Lecture 3
 Geometry of linear programming

- subspaces and affine sets, independent vectors
- matrices, range and nullspace, rank, inverse
- polyhedron in inequality form
- extreme points
- the optimal set of a linear program

Subspaces

$\mathcal{S} \subseteq \mathbf{R}^{n}(\mathcal{S} \neq \emptyset)$ is called a subspace if

$$
x, y \in \mathcal{S}, \quad \alpha, \beta \in \mathbf{R} \quad \Longrightarrow \quad \alpha x+\beta y \in \mathcal{S}
$$

$\alpha x+\beta y$ is called a linear combination of x and y
examples (in \mathbf{R}^{n})

- $\mathcal{S}=\mathbf{R}^{n}, \mathcal{S}=\{0\}$
- $\mathcal{S}=\{\alpha v \mid \alpha \in \mathbf{R}\}$ where $v \in \mathbf{R}^{n}$ (i.e., a line through the origin)
- $\mathcal{S}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \mid \alpha_{i} \in \mathbf{R}\right\}$, where $v_{i} \in \mathbf{R}^{n}$
- set of vectors orthogonal to given vectors v_{1}, \ldots, v_{k} :

$$
\mathcal{S}=\left\{x \in \mathbf{R}^{n} \mid v_{1}^{T} x=0, \ldots, v_{k}^{T} x=0\right\}
$$

Independent vectors

vectors $v_{1}, v_{2}, \ldots, v_{k}$ are independent if and only if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0 \quad \Longrightarrow \quad \alpha_{1}=\alpha_{2}=\cdots=0
$$

some equivalent conditions:

- coefficients of $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}$ are uniquely determined, i.e.,

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{k} v_{k}
$$

implies $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots, \alpha_{k}=\beta_{k}$

- no vector v_{i} can be expressed as a linear combination of the other vectors $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}$

Basis and dimension

$\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a basis for a subspace \mathcal{S} if

- $v_{1}, v_{2}, \ldots, v_{k} \operatorname{span} \mathcal{S}$, i.e., $\mathcal{S}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$
- $v_{1}, v_{2}, \ldots, v_{k}$ are independent
equivalently: every $v \in \mathcal{S}$ can be uniquely expressed as

$$
v=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}
$$

fact: for a given subspace \mathcal{S}, the number of vectors in any basis is the same, and is called the dimension of \mathcal{S}, denoted $\operatorname{dim} \mathcal{S}$

Affine sets

$\mathcal{V} \subseteq \mathbf{R}^{n}(\mathcal{V} \neq \emptyset)$ is called an affine set if

$$
x, y \in \mathcal{V}, \alpha+\beta=1 \quad \Longrightarrow \quad \alpha x+\beta y \in \mathcal{V}
$$

$\alpha x+\beta y$ is called an affine combination of x and y
examples (in \mathbf{R}^{n})

- subspaces
- $\mathcal{V}=b+\mathcal{S}=\{x+b \mid x \in \mathcal{S}\}$ where \mathcal{S} is a subspace
- $\mathcal{V}=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \mid \alpha_{i} \in \mathbf{R}, \sum_{i} \alpha_{i}=1\right\}$
- $\mathcal{V}=\left\{x \mid v_{1}^{T} x=b_{1}, \ldots, v_{k}^{T} x=b_{k}\right\}$ (if $\left.\mathcal{V} \neq \emptyset\right)$
every affine set \mathcal{V} can be written as $\mathcal{V}=x_{0}+\mathcal{S}$ where $x_{0} \in \mathbf{R}^{n}, \mathcal{S}$ a subspace (e.g., can take any $x_{0} \in \mathcal{V}, \mathcal{S}=\mathcal{V}-x_{0}$)
$\operatorname{dim}\left(\mathcal{V}-x_{0}\right)$ is called the dimension of \mathcal{V}

Matrices

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \in \mathbf{R}^{m \times n}
$$

some special matrices:

- $A=0$ (zero matrix): $a_{i j}=0$
- $A=I$ (identity matrix): $m=n$ and $A_{i i}=1$ for $i=1, \ldots, n, A_{i j}=0$ for $i \neq j$
- $A=\operatorname{diag}(x)$ where $x \in \mathbf{R}^{n}$ (diagonal matrix): $m=n$ and

$$
A=\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right]
$$

Matrix operations

- addition, subtraction, scalar multiplication
- transpose:

$$
A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right] \in \mathbf{R}^{n \times m}
$$

- multiplication: $A \in \mathbf{R}^{m \times n}, B \in \mathbf{R}^{n \times q}, A B \in \mathbf{R}^{m \times q}$.

$$
A B=\left[\begin{array}{cccc}
\sum_{i=1}^{n} a_{1 i} b_{i 1} & \sum_{i=1}^{n} a_{1 i} b_{i 2} & \cdots & \sum_{i=1}^{n} a_{1 i} b_{i q} \\
\sum_{i=1}^{n} a_{2 i} b_{i 1} & \sum_{i=1}^{n} a_{2 i} b_{i 2} & \cdots & \sum_{i=1}^{n} a_{2 i} b_{i q} \\
\vdots & \vdots & & \vdots \\
\sum_{i=1}^{n} a_{m i} b_{i 1} & \sum_{i=1}^{n} a_{m i} b_{i 2} & \cdots & \sum_{i=1}^{n} a_{m i} b_{i q}
\end{array}\right]
$$

Rows and columns

rows of $A \in \mathbf{R}^{m \times n}$:

$$
A=\left[\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
\vdots \\
a_{m}^{T}
\end{array}\right]
$$

with $a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right) \in \mathbf{R}^{n}$
columns of $B \in \mathbf{R}^{n \times q}$:

$$
B=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{q}
\end{array}\right]
$$

with $b_{i}=\left(b_{1 i}, b_{2 i}, \ldots, b_{n i}\right) \in \mathbf{R}^{n}$
for example, can write $A B$ as

$$
A B=\left[\begin{array}{cccc}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & \cdots & a_{1}^{T} b_{q} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & \cdots & a_{2}^{T} b_{q} \\
\vdots & \vdots & & \vdots \\
a_{m}^{T} b_{1} & a_{m}^{T} b_{2} & \cdots & a_{m}^{T} b_{q}
\end{array}\right]
$$

Range of a matrix

the range of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
\mathcal{R}(A)=\left\{A x \mid x \in \mathbf{R}^{n}\right\} \subseteq \mathbf{R}^{m}
$$

- a subspace
- set of vectors that can be 'hit' by mapping $y=A x$
- the span of the columns of $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$

$$
\mathcal{R}(A)=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n} \mid x \in \mathbf{R}^{n}\right\}
$$

- the set of vectors y s.t. $A x=y$ has a solution
$\mathcal{R}(A)=\mathbf{R}^{m} \Longleftrightarrow$
- $A x=y$ can be solved in x for any y
- the columns of A span \mathbf{R}^{m}
- $\operatorname{dim} \mathcal{R}(A)=m$

Interpretations

$v \in \mathcal{R}(A), w \notin \mathcal{R}(A)$

- $y=A x$ represents output resulting from input x
- v is a possible result or output
- w cannot be a result or output
$\mathcal{R}(A)$ characterizes the achievable outputs
- $y=A x$ represents measurement of x
- $y=v$ is a possible or consistent sensor signal
- $y=w$ is impossible or inconsistent; sensors have failed or model is wrong
$\mathcal{R}(A)$ characterizes the possible results

Nullspace of a matrix

the nullspace of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
\mathcal{N}(A)=\left\{x \in \mathbf{R}^{n} \mid A x=0\right\}
$$

- a subspace
- the set of vectors mapped to zero by $y=A x$
- the set of vectors orthogonal to all rows of A :

$$
\mathcal{N}(A)=\left\{x \in \mathbf{R}^{n} \mid a_{1}^{T} x=\cdots=a_{m}^{T} x=0\right\}
$$

where $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{m}\end{array}\right]^{T}$
zero nullspace: $\mathcal{N}(A)=\{0\} \Longleftrightarrow$

- x can always be uniquely determined from $y=A x$ (i.e., the linear transformation $y=A x$ doesn't 'lose' information)
- columns of A are independent

Interpretations

suppose $z \in \mathcal{N}(A)$

- $y=A x$ represents output resulting from input x
$-z$ is input with no result
- x and $x+z$ have same result
$\mathcal{N}(A)$ characterizes freedom of input choice for given result
- $y=A x$ represents measurement of x
- z is undetectable - get zero sensor readings
- x and $x+z$ are indistinguishable: $A x=A(x+z)$
$\mathcal{N}(A)$ characterizes ambiguity in x from $y=A x$

Inverse

$A \in \mathbf{R}^{n \times n}$ is invertible or nonsingular if $\operatorname{det} A \neq 0$
equivalent conditions:

- columns of A are a basis for \mathbf{R}^{n}
- rows of A are a basis for \mathbf{R}^{n}
- $\mathcal{N}(A)=\{0\}$
- $\mathcal{R}(A)=\mathbf{R}^{n}$
- $y=A x$ has a unique solution x for every $y \in \mathbf{R}^{n}$
- A has an inverse $A^{-1} \in \mathbf{R}^{n \times n}$, with $A A^{-1}=A^{-1} A=I$

Rank of a matrix

we define the rank of $A \in \mathbf{R}^{m \times n}$ as

$$
\operatorname{rank}(A)=\operatorname{dim} \mathcal{R}(A)
$$

(nontrivial) facts:

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
- $\operatorname{rank}(A)$ is maximum number of independent columns (or rows) of A, hence

$$
\operatorname{rank}(A) \leq \min \{m, n\}
$$

- $\operatorname{rank}(A)+\operatorname{dim} \mathcal{N}(A)=n$

Full rank matrices

for $A \in \mathbf{R}^{m \times n}$ we have $\operatorname{rank}(A) \leq \min \{m, n\}$
we say A is full rank if $\operatorname{rank}(A)=\min \{m, n\}$

- for square matrices, full rank means nonsingular
- for skinny matrices $(m>n)$, full rank means columns are independent
- for fat matrices $(m<n)$, full rank means rows are independent

Sets of linear equations

$$
A x=y
$$

given $A \in \mathbf{R}^{m \times n}, y \in \mathbf{R}^{m}$

- solvable if and only if $y \in \mathcal{R}(A)$
- unique solution if $y \in \mathcal{R}(A)$ and $\operatorname{rank}(A)=n$
- general solution set:

$$
\left\{x_{0}+v \mid v \in \mathcal{N}(A)\right\}
$$

where $A x_{0}=y$
A square and invertible: unique solution for every y :

$$
x=A^{-1} y
$$

Polyhedron (inequality form)

$A=\left[a_{1} \cdots a_{m}\right]^{T} \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$

$$
\mathcal{P}=\{x \mid A x \leq b\}=\left\{x \mid a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m\right\}
$$

\mathcal{P} is convex:

$$
x, y \in \mathcal{P}, \quad 0 \leq \lambda \leq 1 \quad \Longrightarrow \quad \lambda x+(1-\lambda) y \in \mathcal{P}
$$

i.e., the line segment between any two points in \mathcal{P} lies in \mathcal{P}

Extreme points and vertices

$x \in \mathcal{P}$ is an extreme point if it cannot be written as

$$
x=\lambda y+(1-\lambda) z
$$

with $0 \leq \lambda \leq 1, y, z \in \mathcal{P}, y \neq x, z \neq x$

$x \in \mathcal{P}$ is a vertex if there is a c such that $c^{T} x<c^{T} y$ for all $y \in \mathcal{P}, y \neq x$ fact: x is an extreme point $\Longleftrightarrow x$ is a vertex (proof later)

Basic feasible solution

define I as the set of indices of the active or binding constraints (at x^{\star}):

$$
a_{i}^{T} x^{\star}=b_{i}, \quad i \in I, \quad a_{i}^{T} x^{\star}<b_{i}, \quad i \notin I
$$

define \bar{A} as

$$
\bar{A}=\left[\begin{array}{c}
a_{i_{1}}^{T} \\
a_{i_{2}}^{T} \\
\vdots \\
a_{i_{k}}^{T}
\end{array}\right], \quad I=\left\{i_{1}, \ldots, i_{k}\right\}
$$

x^{\star} is called a basic feasible solution if

$$
\operatorname{rank} \bar{A}=n
$$

fact: x^{\star} is a vertex (extreme point) $\Longleftrightarrow x^{\star}$ is a basic feasible solution (proof later)

Example

$$
\left[\begin{array}{rr}
-1 & 0 \\
2 & 1 \\
0 & -1 \\
1 & 2
\end{array}\right] x \leq\left[\begin{array}{l}
0 \\
3 \\
0 \\
3
\end{array}\right]
$$

- $(1,1)$ is an extreme point
- $(1,1)$ is a vertex: unique minimum of $c^{T} x$ with $c=(-1,-1)$
- $(1,1)$ is a basic feasible solution: $I=\{2,4\}$ and $\operatorname{rank} \bar{A}=2$, where

$$
\bar{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Equivalence of the three definitions

vertex \Longrightarrow extreme point
let x^{\star} be a vertex of \mathcal{P}, i.e., there is a $c \neq 0$ such that

$$
c^{T} x^{\star}<c^{T} x \quad \text { for all } x \in \mathcal{P}, x \neq x^{\star}
$$

let $y, z \in \mathcal{P}, y \neq x^{\star}, z \neq x^{\star}$:

$$
c^{T} x^{\star}<c^{T} y, \quad c^{T} x^{\star}<c^{T} z
$$

so, if $0 \leq \lambda \leq 1$, then

$$
c^{T} x^{\star}<c^{T}(\lambda y+(1-\lambda) z)
$$

hence $x^{\star} \neq \lambda y+(1-\lambda) z$
extreme point \Longrightarrow basic feasible solution
suppose $x^{\star} \in \mathcal{P}$ is an extreme point with

$$
a_{i}^{T} x^{\star}=b_{i}, \quad i \in I, \quad a_{i}^{T} x^{\star}<b_{i}, \quad i \notin I
$$

suppose x^{\star} is not a basic feasible solution; then there exists a $d \neq 0$ with

$$
a_{i}^{T} d=0, \quad i \in I
$$

and for small enough $\epsilon>0$,

$$
y=x^{\star}+\epsilon d \in \mathcal{P}, \quad z=x^{\star}-\epsilon d \in \mathcal{P}
$$

we have

$$
x^{\star}=0.5 y+0.5 z,
$$

which contradicts the assumption that x^{\star} is an extreme point

basic feasible solution \Longrightarrow vertex

suppose $x^{\star} \in \mathcal{P}$ is a basic feasible solution and

$$
a_{i}^{T} x^{\star}=b_{i} \quad i \in I, \quad a_{i}^{T} x^{\star}<b_{i} \quad i \notin I
$$

define $c=-\sum_{i \in I} a_{i}$; then

$$
c^{T} x^{\star}=-\sum_{i \in I} b_{i}
$$

and for all $x \in \mathcal{P}$,

$$
c^{T} x \geq-\sum_{i \in I} b_{i}
$$

with equality only if $a_{i}^{T} x=b_{i}, i \in I$
however the only solution to $a_{i}^{T} x=b_{i}, i \in I$, is x^{\star}; hence $c^{T} x^{\star}<c^{T} x$ for all $x \in \mathcal{P}$

Unbounded directions

\mathcal{P} contains a half-line if there exists $d \neq 0, x_{0}$ such that

$$
x_{0}+t d \in \mathcal{P} \text { for all } t \geq 0
$$

equivalent condition for $\mathcal{P}=\{x \mid A x \leq b\}$:

$$
A x_{0} \leq b, \quad A d \leq 0
$$

fact: \mathcal{P} unbounded $\Longleftrightarrow \mathcal{P}$ contains a half-line
\mathcal{P} contains a line if there exists $d \neq 0, x_{0}$ such that

$$
x_{0}+t d \in \mathcal{P} \text { for all } t
$$

equivalent condition for $\mathcal{P}=\{x \mid A x \leq b\}$:

$$
A x_{0} \leq b, \quad A d=0
$$

fact: \mathcal{P} has no extreme points $\Longleftrightarrow \mathcal{P}$ contains a line

Optimal set of an LP

minimize $\quad c^{T} x$
subject to $A x \leq b$

- optimal value: $p^{\star}=\min \left\{c^{T} x \mid A x \leq b\right\}$ ($p^{\star}= \pm \infty$ is possible)
- optimal point: x^{\star} with $A x^{\star} \leq b$ and $c^{T} x^{\star}=p^{\star}$
- optimal set: $X_{\text {opt }}=\left\{x \mid A x \leq b, c^{T} x=p^{\star}\right\}$

example

$$
\begin{array}{ll}
\operatorname{minimize} & c_{1} x_{1}+c_{2} x_{2} \\
\text { subject to } & -2 x_{1}+x_{2} \leq 1 \\
& x_{1} \geq 0, \quad x_{2} \geq 0
\end{array}
$$

- $c=(1,1): X_{\mathrm{opt}}=\{(0,0)\}, p^{\star}=0$
- $c=(1,0): X_{\mathrm{opt}}=\left\{\left(0, x_{2}\right) \mid 0 \leq x_{2} \leq 1\right\}, p^{\star}=0$
- $c=(-1,-1): X_{\mathrm{opt}}=\emptyset, p^{\star}=-\infty$

Existence of optimal points

- $p^{\star}=-\infty$ if and only if there exists a feasible half-line

$$
\left\{x_{0}+t d \mid t \geq 0\right\}
$$

with $c^{T} d<0$

- $p^{\star}=+\infty$ if and only if $\mathcal{P}=\emptyset$
- p^{\star} is finite if and only if $X_{\text {opt }} \neq \emptyset$
property: if \mathcal{P} has at least one extreme point and p^{\star} is finite, then there exists an extreme point that is optimal

