Lecture 3 Geometry of linear programming

- subspaces and affine sets, independent vectors
- matrices, range and nullspace, rank, inverse
- polyhedron in inequality form
- extreme points
- the optimal set of a linear program

3–1

Subspaces

 $\mathcal{S} \subseteq \mathbf{R}^n \ (\mathcal{S} \neq \emptyset)$ is called a *subspace* if

$$x, y \in \mathcal{S}, \ \alpha, \beta \in \mathbf{R} \implies \alpha x + \beta y \in \mathcal{S}$$

 $\alpha x + \beta y$ is called a *linear combination* of x and y

examples (in **R**ⁿ)

- $\mathcal{S} = \mathbf{R}^n$, $\mathcal{S} = \{0\}$
- $S = \{ \alpha v \mid \alpha \in \mathbf{R} \}$ where $v \in \mathbf{R}^n$ (*i.e.*, a line through the origin)
- $S = \operatorname{span}(v_1, v_2, \dots, v_k) = \{\alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbf{R}\}, \text{ where } v_i \in \mathbf{R}^n$
- set of vectors orthogonal to given vectors v_1, \ldots, v_k :

$$\mathcal{S} = \{ x \in \mathbf{R}^n \mid v_1^T x = 0, \dots, v_k^T x = 0 \}$$

Independent vectors

vectors v_1, v_2, \ldots, v_k are *independent* if and only if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0 \implies \alpha_1 = \alpha_2 = \dots = 0$$

some equivalent conditions:

• coefficients of $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$ are uniquely determined, *i.e.*,

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_k v_k$

implies $\alpha_1 = \beta_1, \alpha_2 = \beta_2, \dots, \alpha_k = \beta_k$

 no vector v_i can be expressed as a linear combination of the other vectors v₁,..., v_{i-1}, v_{i+1},..., v_k

Geometry of linear programming

Basis and dimension

 $\{v_1, v_2, \ldots, v_k\}$ is a *basis* for a subspace S if

- v_1, v_2, \ldots, v_k span S, *i.e.*, $S = \text{span}(v_1, v_2, \ldots, v_k)$
- v_1, v_2, \ldots, v_k are independent

equivalently: every $v \in S$ can be uniquely expressed as

$$v = \alpha_1 v_1 + \dots + \alpha_k v_k$$

fact: for a given subspace S, the number of vectors in any basis is the same, and is called the *dimension* of S, denoted dim S

Affine sets

 $\mathcal{V}\subseteq \mathbf{R}^n \ (\mathcal{V}
eq \emptyset)$ is called an *affine set* if

$$x, y \in \mathcal{V}, \ \alpha + \beta = 1 \implies \alpha x + \beta y \in \mathcal{V}$$

 $\alpha x + \beta y$ is called an *affine combination* of x and y

examples (in \mathbb{R}^n)

- subspaces
- $\mathcal{V} = b + \mathcal{S} = \{x + b \mid x \in \mathcal{S}\}$ where \mathcal{S} is a subspace
- $\mathcal{V} = \{\alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbf{R}, \sum_i \alpha_i = 1\}$
- $\mathcal{V} = \{x \mid v_1^T x = b_1, \dots, v_k^T x = b_k\}$ (if $\mathcal{V} \neq \emptyset$)

every affine set \mathcal{V} can be written as $\mathcal{V} = x_0 + \mathcal{S}$ where $x_0 \in \mathbf{R}^n$, \mathcal{S} a subspace (*e.g.*, can take any $x_0 \in \mathcal{V}$, $\mathcal{S} = \mathcal{V} - x_0$)

 $\dim(\mathcal{V}-x_0)$ is called the dimension of $\mathcal V$

Geometry of linear programming

Matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbf{R}^{m \times n}$$

some special matrices:

- A = 0 (zero matrix): $a_{ij} = 0$
- A = I (identity matrix): m = n and $A_{ii} = 1$ for i = 1, ..., n, $A_{ij} = 0$ for $i \neq j$
- $A = \operatorname{diag}(x)$ where $x \in \mathbf{R}^n$ (diagonal matrix): m = n and

$$A = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{bmatrix}$$

- addition, subtraction, scalar multiplication
- transpose:

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \in \mathbf{R}^{n \times m}$$

• multiplication: $A \in \mathbf{R}^{m \times n}$, $B \in \mathbf{R}^{n \times q}$, $AB \in \mathbf{R}^{m \times q}$:

$$AB = \begin{bmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \sum_{i=1}^{n} a_{1i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{1i}b_{iq} \\ \sum_{i=1}^{n} a_{2i}b_{i1} & \sum_{i=1}^{n} a_{2i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{2i}b_{iq} \\ \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} a_{mi}b_{i1} & \sum_{i=1}^{n} a_{mi}b_{i2} & \cdots & \sum_{i=1}^{n} a_{mi}b_{iq} \end{bmatrix}$$

Geometry of linear programming

Rows and columns

rows of $A \in \mathbf{R}^{m \times n}$:

$$A = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix}$$
$$\mathbf{R}^n$$

with $a_i = (a_{i1}, a_{i2}, \dots, a_{in}) \in \mathbf{R}^n$

columns of $B \in \mathbf{R}^{n \times q}$:

$$B = \left[\begin{array}{cccc} b_1 & b_2 & \cdots & b_q \end{array} \right]$$

with $b_i = (b_{1i}, b_{2i}, \dots, b_{ni}) \in \mathbf{R}^n$

for example, can write ${\cal A}{\cal B}$ as

$$AB = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_q \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_q \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_q \end{bmatrix}$$

Range of a matrix

the range of $A \in \mathbf{R}^{m \times n}$ is defined as

$$\mathcal{R}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$$

- a subspace
- set of vectors that can be 'hit' by mapping y = Ax
- the span of the columns of $A = [a_1 \cdots a_n]$

$$\mathcal{R}(A) = \{a_1 x_1 + \dots + a_n x_n \mid x \in \mathbf{R}^n\}$$

• the set of vectors y s.t. Ax = y has a solution

 $\mathcal{R}(A) = \mathbf{R}^m \iff$

- Ax = y can be solved in x for any y
- the columns of A span \mathbf{R}^m
- dim $\mathcal{R}(A) = m$

Geometry of linear programming

Interpretations

 $v \in \mathcal{R}(A), w \notin \mathcal{R}(A)$

- y = Ax represents output resulting from input x
 - -v is a possible result or output
 - \boldsymbol{w} cannot be a result or output
 - $\mathcal{R}(A)$ characterizes the *achievable outputs*
- y = Ax represents measurement of x
 - y = v is a *possible* or *consistent* sensor signal
 - y = w is *impossible* or *inconsistent*; sensors have failed or model is wrong
 - $\mathcal{R}(A)$ characterizes the *possible results*

Nullspace of a matrix

the *nullspace* of $A \in \mathbf{R}^{m \times n}$ is defined as

$$\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}$$

- a subspace
- the set of vectors mapped to zero by y = Ax
- the set of vectors orthogonal to all rows of A:

$$\mathcal{N}(A) = \left\{ x \in \mathbf{R}^n \mid a_1^T x = \dots = a_m^T x = 0 \right\}$$

where $A = [a_1 \ \cdots \ a_m]^T$

zero nullspace: $\mathcal{N}(A) = \{0\} \iff$

- x can always be uniquely determined from y = Ax(*i.e.*, the linear transformation y = Ax doesn't 'lose' information)
- columns of A are independent

Geometry of linear programming

Interpretations

suppose $z \in \mathcal{N}(A)$

- y = Ax represents output resulting from input x
 - -z is input with no result
 - x and x + z have same result

 $\mathcal{N}(A)$ characterizes *freedom of input choice* for given result

- y = Ax represents measurement of x
 - -z is undetectable get zero sensor readings
 - x and x + z are indistinguishable: Ax = A(x + z)

 $\mathcal{N}(A)$ characterizes *ambiguity* in x from y = Ax

Inverse

 $A \in \mathbf{R}^{n \times n}$ is invertible or nonsingular if det $A \neq 0$

equivalent conditions:

- columns of A are a basis for \mathbf{R}^n
- rows of A are a basis for \mathbf{R}^n
- $\mathcal{N}(A) = \{0\}$
- $\mathcal{R}(A) = \mathbf{R}^n$
- y = Ax has a unique solution x for every $y \in \mathbf{R}^n$
- A has an inverse $A^{-1} \in \mathbf{R}^{n \times n}$, with $AA^{-1} = A^{-1}A = I$

Geometry of linear programming

Rank of a matrix

we define the *rank* of $A \in \mathbf{R}^{m \times n}$ as

$$\operatorname{\mathbf{rank}}(A) = \dim \mathcal{R}(A)$$

(nontrivial) facts:

- $\operatorname{rank}(A) = \operatorname{rank}(A^T)$
- **rank**(A) is maximum number of independent columns (or rows) of A, hence

$$\operatorname{rank}(A) \le \min\{m, n\}$$

• $\operatorname{rank}(A) + \dim \mathcal{N}(A) = n$

Full rank matrices

for $A \in \mathbf{R}^{m \times n}$ we have $\operatorname{\mathbf{rank}}(A) \le \min\{m, n\}$

we say A is full rank if $rank(A) = min\{m, n\}$

- for square matrices, full rank means nonsingular
- for skinny matrices (m > n), full rank means columns are independent
- for fat matrices (m < n), full rank means rows are independent

Geometry of linear programming

Sets of linear equations

Ax = y

given $A \in \mathbf{R}^{m \times n}$, $y \in \mathbf{R}^m$

- solvable if and only if $y \in \mathcal{R}(A)$
- unique solution if $y \in \mathcal{R}(A)$ and $\operatorname{\mathbf{rank}}(A) = n$
- general solution set:

$$\{x_0 + v \mid v \in \mathcal{N}(A)\}$$

where $Ax_0 = y$

A square and invertible: unique solution for every y:

$$x = A^{-1}y$$

Polyhedron (inequality form)

 \mathcal{P} is convex:

$$x, y \in \mathcal{P}, \ 0 \le \lambda \le 1 \implies \lambda x + (1 - \lambda)y \in \mathcal{P}$$

 $\mathit{i.e.},$ the $\mathit{line \ segment}$ between any two points in $\mathcal P$ lies in $\mathcal P$

Geometry of linear programming

3–17

Extreme points and vertices

 $x \in \mathcal{P}$ is an **extreme point** if it cannot be written as

$$x = \lambda y + (1 - \lambda)z$$

with $0 \leq \lambda \leq 1$, $y, z \in \mathcal{P}$, $y \neq x$, $z \neq x$

 $x \in \mathcal{P}$ is a **vertex** if there is a c such that $c^T x < c^T y$ for all $y \in \mathcal{P}$, $y \neq x$ **fact:** x is an extreme point $\iff x$ is a vertex (proof later)

Basic feasible solution

define I as the set of indices of the *active* or *binding* constraints (at x^*):

$$a_i^T x^* = b_i, \quad i \in I, \qquad a_i^T x^* < b_i, \quad i \notin I$$

define \bar{A} as

$$\bar{A} = \begin{bmatrix} a_{i_1}^T \\ a_{i_2}^T \\ \vdots \\ a_{i_k}^T \end{bmatrix}, \qquad I = \{i_1, \dots, i_k\}$$

 x^{\star} is called a *basic feasible solution* if

$$\operatorname{rank} \overline{A} = n$$

fact: x^* is a vertex (extreme point) $\iff x^*$ is a basic feasible solution (proof later)

Geometry of linear programming

Example

-1	0		[0]
2	1		3
0	-1	$x \leq$	0
1	2		3

- (1,1) is an extreme point
- (1,1) is a vertex: unique minimum of $c^T x$ with c = (-1, -1)
- (1,1) is a basic feasible solution: $I = \{2, 4\}$ and $\operatorname{rank} \overline{A} = 2$, where

$$\overline{A} = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

Equivalence of the three definitions

vertex \implies extreme point

let x^{\star} be a vertex of \mathcal{P} , *i.e.*, there is a $c \neq 0$ such that

$$c^T x^\star < c^T x$$
 for all $x \in \mathcal{P}$, $x \neq x^\star$

let $y, z \in \mathcal{P}$, $y \neq x^{\star}$, $z \neq x^{\star}$:

$$c^T x^\star < c^T y, \qquad c^T x^\star < c^T z$$

so, if $0\leq\lambda\leq1,$ then

$$c^T x^* < c^T (\lambda y + (1 - \lambda)z)$$

hence $x^\star \neq \lambda y + (1-\lambda)z$

Geometry of linear programming

3–21

extreme point \Longrightarrow basic feasible solution

suppose $x^{\star} \in \mathcal{P}$ is an extreme point with

$$a_i^T x^\star = b_i, \quad i \in I, \qquad a_i^T x^\star < b_i, \quad i \notin I$$

suppose x^{\star} is not a basic feasible solution; then there exists a $d \neq 0$ with

$$a_i^T d = 0, \quad i \in I$$

and for small enough $\epsilon > 0$,

$$y = x^* + \epsilon d \in \mathcal{P}, \quad z = x^* - \epsilon d \in \mathcal{P}$$

we have

$$x^{\star} = 0.5y + 0.5z,$$

which contradicts the assumption that x^{\star} is an extreme point

basic feasible solution \implies vertex

suppose $x^{\star} \in \mathcal{P}$ is a basic feasible solution and

$$a_i^T x^\star = b_i \quad i \in I, \qquad a_i^T x^\star < b_i \quad i \notin I$$

define $c = -\sum_{i \in I} a_i$; then

$$c^T x^\star = -\sum_{i \in I} b_i$$

and for all $x \in \mathcal{P}$,

$$c^T x \ge -\sum_{i \in I} b_i$$

with equality only if $a_i^T x = b_i$, $i \in I$

however the only solution to $a_i^T x = b_i$, $i \in I$, is x^* ; hence $c^T x^* < c^T x$ for all $x \in \mathcal{P}$

Geometry of linear programming

Unbounded directions

 \mathcal{P} contains a **half-line** if there exists $d \neq 0$, x_0 such that

$$x_0 + td \in \mathcal{P}$$
 for all $t \geq 0$

equivalent condition for $\mathcal{P} = \{x \mid Ax \leq b\}$:

$$Ax_0 \le b, \quad Ad \le 0$$

fact: \mathcal{P} unbounded $\iff \mathcal{P}$ contains a half-line

 \mathcal{P} contains a **line** if there exists $d \neq 0$, x_0 such that

$$x_0 + td \in \mathcal{P}$$
 for all t

equivalent condition for $\mathcal{P} = \{x \mid Ax \leq b\}$:

$$Ax_0 \le b, \quad Ad = 0$$

fact: \mathcal{P} has no extreme points $\Longleftrightarrow \mathcal{P}$ contains a line

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b \end{array}$

- optimal value: $p^{\star} = \min\{c^T x \mid Ax \leq b\}$ $(p^{\star} = \pm \infty \text{ is possible})$
- optimal point: x^{\star} with $Ax^{\star} \leq b$ and $c^{T}x^{\star} = p^{\star}$
- optimal set: $X_{opt} = \{x \mid Ax \leq b, \ c^T x = p^*\}$

example

minimize	$c_1 x_1 + c_2 x_2$
subject to	$-2x_1 + x_2 \le 1$
	$x_1 \ge 0, x_2 \ge 0$

- c = (1,1): $X_{opt} = \{(0,0)\}, p^{\star} = 0$
- c = (1,0): $X_{opt} = \{(0, x_2) \mid 0 \le x_2 \le 1\}, p^* = 0$
- c = (-1, -1): $X_{\text{opt}} = \emptyset$, $p^* = -\infty$

Geometry of linear programming

Existence of optimal points

• $p^{\star} = -\infty$ if and only if there exists a feasible half-line

$$\{x_0 + td \mid t \ge 0\}$$

with $c^T d < 0$

- $p^{\star} = +\infty$ if and only if $\mathcal{P} = \emptyset$
- p^{\star} is finite if and only if $X_{\text{opt}} \neq \emptyset$

property: if $\mathcal P$ has at least one extreme point and p^\star is finite, then there exists an extreme point that is optimal

Geometry of linear programming