Obviously, B can not contain any
column with at most one nonzero entry, since otherwise B would not be smallest. Thus,
any column of B contains exactly two nonzero entries. By the assumptions of the theorem,
adding the rows in B that are in M1 and subtracting those that are in M2 gives the zero
vector, thus det(B) = 0, a contradiction! !

Example 4.15
Consider the LP-relaxation of the assignment problem.

min
n∑

i=1

n∑

j=1

cijxij (4.6a)

n∑

i=1

xij = 1 for j= 1, . . . ,n (4.6b)

n∑

j=1

xij = 1 for i= 1, . . . ,n (4.6c)

0 " x" 1, (4.6d)

We can write the constraints (4.6b) and (4.6c) as Ax = 1, where A is the node-edge inci-
dence matrix of the complete bipartite graph G = (V ,E) (Figure 4.1 shows the situation
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for n = 3). The rows of A correspond to the vertices and the columns to the edges. The
column corresponding to edge (u,v) has exactly two ones, one at the row for u and one at
the row for v. The fact that G is bipartite V =A∪B, gives us a partition A∪B of the rows
such that the conditions of Theorem 4.14 are satisfied. Hence, A is totally unimodular.
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(a) Constraint system

1 1 ′

2 2 ′

3 3 ′

(b) Complete bipartite
graph

Figure 4.1: The matrix of the assignment problem as the node-edge incidence matrix of a
complete bipartite graph.

!

We derive some other useful consequences of Theorem 4.14:

Theorem 4.16 Let A be any m×n matrix with entries taken from {0,+1,−1} with the

property that any column contains at most one +1 and at most one −1. Then A is totally

unimodular.

Proof: First, assume that A contains exactly two nonzero entries per column. The fact that
A is totally unimodular for this case follows from Theorem 4.14 with M1 = {1, . . . ,m}
and M2 = ∅. For the general case, observe that a column with at most one nonzero
from {−1,+1} can not destroy unimodularity, since we can develop the determinant (of
a square submatrix) by that column. !

The node-arc incidence matrix of a directed network G = (V ,A) is the n×m-Matrix
M(A) = (mxy) such that

mxa =






+1 if a= (i, j) and x= j

−1 if a= (i, j) and x= i

0 otherwise

The minimum cost flow problem can be stated as the following Linear Program:

min
∑

(i,j)∈A

c(i, j)x(i, j) (4.7a)

∑

j:(j,i)∈A

x(j, i)−
∑

j:(i,j)∈A

x(i, j) = b(i) for all i ∈ V (4.7b)

0 " x(i, j)" u(i, j) for all (i, j) ∈A (4.7c)

By using the node-arc incidence matrix M=M(A), we can rewrite (4.7) as:

min
{

cTx :Mx= b,0 " x" u
}

, (4.8)

where b is the vector of all required demands.
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Corollary 4.17 The node-arc incidence matrix of a directed network is totally unimodular.

Proof: The claim follows immediately from Theorem 4.16 and Corollary 4.13. !

We close this section by one more sufficient condition for total unimodularity.

Theorem 4.18 (Consecutive ones Theorem) Let A be any m× n-matrix with entries

from {0,1} and the property that the rows of A can be permutated in such a way that all 1s

appear consecutively. Then, A is totally unimodular.

Proof: Let B be a square submatrix of A. Without loss of generality we can assume
that the rows of A (and thus also of B) are already permuted in such a way that the ones
appear consecutively. Let bT

1 , . . . ,bT
k be the rows of B. Consider the matrix B ′ with rows

bT
1 −bT

2 ,bT
2 −bT

3 , . . . ,bT
k−1 −bT

k ,bk. The determinant of B ′ is the same as of B.

Any column of B ′ contains at most two nonzero entries, one of which is a −1 (one before
the row where the ones in this column start) and a +1 (at the row where the ones in this
column end). By Theorem 4.16, B ′ is totally unimodular, in particular det(B ′) = det(B) ∈
{0,+1,−1}. !

4.5 Applications of Unimodularity: Network Flows

We have seen above that if M is the node-arc incidence matrix of a directed graph, then the
polyhedron {x :Mx= b,0 ! x! u} is integral for all integral b and u. In particular, for
integral b and u we have strong duality between the IP

max
{

cTx :Mx= b,0 ! x! u,x ∈ Zn
}

(4.9)

and the dual of the LP-relaxation

min
{

bT z+uTy :MT z+y" c,y" 0
}

. (4.10)

Moreover, if the vector c is integral, then by total unimodularity the LP (4.10) has always
an integral optimal solution value.

4.5.1 The Max-Flow-Min-Cut-Theorem

As an application of the strong duality of the problems (4.9) and (4.10) we will establish
the Max-Flow-Min-Cut-Theorem.

Definition 4.19 (Cut in a directed graph, forward and backward part)
Let G = (V ,A) be a directed graph and S∪ T = V a partition of the node set V . We call

(S,T) the cut induced by S and T . We also denote by

δ+(S) := {(i, j) ∈A : i ∈ S und j ∈ T }

δ−(S) := {(j, i) ∈A : j ∈ T und i ∈ S }

the forward part and the backward part of the cut. The cut (S,T) is an (s,t)-cut if s ∈ S
and t ∈ T .

If u : A→ R!0 is a capacity function defined on the arcs of the network G = (V ,A) and

(S,T) is a cut, then the capacity of the cut is defined to be the sum of the capacities of its

forward part:

u(δ+(S)) :=
∑

(u,v)∈(S,T)

u(u,v).
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2 3

1 4

5 6

s t

(a) An (s,t)-cut (S,T) in a directed
graph. The arcs in δ+(S)∪ δ−(S) are
shown as dashed arcs.

2 3

1 4

5 6

s t

(b) The forward part δ+(S) of the cut:
Arcs in δ+(S) are shown as dashed arcs.

2 3

1 4

5 6

s t

(c) The backward part δ−(S) of the cut:
arcs in δ−(S) are shown as dashed arcs.

Figure 4.2: A cut (S,T) in a directed graph and its forward part δ+(S) and backward part
δ−(S).
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Figure 4.2 shows an example of a cut and its forward and backward part.

Let f be an (s,t)-flow and (S,T) be an (s,t)-cut in G. For a node i ∈ V we define by

excessf(i) :=
∑

a∈δ−(v)

f(a)−
∑

a∈δ+(v)

f(a) (4.11)

the excess of i with respect to f. The first term in (4.11) corresponds to the inflow into i,
the second term is the outflow out of i. Then we have:

val(f) =−excessf(s) =−
∑

i∈S

excessf(i)

=
∑

i∈S





∑

(i,j)∈A

f(i, j)−
∑

(j,i)∈A

f(j, i)



 . (4.12)

If for an arc (x,y) both nodes x and y are contained in S, then the term f(x,y) appears
twice in the sum (4.12), once with a positive and once with a negative sign. Hence, (4.12)
reduces to

val(f) =
∑

a∈δ+(S)

f(a)−
∑

a∈δ−(S)

f(a). (4.13)

Using that f is feasible, that is, 0 ! f(i, j)! u(i, j) for all arcs (i, j), we get from (4.13):

val(f) =
∑

a∈δ+(S)

f(a)−
∑

a∈δ−(S)

f(a)!
∑

a∈δ+(S)

u(a) = u(δ+(S)).

Thus, the value val(f) of the flow is bounded from above by the capacity u(δ+(S))) of the
cut. We have proved the following lemma:

Lemma 4.20 Let f be an (s,t)-flow and (S,T) an (s,t)-cut. Then:

val(f)! u(δ+(S)).

Since f and [S,T ] are arbitrary we deduce that:

max
f is an (s,t)-flow in G

val(f)! min
(S,T) is an (s,t)-cut in G

u(δ+(S)). (4.14)

!

We are now ready to prove the famous Max-Flow-Min-Cut-Theorem of Ford and Fulker-
son:

Theorem 4.21 (Max-Flow-Min-Cut-Theorem) Let G= (V ,A) be a network with capac-

ities u : A→ R+, then the value of a maximum (s,t)-flow equals the minimum capacity of

an (s,t)-cut.

Proof: We add a backward arc (t,s) to G. Call the resulting graph G ′ = (V ,A ′), where
A ′ =A∪ {(t,s)}. Then, we can write the maximum flow problem as the Linear Program

z= max {xts :Mx= 0,0 ! x! u} , (4.15)

where M is the node-arc incidence matrix of G ′ and u(t,s) = +∞. We know that M is
totally unimodular from Corollary 4.17. So, (4.15) has an optimal integral solution value
for all integral capacities u. By Linear Programming duality we have:

max {xts :Mx= 0,0 ! x! u}= min
{

uTy :MT z+y" χ(t,s),y" 0
}

,
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where χ(t,s) is the vector in RA which has a one at entry (t,s) and zero at all other entries.
We unfold the dual which gives:

w= min
∑

(i,j)∈A

uijyij (4.16a)

zi−zj+yij ! 0 for all (i, j) ∈A (4.16b)

zt−zs ! 1 (4.16c)

yij ! 0 for all (i, j) ∈A (4.16d)

There are various ways to see that (4.16) has an optimum solution which is also integral,
for instance:

• The constraint matrix of (4.16) is of the form (MT I) and, from the total unimodular-
ity of M it follows that (MT I) is also totally unimodular. In particular, (4.16) has an
integral optimal solution for every integral right hand side (and our right hand side is
integral!).

• The polyhedron of the LP (4.15) is integral by total unimodularity. Thus, it has
an optimum integer value for all integral capacities (the objective is also integral).
Hence, by LP-duality (4.16) has an optimum integral value for all integral objec-
tives (which are the capacities). Hence, by Theorem 4.3 the polyhedron of (4.16) is
integral and (4.16) has an optimum integer solution.

Let (y∗,z∗) be such an integral optimal solution of (4.16). Observe that replacing z∗ by
z∗ −α for some α ∈ R does not change anything, so we may assume without loss of
generality that z∗s = 0.

Since (y∗,z∗) is integral, the sets S and T defined by

S := {v ∈ V : z∗v " 0}

T := {v ∈ V : z∗v ! 1}

induce an (S,T)-cut. Then,

w=
∑

(i,j)∈A

uijy
∗
ij !

∑

(i,j)∈δ+(S)

uijy
∗
ij !

∑

(i,j)∈δ+(S)

uij( z∗j
︸︷︷︸
!1

− z∗i
︸︷︷︸
"0

)! u(δ+(S)).

Thus, the optimum value w of the dual (4.16) which by strong duality equals the maximum
flow value is at least the capacity u(δ+(S)) of the cut (S,T). By Lemma 4.20 it now follows
that (S,T) must be a minimum cut and the claim of the theorem is proved. !

4.6 Matchings and Integral Polyhedra II

Birkhoff’s theorem provided a complete description of conv(PM(G)) in the case where
the graph G = (V ,E) was bipartite. In general, the conditions in (4.4) do not suffice to
ensure integrality of every extreme point of the corresponding polytope. Let FPM(G) (the
fractional perfect matching polytope) denote the polytope defined by (4.4). Consider the
case where the graph G contains an odd cycle of length 3 (cf. Figure 4.3).

The vector x̃ with x̃e1 = x̃e2 = x̃e3 = x̃e5 = x̃e6 = x̃e7 = 1/2 and x̃e4 = 0 is contained
in FPM(G). However, x̃ is not a convex combination of incidence vectors of perfect match-
ings of G, since {e3,e4,e5} is the only perfect matching in G. However, the fractional
matching polytope FPM(G) still has an interesting structure, as the following theorem
shows:
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5 6

4

2

1 3

x̃e7 = 1/2 x̃e6 = 1/2

x̃e5 = 1/2

x̃e1 = 1/2 x̃e2 = 1/2

x̃e3 = 1/2

x̃e4 = 0

Figure 4.3: In an odd cycle, the blossom inequalities are necessary to ensure integrality of
all extreme points.

Theorem 4.22 (Fractional Perfect Matching Polytope Theorem) Let G = (V ,E) be a

graph and x ∈ FPM(G). Then, x is an extreme point of FPM(G) if and only if xe ∈
{0,1/2,1} for all e ∈ E and the edges e for which xe = 1/2 form node disjoint odd cycles.

Proof: Suppose that x̃ is a half-integral solution satisfying the conditions stated in the
theorem. Define the vector w ∈ Rn by we =−1 if x̃e = 0 and we = 0 if x̃e > 0. Consider
the face F=

{
x ∈ FPM(G) :wTx= 0

}
. Clearly, x̃ ∈ F. We claim that F= {x̃} which shows

that x̃ is an extreme point.

For every x ∈ F we have
0 =wTx=−

∑

e∈E:x̃e=0

xe
︸︷︷︸
!0

.

Thus xe = 0 for all edges such that x̃e = 0. Now consider an edge e where x̃e = 1/2. By
assumption, this edge lies on an odd cycle C. It is now easy to see that the values of x on
the cycle must be alternatingly θ and 1−θ since x(δ(v)) = 1 for all v ∈ V (see Figure 4.4).
The only chance that x ∈ FPM(G) is θ= 1/2 and thus x= x̃.

1

5 2

4 3

x̃12 = 1/2, x12 = θ

x̃23 = 1/2, x12 = 1−θ

x̃23 = 1/2, x12 = θ

x̃45 = 1/2, x12 = 1−θ

x̃51 = 1/2, x12 = θ

Figure 4.4: If x̃ satisfies the conditions of Theorem 4.22 it is the only member of the face
F=

{
x ∈ FPM(G) :wTx= 0

}
.

Assume conversely that x̃ is an extreme point of FPM(G). We first show that x̃ is half-
integral. By Theorem 3.37 there is an integral vector c such that x̃ is the unique solution of
max

{
cTx : x ∈ FPM(G)

}
.

Construct a bipartite graph H = (VH,EH) from G by replacing each node v ∈ V by two
nodes v ′,v ′′ and replacing each edge e = (u,v) by two edges e ′ = (u ′,v ′′) and e ′′ =
(v ′,u ′′) (see Figure 4.5 for an illustration). We extend the weight function c : E → R to
EH by setting c(u ′,v ′′) = c(v ′,u ′′) = c(u,v).
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4

2

1 3

x̃e1 = 1/2 x̃e2 = 1/2

x̃e3 = 1/2

x̃e4 = 0

(a) The original graph G.

1 ′ 1 ′′

2 ′ 2 ′′

3 ′ 3 ′′

4 ′ 4 ′′

(b) The bipartite graph H.

Figure 4.5: Construction of the bipartite graph H in the proof of Theorem 4.22.

Observe that, if x ∈ FPM(G), then x ′ defined by x ′
u ′,v ′′ := x ′

v ′,u ′′ := xuv is a vector
in FPM(H) of twice the objective function value of x. Conversely, if x ′ ∈ FPM(H), then
xuv = 1

2 (x
′
u ′v ′′ + x ′

u ′′v ′) is a vector in FPM(G) of half of the objective function value
of x ′.

By Birkhoff’s Theorem (Theorem 4.7), the problem

max
{

cTxH : xH ∈ FPM(H)
}

has an integral optimal solution x∗H. Using the correspondence xuv = 1
2 (x

∗
u ′v ′′ + x∗u ′′v ′)

we obtain a half-integral optimal solution to

max
{

cTx : x ∈ FPM(G)
}

.

Since x̃ was the unique optimal solution to this problem, it follows that x̃ must be half-
integral.

If x̃ is half-integral, it follows that the edges {e : x̃e = 1/2} must form node disjoint cycles
(every node that meets a half-integral edge, meets exactly two of them). As in the proof
of Birkhoff’s Theorem, none of these cycles can be even, since otherwise x̃ is no extreme
point. !

With the help of the previous result, we can now prove the Perfect Matching Polytope
Theorem, which we restate here for convenience.

Theorem 4.23 (Perfect Matching Polytope Theorem) For any graph G = (V ,E), the

convex hull conv(PM(G)) of the perfect matchings in G is identical to the set of solutions

of the following linear system:

x(δ(v)) = 1 for all v ∈ V (4.17a)

x(δ(S))! 1 for all S⊆ V , |S|! 3 odd (4.17b)

xe ! 0 for all e ∈ E. (4.17c)

The inequalities (4.17b) are called blossom inequalities.

Proof: We show the claim by induction on the number |V | of vertices of the graph G =
(V ,E). If |V | = 2, then the claim is trivial. So, assume that |V | > 2 and the claim holds for
all graphs with fewer vertices.
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Let P be the polyhedron defined by the inequalities (4.17) and let x ′ ∈ P be any extreme
point of P. Since conv(PM(G))⊆ P, the claim of the theorem follows if we can show that
x ′ ∈ PM(G). Since {x ′} is a minimal face of conv(PM(G)), by Theorem 3.6 there exist a
subset E ′ ⊆ E of the edges and a family S ′ of odd subsets S⊆ V such that x ′ is the unique
solution to:

x(δ(v)) = 1 for all v ∈ V (4.18a)

x(δ(S)) = 1 for all S ∈ S ′ (4.18b)

xe = 0 for all e ∈ E ′. (4.18c)

Case 1: S ′ =∅.
In this case, x ′ is a vertex of FPM(G). By Theorem 4.22, x ′ is half-integral and the
fractional edges form node-disjoint odd cycles. On the other hand, x ′ satisfies the blossom
inequalities (4.17b) which is a contradiction.

Case 2: S ′ #=∅.
Fix S ∈ S ′, by definition we have x ′(δ(S)) = 1. Notice that |S| is odd. The complement
S̄ :=V \S need not be of odd cardinality, but observe that, if S̄ is of even cardinality, then G
does not contain a perfect matching (since the total number of vertices is odd in this case).
Let GS and GS̄ be the graphs obtained from G by shrinking S and S̄ = V \S to a single
node (see Figure 4.6). Let xS and xS̄ be the restriction of x ′ to the edges of GS and GS̄,
respectively. By construction, xi(δ(S)) = xi(δ(S̄) = 1 for i= S, S̄.

shrink S̄= V \S

G

shrink S

S

GS̄

S

GS

S

V \S

Figure 4.6: Graphs GS and GS̄ obtained from G by shrinking the odd set S and V \S in the
proof of Theorem 4.23.

It is easy to see that xS and xS̄ satisfy the constraints (4.17) with respect to GS and GS̄,
respectively. Thus, by the induction hypothesis, we have xi ∈ conv(PM(Gi)) for i = S, S̄.
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Hence, we can write xi as convex combinations of perfect matchings of Gi:

xS =
1
k

k∑

j=1

χM
S
j (4.19)

xS̄ =
1
k

k∑

j=1

χM
S̄
j (4.20)

Here, we have assumed without loss of generality that in both convex combinations the
number of vectors used is the same, namely k. Also, we have assumed a special form of
the convex combination which can be justified as follows: x ′ is an extreme point of P and
thus is rational. This implies that xi, i= S, S̄ are also rational. Since all λj are rational, any
convex combination

∑

jλjy
j can be written by using common denominator k as

∑

j
µj

k yj,
where all µj are integral. Repeating vector yj exactly µj times, we get the form 1

k

∑

j z
j.

For e ∈ δ(S) the number of j such that e ∈ MS
j is kxSe = kx ′

e = kxS̄e . This is the same

number of j such that e∈MS̄
j . Again: for every e∈ δ(S) the number of j such that e∈MS

j

is the same as the number of j with e ∈ MS̄
j . Thus, we can order the Mi

j so that MS
j

and MS̄
j share an edge in δ(S) (any Mi

j, i = S, S̄ has exactly one edge from δ(S)). Then,

Mj := MS
j ∪MS̄

j is a perfect matching of G since every vertex in G is matched and no
vertex has more than one edge incident with it.

Let Mj :=MS
j ∪MS̄

j . Then we have:

x ′ =
1
k

k∑

i=1

χMj . (4.21)

Since Mj is a perfect matching of G we see from (4.21) that x ′ is a convex combination of
perfect matchings of G. Since x ′ is an extreme point, it follows that x ′ must be a perfect
matching itself. !

4.7 Total Dual Integrality

Another concept for proving integrality of a polyhedron is that of total dual integrality.

Definition 4.24 (Totally dual integral system)
A rational linear system Ax! b is totally dual integral (TDI), if for each integral vector c
such that

zLP = max
{

cTx :Ax! b
}

is finite, the dual

min
{

bTy :ATy= c,y" 0
}

has an integral optimal solution.

Theorem 4.25 If Ax! b is TDI and b is integral, then the polyhedron P = {x :Ax! b} is

integral.

Proof: If Ax! b is TDI and b is integral, then the dual Linear Program

min
{

bTy :ATy= c,y" 0
}
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has an optimal integral objective value if it is finite (the optimal vector y∗ is integral and b
is integral by assumption, so bTy∗ is also integral). By LP-duality, we see that the value

zLP = max
{

cTx :Ax! b
}

is integral for all c ∈ Zn where the value is finite. By Theorem 4.3(iv), the polyhedron P
is integral. !

Example 4.26
Let G= (A∪B,E) be a complete bipartite graph. Suppose we wish to solve a generalized
form of STABLESET on G in which we are allowed to pick a vertex more than once. Given
weights cab for the edges (a,b) we want to solve the following Linear Program:

max
∑

v∈V

wvxv (4.22a)

xa+xb ! cab for all (a,b) ∈ E (4.22b)

We claim that the system of ineqalities xa+xb ! cab (a,b)∈A is TDI. The dual of (4.22)
is given by:

min
∑

(a,b)∈E

cabyab (4.23a)

∑

b∈B

yab =wa for all a ∈A (4.23b)

∑

a∈A

yab =wb for all b ∈ B (4.23c)

yab " 0 for all (a,b) ∈A. (4.23d)

The constraint matrix of (4.23) is the constraint matrix of the assignment problem, which
we have already shown to be totally unimodular (see Example 4.15). Thus, if the weight
vector w is integral, then the dual (4.23) has an optimal integral solution (if it is feasible).

#

It should be noted that the condition “and b is integral” in the previous theorem is cru-
cial. It can be shown that for any rational system Ax ! b there is an integer ω such that
(1/ω)Ax ! (1/ω)b is TDI. Hence, the fact that a system is TDI does not yet tell us any-
thing useful about the structure of the corresponding polyhedron.

We have seen that if we find a TDI system with integral right hand side, then the corre-
sponding polyhedron is integral. The next theorem shows that the converse is also true: if
our polyhedron is integral, then we can also find a TDI system with integral right hand side
defining it.

Theorem 4.27 Let P be a rational polyhedron. Then, there exists a TDI system Ax ! b
with A integral such that P = P(A,b). Moreover, if P is an integral polyhedron, then b can

be chosen to be integral.

Proof: Let P = {x ∈ Rn :Mx! d} be a rational polyhedron. If P = ∅, then the claim is
trivial. Thus, we assume from now on that P is nonempty. Since we can scale the rows of M
by multiplying with arbitrary scalars, we can assume without loss of generality that M has
integer entries. We also assume that the system Mx ! d does not contain any redundant
rows. Thus, for any row mT

i of M there is an x ∈ P with mT
i x= di.

Let S=
{
s ∈ Zn : s=MTy,0 ! y! 1

}
be the set of integral vectors which can be written

as nonnegative linear combinations of the rows of M where no coefficient is larger than one.
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Since y comes from a bounded domain and S contains only integral points, it follows that
S is finite. For s ∈ S we define

z(s) := max
{

sTx : x ∈ P
}

.

Observe that, if s ∈ S, say s =
∑m

i=1yimi, and x ∈ P, then mT
i x ! di which means

yim
T
i x! yidi for i= 1, . . . ,m, from which we get that

sTx=
m∑

i=1

yim
T
i x!

m∑

i=1

yidi !

m∑

i=1

|di|.

Thus, sTx is bounded on P and z(s) < +∞ for all s ∈ S. Moreover, the inequality sTx !

z(s) is valid for P. We define the system Ax ! b to consist of all inequalities sTx ! z(s)
with s ∈ S.

Every row mT
i of M is a vector in S (by assumption M is integral and mT

i is a degenerated
linear combination of the rows, namely with coefficient one for itself and zero for all other
rows). Since mT

i x ! di for all x ∈ P, the inequality mT
i x ! di is contained in Ax ! b.

Furthermore, since we have only added valid inequalities to the system, it follows that

P = {x :Ax! b} . (4.24)

If P is integral, then by Theorem 4.3 the value z(s) is integral for each s ∈ S, so the system
Ax! b has an integral right hand side. The only thing that remains to show is that Ax! b
is TDI.

Let c be an integral vector such that zLP = max
{
cTx :Ax! b

}
is finite. We have to

construct an optimal integral solution to the dual

min
{

bTy :ATy= c,y" 0
}

. (4.25)

We have

zLP = max
{

cTx :Ax! b
}

= max
{

cTx : x ∈ P
}

(by (4.24))

= max
{

cTx :Mx! d
}

= min
{

dTy :MTy= c,y" 0
}

(by LP-duality). (4.26)

Let y∗ be an optimal solution for the problem in (4.26) and consider the vector s̄ =
MT (y∗− "y∗#). Observe that y− "y∗# has entries in [0,1]. Morever s̄ is integral, since
s̄ =MTy∗−MT "y∗# = c−MT "y∗# and c, MT and "y∗# are all integral. Thus, s̄ ∈ S.
Now,

z(s̄) = max
{

s̄Tx : x ∈ P
}

= min
{

dTy :MTy= s̄,y" 0
}

(by LP-duality). (4.27)

The vector y∗− "y∗# is feasible for (4.27) by construction. If v is feasible for (4.27), then
v+ "y∗# is feasible for (4.26). Thus, it follows easily that y− "y∗# is optimal for (4.27).
Thus, z(s̄) = dT (y∗− "y∗#), or

zLP = dTy∗ = z(s̄)+dT "y∗#. (4.28)
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Consider the integral vector ȳ defined as !y∗" for the dual variables corresponding to rows
in M, one for the dual variable corresponding to the constraint s̄Tx! z(s̄) and zero every-
where else. Clearly, ȳ" 0. Moreover,

AT ȳ=
∑

s∈S

ȳss=MT !y∗"+1 · s̄=MT !y∗"+MT (y∗− !y∗") =MTy∗ = c.

Hence, ȳ is feasible for (4.25). Furthermore,

bT ȳ= z(s̄)+dT !y∗" (4.28)
= zLP.

Thus, ȳ is an optimal integral solution for the dual (4.25). !

4.8 Submodularity and Matroids

In this section we apply our results about TDI systems to prove integrality for a class of
important polyhedra.

Definition 4.28 (Submodular function)
Let N be a finite set. A function f : 2N → R is called submodular, if

f(A)+ f(B)" f(A∩B)+ f(A∪B) for all A,B⊆N. (4.29)

The function is called nondecreasing if

f(A)! f(B) for all A,B⊆N with A⊆ B. (4.30)

Usually we will not be given f “explicitly”, that is, by a listing of all the 2|N| pairs
(A,f(A)). Rather, we will have access to f via an “oracle”, that is, given A we can compute
f(A) by a call to the oracle.

Example 4.29
(i) The function f(A) = |A| is nondecreasing and submodular.

(ii) Let G = (V ,E) be an undirected graph with edge weights u : E → R+. The func-
tion f : 2V → R+ defined by f(A) :=

∑

e∈δ(A)u(e) is submodular but not neces-
sarily nondecreasing.

#

Definition 4.30 (Submodular polyhedron, submodular optimization problem)
Let f be submodular and nondecreasing. The submodular polyhedron associated with f is

P(f) :=





x ∈ Rn

+ :
∑

j∈S

xj ! f(S) for all S⊆N.





(4.31)

The submodular optimization problem is to optimize a linear objective function over P(f):

max
{

cTx : x ∈ P(f)
}

.

Observe that by the polynomial time equivalence of optimization and separation (see Sec-
tion 5.4) we can solve the submodular optimization problem in polynomial time if we can
solve the corresponding separation problem in polynomial time: We index the polyhedra
by the finite sets N, and it is easy to see that this class is proper.

We now consider the simple Greedy algorithm for the submodular optimization problem
described in Algorithm 4.1. The surprising result proved in the following theorem is that
the Greedy algorithm in fact solves the submodular optimization problem. But the result is
even stronger:
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Algorithm 4.1 Greedy algorithm for the submodular optimization problem.

GREEDY-SUBMODULAR

1 Sort the variables such that c1 ! c2 ! · · ·! ck > 0 ! ck+1 ! · · ·! cn.
2 Set xi := f(Si)− f(Si−1) for i = 1, . . . ,k and xi = 0 for i = k+ 1, . . . ,n, where Si =
{1, . . . , i} and S0 =∅.

Theorem 4.31 Let f be a submodular and nondecreasing function with f(∅) = 0, c : N→
R be an arbitrary weight vector.

(i) The Greedy algorithm solves the submodular optimization problem for maximizing

cTx over P(f).

(ii) The system (4.31) is TDI.

(iii) For integral valued f, the polyhedron P(f) is integral.

Proof:

(i) Since f is nondecreasing, we have xi = f(Si)− f(Si−1) ! 0 for i = 1, . . . ,k. Let
S ⊆N. We have to show that

∑

j∈S xj " f(S). By the submodularity of f we have
for j ∈ S:

f(

=A
︷ ︸︸ ︷

Sj∩S)+ f(

=B
︷︸︸︷

Sj−1)! f(

=A∪B
︷︸︸︷

Sj )+ f(

=A∩B
︷ ︸︸ ︷

Sj−1 ∩S)

⇔f(Sj)− f(Sj−1)Â " f(Sj∩S)− f(Sj−1 ∩S) (4.32)

Thus,
∑

j∈S

xj =
∑

j∈S∩Sk

(

f(Sj)− f(Sj−1)
)

"
∑

j∈S∩Sk

(

f(Sj∩S)− f(Sj−1 ∩S)
)

(by (4.32))

"
∑

j∈Sk

(

f(Sj∩S)− f(Sj−1 ∩S)
)

(f nondecreasing)

= f(Sk∩S)− f(∅)

" f(S).

Thus, the vector x computed by the Greedy algorithm is in fact contained in P(f). Its
solution value is

cTx=
k∑

i=1

ci

(

f(Si)− f(Si−1)
)

. (4.33)

We now consider the Linear Programming dual of the submodular optimization prob-
lem:

wD = min
∑

S⊆N

f(S)yS

∑

S:j∈S

yS ! cj for all j ∈N

yS ! 0 for all S⊆N.
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If we can show that cTx=wD, then it follows that x is optimal. Construct a vector y
by ySi = ci−ci+1 for i= 1, . . . ,k−1, ySk = ck and yS = 0 for all other sets S⊆N.
Since we have sorted the sets such that c1 ! c2 ! ck > 0 ! ck+1 ! · · · ! cn, it
follows that y has only nonnegative entries.

For j= 1, . . . ,k we have

∑

S:j∈S

yS !

k∑

i=j

ySi =

k−1∑

i=j

(ci−ci+1)+ck = cj.

On the other hand, for j= k+1, . . . ,n
∑

S:j∈S

yS ! 0 ! cj.

Hence, y is feasible for the dual. The objective function value for y is:

∑

S⊆N

f(S)yS =

k∑

i=1

f(Si)ySi =

k−1∑

i=1

f(Si)(ci−ci+1)+ f(Sk)ck

=

k∑

i=1

(f(Si)− f(Si−1)ci

= cTx,

where the last equality stems from (4.33). Thus, y must be optimal for the dual and
x optimal for the primal.

(ii) The proof of statement (ii) follows from the observation that, if c is integral, then the
optimal vector y constructed is integral.

(iii) Follows from (ii) and Theorem 4.25.

!

An important class of submodular optimization problems are induced by special submod-
ular functions, namely the rank functions of matroids.

Definition 4.32 (Independence system, matroid)
Let N be a finite set and I⊆ 2N. The pair (N,I) is called an independence system, if A∈ I
and B⊆A implies that B ∈ I. The sets in I are called independent sets.

The independence system is a matroid if for each A∈ I and B∈ I with |B|> |A| there exists

a ∈ B\A with A∪ {a} ∈ I.

Given a matroid (N,I), its rank function r : 2N → N is defined by

r(A) := max {|I| : I⊆A and I ∈ I} .

Observe that r(A) " |A| for any A ⊂ N and r(A) = |A| if any only if A ∈ I. Thus, we
could alternatively specify a matroid (N,I) also by (N,r).

Lemma 4.33 The rank function of a matroid is submodular and nondecreasing.

Proof: The fact that r is nondecreasing is trivial. Let A,B⊆N. We must prove that

r(A)+ r(B)! r(A∪B)+ r(A∩B).
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4.8 Submodularity and Matroids 65

Let X⊆A∪B with |X|= r(A∪B) and Y ⊆A∩B with |Y|= r(A∩B). Let X ′ := Y. Since
X ′ is independent and X is independent, if |X ′| < |X| we can add an element from X to X ′

without loosing independence. Continuing this procedure, we find X ′ with |X ′| = |X| and
Y ⊆ X ′ by construction. Hence, we can assume that Y ⊆ X. Now,

r(A)+ r(B)! |X∩A|+ |X∩B|

= |X∩ (A∩B)|+ |X∩ (A∪B)|

! |Y|+ |X|

= r(A∩B)+ r(A∪B).

This shows the claim. !

Example 4.34 (Matrix matroid)
Let A be an m×n-matrix with columns a1, . . . ,an. Set N := {1, . . . ,n} and the family I by
the condition that S ∈ I if and only if the vectors {ai : i ∈ S} are linearly independent. Then
(N,I) is an independendence system. By Steinitz’ Theorem (basis exchange) from Linear
algebra, we know that (N,I) is in fact also a matroid. "

Example 4.35
Let E = {1,3,5,9,11} and F :=

{
A⊆ E :

∑

e∈A e# 20
}

. Then, (E,F) is an independence
system but not a matroid.

The fact that (E,F) is an independence system follows from the property that, if B⊆A∈F,
then

∑

e∈B e#
∑

e∈A e# 20.

Now consider B := {9,11} ∈ F and A := {1,3,5,9} ∈ F where |B| < |A|. However, there is
no element in A\B that can be added to B without losing independence. "

Definition 4.36 (Tree, forest)
Let G= (V ,E) a graph. A forest in G is a subgraph (V ,E ′) which does not contain a cycle.

A tree is a forest which is connected (i.e., which contains a path between any two vertices).

Example 4.37 (Graphic matroid)
Let G= (V ,E) be a graph. We consider the pair (E,F), where

F := {T ⊆ E : (V ,T) is a forest} .

Clearly, (E,F) is an independence system, since by deleting edges from a forest, we obtain
again a forest. We show that the system is also a matroid. If (V ,T) is a forest, then it
follow easily by induction on |T | that (V ,T) has exactly |V |− |T | connected components.
Let A ∈ I and B ∈ I with |B|> |A|. Let C1, . . . ,Ck be the connected components of (V ,A)
where k= |V |− |A|. Since (V ,B) has fewer connected components, there must be an edge
e ∈ B \A whose endpoints are in different components of (V ,A). Thus A∪ {e} is also a
forest. "

Lemma 4.38 Let G = (V ,E) be a graph and (N,I) be the associated graphic matroid.

Then the rank function r is given by r(A) = |V |− comp(V ,A), where comp(V ,A) denotes

the number of connected components of the graph (V ,A).

Proof: Let A⊆ E. It is easy to see that in a matroid all maximal independent subsets of A
have the same cardinality. Let C1, . . . ,Ck be the connected components of (V ,A). For
i= 1, . . . ,k we can find a spanning tree of Ci. The union of these spanning trees is a forest
with

∑k
i=1(|Ci|−1) = |V |−k edges, all of which are in A. Thus, r(A)! |V |−k.

Assume now that F ⊆ A is an independent set. Then, F can contain only edges of the
components C1, . . . ,Ck. Since F is a forest, the restriction of F to any Ci is also a forest,
which implies that |F∩Ci|# |Ci|−1. Thus, we have |F|# |V |−k and hence r(A)# |V |−k.

!
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Definition 4.39 (Matroid optimization problem)
Given a matroid (N,I) and a weight function c : N→R, the matroid optimization problem
is to find a set A ∈ I maximizing c(A) =

∑

a∈A c(a).

By Lemma 4.33 the polyhedron

P(N,I) :=





x ∈ Rn

+ :
∑

j∈S

xj ! r(S) for all S⊆N






is a submodular polyhedron. Moreover, by the integrality of the rank function and The-
orem 4.31(iii) P(N,I) is integral. Finally, since r({j}) ! 1 for all j ∈ N, it follows that
0 ! x! 1 for all x ∈ P(N,I). Thus, in fact we have:

P(N,I) = conv









x ∈ Bn :

∑

j∈S

xj ! r(S) for all S⊆N.








 (4.34)

With (4.34) it is easy to see that the matroid optimization problem reduces to the submod-
ular optimization problem. By Theorem 4.31(i) the Greedy algorithm finds an optimal
(integral) solution and thus solves the matroid optimization problem.

It is worthwhile to have a closer look at the Greedy algorithm in the special case of a
submodular polyhedron induced by a matroid. Let again be Si = {1, . . . , i}, S0 = ∅. Since
r(Si)− r(Si−1) ∈ {0,1} and the algorithm works as follows:

(i) Sort the variables such that c1 " c2 " · · ·" ck > 0 " ck+1 " · · ·" cn.

(ii) Start with S=∅.

(iii) For i= 1, . . . ,k, if S∪ {i} ∈ I, then set S := S∪ {i}.
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