EE236A (Fall 2007-08)

Lecture 3
Geometry of linear programming

e subspaces and affine sets, independent vectors
e matrices, range and nullspace, rank, inverse

e polyhedron in inequality form

e extreme points

e the optimal set of a linear program
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Subspaces

S CR" (S #0) is called a subspace if
r,yeS, a,eR = azx+pyes

ax + By is called a linear combination of x and y

examples (in R")

e S=R", §={0}

e S ={av |a € R} where v € R" (i.e., a line through the origin)

e S =span(vy,vg,...,v) = {aqvy + -+ -+ v | @; € R}, where v; € R”

e set of vectors orthogonal to given vectors vy, ..., U:

S={recR"|vlz=0,...,0] 2z =0}
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Independent vectors

vectors v1, Vg, ...,V are independent if and only if

oy +tagvag+ - +apv, =0 — ar=as=---=0

some equivalent conditions:

e coefficients of ajv1 + aovs + - - - + apvg are uniquely determined, i.e.,
a1v1 + QU + - -+ Uy = Brug + Bove + - - 4 Brug

implies a; = B1, 2 = B2,...,a = B

e no vector v; can be expressed as a linear combination of the other
vectors vy, ...,V;—1,Vi41,..., Uk
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Basis and dimension

{v1,v9,...,v} is a basis for a subspace S if
® v, Vo,...,0 span S, i.e., S = span(vy, v, . .., Uk)
® U1,Vo,...,U are independent

equivalently: every v € § can be uniquely expressed as

V=QqU] + -+ Qpug

fact: for a given subspace S, the number of vectors in any basis is the
same, and is called the dimension of S, denoted dim S
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Affine sets

V CR" (V #0) is called an affine set if
r,yeV, a+f=1 — ar+pyeV

ax + By is called an affine combination of x and y

examples (in R™)

e subspaces

e V=0b+S={x+b|xecS} where S is a subspace
V={av+ - +ap, |y €RY  a; =1}
V={z|vlz="0b,...,0fz=0b} (if V#0)

every affine set V can be written as V = 2g + S where o € R", S a
subspace (e.g., can take any o € V, S =V — x¢)

dim(V — xg) is called the dimension of V
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Matrices
aix a2 -+ Qip
a1 Aazz2 -+ Q2
am1 Gm2 - Omnp

some special matrices:
e A =0 (zero matrix): a;; =0

o A =1 (identity matrix): m =nand 4;; =1fori=1,...,n, A;; =0
fori #j

e A = diag(x) where z € R" (diagonal matrix): m = n and

1 0O - 0
a=| 0 w0
0 0 - =z,
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Matrix operations

e addition, subtraction, scalar multiplication

e transpose:

ai; a1 -+ ami
AT — Q12 A22 - Am2 c RV™
a1n 0Aa2n e Amn

e multiplication: A € R™*", B R"*4 AB ¢ R"™*1:

n n n
Doimiaribin Dy anbin o Y anibyg
n n n
AB — Doisq @2ibin D> g agibip - Y agibig
n n n
D1 @mibit i amibiz o 30 mibig
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Rows and columns

rows of A € R™*":
aj
A= | @
ah,
with a; = (ail, aio, ... ,am) € R"
columns of B € R™*¢;
Bz[bl by --- bq}
with b; = (b1i7 boi, ..., bnz) c R"
for example, can write AB as
agbl a?bg . a?bq
AB _ a/2.b1 a2.b2 ce alzlbq
alby alby -+ alb,
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Range of a matrix

Ran

the range of A € is defined as

R(A) ={Ax |z € R"} CR™

e a subspace
e set of vectors that can be ‘hit’ by mapping y = Ax

e the span of the columns of A = [a; -+ a;)]
R(A) ={a1z1+ -+ apz, | x € R"}
e the set of vectors y s.t. Ax = y has a solution

R(A) =R" «—
e Ax = y can be solved in = for any y

e the columns of A span R™
e dimR(A)=m
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Interpretations

veER(A), wgR(A)

e y = Aux represents output resulting from input x

— v is a possible result or output
— w cannot be a result or output

R(A) characterizes the achievable outputs

e y = Ax represents measurement of x

— y = v is a possible or consistent sensor signal
— y = w is impossible or inconsistent; sensors have failed or model is
wrong

R(A) characterizes the possible results
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Nullspace of a matrix

RmX?’L

the nullspace of A € is defined as

N(A) ={zeR"| Az =0}

e a subspace
e the set of vectors mapped to zero by y = Ax

e the set of vectors orthogonal to all rows of A:

N(A):{xER”|a?x:---:aTx:0}

m

where A = [ay -+ an)T

zero nullspace: N(A) = {0} —

e x can always be uniquely determined from y = Ax
(i.e., the linear transformation y = Ax doesn’t ‘lose’ information)

e columns of A are independent
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Interpretations

suppose z € N (A)

e y = Aux represents output resulting from input x

— z is input with no result
— x and 2 + z have same result

N (A) characterizes freedom of input choice for given result

e y = Ax represents measurement of x

— z is undetectable — get zero sensor readings
— x and z + z are indistinguishable: Ax = A(z + 2)

N (A) characterizes ambiguity in x from y = Ax

Geometry of linear programming
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Inverse

A € R™ " is invertible or nonsingular if det A # 0

equivalent conditions:

e columns of A are a basis for R"

rows of A are a basis for R"

e N(A)={0}
e R(A)=R"

y = Ax has a unique solution x for every y € R"

A has an inverse A7 € R™™", with AA ' =A"1A=1
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Rank of a matrix

RmXTL

we define the rank of A € as

rank(A) = dimR(A)

(nontrivial) facts:
e rank(A) = rank(AT)

e rank(A) is maximum number of independent columns (or rows) of A,
hence
rank(A) < min{m,n}

e rank(A) +dimN(A) =n
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Full rank matrices

for A € R™*" we have rank(A) < min{m,n}

we say A is full rank if rank(A) = min{m,n}

e for square matrices, full rank means nonsingular
e for skinny matrices (m > n), full rank means columns are independent

e for fat matrices (m < n), full rank means rows are independent
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Sets of linear equations
Ax =y
given A € R™*" y € R™
e solvable if and only if y € R(A)
e unique solution if y € R(A) and rank(A4) =n
e general solution set:
{zo+v|veN(A)}
where Axg =y
A square and invertible: unique solution for every y:
r=A"ly
3-16
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Polyhedron (inequality form)
A=la; -+ apn)T e R™" be R™

P={z|Az<by={x|alz<b, i=1,...,m}

al as

ag

as
as

aq

P is convex:
r,yeP, 0<A<1 = X+ ({1-ANyeP
i.e., the line segment between any two points in P lies in P
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Extreme points and vertices

x € P is an extreme point if it cannot be written as
r=Ay+ (1 -z

with0 <A A<1,y,2zeP,y#x, z2#=x

Tl CT.CB constant

x € P is a vertex if there is a ¢ such that ¢’z < cTy forally € P, y # x

fact: z is an extreme point <= z is a vertex (proof later)
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Basic feasible solution
define I as the set of indices of the active or binding constraints (at z*):
alz*=b;, iel, al x* <b;, i¢lI

define A as

N
I

I={ir,... i)

x* is called a basic feasible solution if

rank A =n

fact: 2* is a vertex (extreme point) <= x* is a basic feasible solution
(proof later)
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Example
—1 0 0
2 1 3
<
0 -1 "=1]0
1 2 3

e (1,1) is an extreme point
e (1,1) is a vertex: unique minimum of cl'z with ¢ = (=1, —1)

e (1,1) is a basic feasible solution: I = {2,4} and rank A = 2, where
— 1
=11
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Equivalence of the three definitions
vertex =—> extreme point
let £* be a vertex of P, i.e., there is a ¢ # 0 such that

o< Ty forallz e P, x #a*

let y,z € P,y # x*, z # =™
cla* < cly, Tar <z
so, if 0 < A <1, then
ot < 'y 4+ (1—N)2)

hence x* # Ay + (1 — \)z
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extreme point —> basic feasible solution

suppose x* € P is an extreme point with

alz*=b; iel, alz* <b, igl

suppose z* is not a basic feasible solution; then there exists a d # 0 with

ald=0, i€l
and for small enough ¢ > 0,
y=a"+edeP, z=a"—edecP
we have

x* = 0.5y + 0.5z,

which contradicts the assumption that x* is an extreme point

Geometry of linear programming

3-22



basic feasible solution —> vertex

suppose x* € P is a basic feasible solution and
alz*=b, iel, aZTx*<bi i1

define c = — >, a;; then
cla* = _Zbi
il
and for all x € P,
x> _Zbi
icl
with equality only if alax =b;, i € I

however the only solution to al x = b;, i € I, is x*; hence cTa* < cT'z for
all z € P
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Unbounded directions
P contains a half-line if there exists d # 0, x¢ such that
ro+tde P forallt >0
equivalent condition for P = {x | Az < b}:
Arg <b, Ad<O0

fact: P unbounded <= P contains a half-line

P contains a line if there exists d # 0, x( such that
ro+td € P forall t
equivalent condition for P = {z | Az < b}:
Axg <b, Ad=0
fact: P has no extreme points <= P contains a line
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Optimal set of an LP

minimize ¢!z

subject to Ax <b
e optimal value: p* = min{cTz | Az < b} (p* = £oc is possible)
e optimal point: z* with Az* < b and c'2* = p*
e optimal set: Xop = {z | Az < b, Tz = p*}
example
minimize  c1x1 + CoTo
subject to —2z1 + x5 <1
120, 2220
e c=(1,1) Xopt =4(0,0)}, p*=0
(1,0): Xopt ={(0,22) |0 <xo <1}, p*=0
(1, 1) Xopu =0, p* = —o0

® C

® C
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Existence of optimal points

e p* = —oo if and only if there exists a feasible half-line

(2o +td |t > 0}

with ¢I'd < 0

v
.

e p* = +ooif and only if P =0
e p* is finite if and only if Xopt # 0
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property: if P has at least one extreme point and p* is finite, then there
exists an extreme point that is optimal

Xopt
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