
EE236A (Fall 2007-08)

Lecture 3
Geometry of linear programming

• subspaces and affine sets, independent vectors

• matrices, range and nullspace, rank, inverse

• polyhedron in inequality form

• extreme points

• the optimal set of a linear program

3–1

Subspaces

S ⊆ Rn (S 6= ∅) is called a subspace if

x, y ∈ S, α, β ∈ R =⇒ αx + βy ∈ S

αx + βy is called a linear combination of x and y

examples (in Rn)

• S = Rn, S = {0}

• S = {αv |α ∈ R} where v ∈ Rn (i.e., a line through the origin)

• S = span(v1, v2, . . . , vk) = {α1v1 + · · ·+αkvk | αi ∈ R}, where vi ∈ Rn

• set of vectors orthogonal to given vectors v1, . . . , vk:

S = {x ∈ Rn | vT
1 x = 0, . . . , vT

k x = 0}
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Independent vectors

vectors v1, v2, . . . , vk are independent if and only if

α1v1 + α2v2 + · · · + αkvk = 0 =⇒ α1 = α2 = · · · = 0

some equivalent conditions:

• coefficients of α1v1 + α2v2 + · · · + αkvk are uniquely determined, i.e.,

α1v1 + α2v2 + · · · + αkvk = β1v1 + β2v2 + · · · + βkvk

implies α1 = β1, α2 = β2, . . . , αk = βk

• no vector vi can be expressed as a linear combination of the other
vectors v1, . . . , vi−1, vi+1, . . . , vk
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Basis and dimension

{v1, v2, . . . , vk} is a basis for a subspace S if

• v1, v2, . . . , vk span S, i.e., S = span(v1, v2, . . . , vk)

• v1, v2, . . . , vk are independent

equivalently: every v ∈ S can be uniquely expressed as

v = α1v1 + · · · + αkvk

fact: for a given subspace S, the number of vectors in any basis is the
same, and is called the dimension of S, denoted dimS
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Affine sets

V ⊆ Rn (V 6= ∅) is called an affine set if

x, y ∈ V, α + β = 1 =⇒ αx + βy ∈ V

αx + βy is called an affine combination of x and y

examples (in Rn)

• subspaces

• V = b + S = {x + b | x ∈ S} where S is a subspace

• V = {α1v1 + · · · + αkvk | αi ∈ R,
∑

i αi = 1}

• V = {x | vT
1 x = b1, . . . , v

T
k x = bk} (if V 6= ∅)

every affine set V can be written as V = x0 + S where x0 ∈ Rn, S a
subspace (e.g., can take any x0 ∈ V, S = V − x0)

dim(V − x0) is called the dimension of V
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Matrices

A =









a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn









∈ Rm×n

some special matrices:

• A = 0 (zero matrix): aij = 0

• A = I (identity matrix): m = n and Aii = 1 for i = 1, . . . , n, Aij = 0
for i 6= j

• A = diag(x) where x ∈ Rn (diagonal matrix): m = n and

A =









x1 0 · · · 0
0 x2 · · · 0
... ... . . . ...
0 0 · · · xn








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Matrix operations

• addition, subtraction, scalar multiplication

• transpose:

AT =









a11 a21 · · · am1

a12 a22 · · · am2
... ... ...

a1n a2n · · · amn









∈ Rn×m

• multiplication: A ∈ Rm×n, B ∈ Rn×q, AB ∈ Rm×q:

AB =









∑n

i=1 a1ibi1

∑n

i=1 a1ibi2 · · ·
∑n

i=1 a1ibiq
∑n

i=1 a2ibi1

∑n

i=1 a2ibi2 · · ·
∑n

i=1 a2ibiq
... ... ...

∑n

i=1 amibi1

∑n

i=1 amibi2 · · ·
∑n

i=1 amibiq








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Rows and columns

rows of A ∈ Rm×n:

A =









aT
1

aT
2
...

aT
m









with ai = (ai1, ai2, . . . , ain) ∈ Rn

columns of B ∈ Rn×q:

B =
[

b1 b2 · · · bq

]

with bi = (b1i, b2i, . . . , bni) ∈ Rn

for example, can write AB as

AB =









aT
1 b1 aT

1 b2 · · · aT
1 bq

aT
2 b1 aT

2 b2 · · · aT
2 bq

... ... ...
aT

mb1 aT
mb2 · · · aT

mbq








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Range of a matrix

the range of A ∈ Rm×n is defined as

R(A) = {Ax | x ∈ Rn} ⊆ Rm

• a subspace

• set of vectors that can be ‘hit’ by mapping y = Ax

• the span of the columns of A = [a1 · · · an]

R(A) = {a1x1 + · · · + anxn | x ∈ Rn}

• the set of vectors y s.t. Ax = y has a solution

R(A) = Rm ⇐⇒

• Ax = y can be solved in x for any y

• the columns of A span Rm

• dimR(A) = m
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Interpretations

v ∈ R(A), w 6∈ R(A)

• y = Ax represents output resulting from input x

– v is a possible result or output
– w cannot be a result or output

R(A) characterizes the achievable outputs

• y = Ax represents measurement of x

– y = v is a possible or consistent sensor signal
– y = w is impossible or inconsistent; sensors have failed or model is

wrong

R(A) characterizes the possible results
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Nullspace of a matrix

the nullspace of A ∈ Rm×n is defined as

N (A) = { x ∈ Rn | Ax = 0 }

• a subspace

• the set of vectors mapped to zero by y = Ax

• the set of vectors orthogonal to all rows of A:

N (A) =
{

x ∈ Rn | aT
1 x = · · · = aT

mx = 0
}

where A = [a1 · · · am]T

zero nullspace: N (A) = {0} ⇐⇒

• x can always be uniquely determined from y = Ax

(i.e., the linear transformation y = Ax doesn’t ‘lose’ information)

• columns of A are independent
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Interpretations

suppose z ∈ N (A)

• y = Ax represents output resulting from input x

– z is input with no result
– x and x + z have same result

N (A) characterizes freedom of input choice for given result

• y = Ax represents measurement of x

– z is undetectable — get zero sensor readings
– x and x + z are indistinguishable: Ax = A(x + z)

N (A) characterizes ambiguity in x from y = Ax
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Inverse

A ∈ Rn×n is invertible or nonsingular if det A 6= 0

equivalent conditions:

• columns of A are a basis for Rn

• rows of A are a basis for Rn

• N (A) = {0}

• R(A) = Rn

• y = Ax has a unique solution x for every y ∈ Rn

• A has an inverse A−1 ∈ Rn×n, with AA−1 = A−1A = I
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Rank of a matrix

we define the rank of A ∈ Rm×n as

rank(A) = dimR(A)

(nontrivial) facts:

• rank(A) = rank(AT )

• rank(A) is maximum number of independent columns (or rows) of A,
hence

rank(A) ≤ min{m,n}

• rank(A) + dimN (A) = n
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Full rank matrices

for A ∈ Rm×n we have rank(A) ≤ min{m,n}

we say A is full rank if rank(A) = min{m,n}

• for square matrices, full rank means nonsingular

• for skinny matrices (m > n), full rank means columns are independent

• for fat matrices (m < n), full rank means rows are independent
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Sets of linear equations

Ax = y

given A ∈ Rm×n, y ∈ Rm

• solvable if and only if y ∈ R(A)

• unique solution if y ∈ R(A) and rank(A) = n

• general solution set:
{x0 + v | v ∈ N (A)}

where Ax0 = y

A square and invertible: unique solution for every y:

x = A−1y
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Polyhedron (inequality form)

A = [a1 · · · am]T ∈ Rm×n, b ∈ Rm

P = {x | Ax ≤ b} = {x | aT
i x ≤ bi, i = 1, . . . ,m}

a1 a2

a3

a4

a5

a6

P is convex:

x, y ∈ P, 0 ≤ λ ≤ 1 =⇒ λx + (1 − λ)y ∈ P

i.e., the line segment between any two points in P lies in P

Geometry of linear programming 3–17

Extreme points and vertices

x ∈ P is an extreme point if it cannot be written as

x = λy + (1 − λ)z

with 0 ≤ λ ≤ 1, y, z ∈ P, y 6= x, z 6= x

c

P

cTx constant

x ∈ P is a vertex if there is a c such that cTx < cTy for all y ∈ P, y 6= x

fact: x is an extreme point ⇐⇒ x is a vertex (proof later)
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Basic feasible solution

define I as the set of indices of the active or binding constraints (at x⋆):

aT
i x⋆ = bi, i ∈ I, aT

i x⋆ < bi, i 6∈ I

define Ā as

Ā =













aT
i1

aT
i2

...
aT

ik













, I = {i1, . . . , ik}

x⋆ is called a basic feasible solution if

rankA = n

fact: x⋆ is a vertex (extreme point) ⇐⇒ x⋆ is a basic feasible solution
(proof later)
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Example









−1 0
2 1
0 −1
1 2









x ≤









0
3
0
3









• (1,1) is an extreme point

• (1,1) is a vertex: unique minimum of cTx with c = (−1,−1)

• (1,1) is a basic feasible solution: I = {2, 4} and rankA = 2, where

A =

[

2 1
1 2

]
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Equivalence of the three definitions

vertex =⇒ extreme point

let x⋆ be a vertex of P, i.e., there is a c 6= 0 such that

cTx⋆ < cTx for all x ∈ P, x 6= x⋆

let y, z ∈ P, y 6= x⋆, z 6= x⋆:

cTx⋆ < cTy, cTx⋆ < cTz

so, if 0 ≤ λ ≤ 1, then

cTx⋆ < cT (λy + (1 − λ)z)

hence x⋆ 6= λy + (1 − λ)z
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extreme point =⇒ basic feasible solution

suppose x⋆ ∈ P is an extreme point with

aT
i x⋆ = bi, i ∈ I, aT

i x⋆ < bi, i 6∈ I

suppose x⋆ is not a basic feasible solution; then there exists a d 6= 0 with

aT
i d = 0, i ∈ I

and for small enough ǫ > 0,

y = x⋆ + ǫd ∈ P, z = x⋆ − ǫd ∈ P

we have
x⋆ = 0.5y + 0.5z,

which contradicts the assumption that x⋆ is an extreme point
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basic feasible solution =⇒ vertex

suppose x⋆ ∈ P is a basic feasible solution and

aT
i x⋆ = bi i ∈ I, aT

i x⋆ < bi i 6∈ I

define c = −
∑

i∈I ai; then

cTx⋆ = −
∑

i∈I

bi

and for all x ∈ P,
cTx ≥ −

∑

i∈I

bi

with equality only if aT
i x = bi, i ∈ I

however the only solution to aT
i x = bi, i ∈ I, is x⋆; hence cTx⋆ < cTx for

all x ∈ P
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Unbounded directions

P contains a half-line if there exists d 6= 0, x0 such that

x0 + td ∈ P for all t ≥ 0

equivalent condition for P = {x | Ax ≤ b}:

Ax0 ≤ b, Ad ≤ 0

fact: P unbounded ⇐⇒ P contains a half-line

P contains a line if there exists d 6= 0, x0 such that

x0 + td ∈ P for all t

equivalent condition for P = {x | Ax ≤ b}:

Ax0 ≤ b, Ad = 0

fact: P has no extreme points ⇐⇒ P contains a line
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Optimal set of an LP

minimize cTx

subject to Ax ≤ b

• optimal value: p⋆ = min{cTx | Ax ≤ b} (p⋆ = ±∞ is possible)

• optimal point: x⋆ with Ax⋆ ≤ b and cTx⋆ = p⋆

• optimal set: Xopt = {x | Ax ≤ b, cTx = p⋆}

example
minimize c1x1 + c2x2

subject to −2x1 + x2 ≤ 1
x1 ≥ 0, x2 ≥ 0

• c = (1, 1): Xopt = {(0, 0)}, p⋆ = 0

• c = (1, 0): Xopt = {(0, x2) | 0 ≤ x2 ≤ 1}, p⋆ = 0

• c = (−1,−1): Xopt = ∅, p⋆ = −∞
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Existence of optimal points

• p⋆ = −∞ if and only if there exists a feasible half-line

{x0 + td | t ≥ 0}

with cTd < 0

d

x0

c

• p⋆ = +∞ if and only if P = ∅

• p⋆ is finite if and only if Xopt 6= ∅
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property: if P has at least one extreme point and p⋆ is finite, then there
exists an extreme point that is optimal

Xopt

c
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