Assignment I

Question 1: Let f be a function from set X to set Y. Let A, B be subsets of X and P, Q be subsets of Y. Let $\bar{A}=X \backslash A, \bar{Q}=Y \backslash Q$ etc.

1. Show that $f(A \cup B)=f(A) \cup f(B)$.
2. Given an example showing that $f(A \cap B) \neq f(A) \cap f(B)$
3. Show that $f(A \cap B) \subseteq f(A) \cap f(B)$. Show that equality holds if f is injective.
4. Show that $f(A) \backslash f(B) \subseteq f(A \backslash B)$.
5. Give an example showing that $f(A) \backslash f(B) \neq f(A \backslash B)$. Show that equality holds if f is injective.
6. $f^{-1}(P \cup Q)=f^{-1}(P) \cup f^{-1}(Q)$.
7. $f^{-1}(P \cap Q)=f^{-1}(P) \cap f^{-1}(Q)$.
8. $f^{-1}(P \backslash Q)=f^{-1}(P) \backslash f^{-1}(Q)$.
9. $A \subseteq f^{-1}(f(A))$.

Question 2: Let R be a relation on a set X. Define $R^{0}=I=\{(x, x)$: $x \in X$. Inductively define $R^{i+1}=\{(x, y): \exists z \in X$ such that $(x, z) \in R$ and $\left.(z, y) \in R^{i}\right\}$. Define the reflexive transitive closure of $R, R^{*}=I \cup R \cup R^{2} \cup \ldots$

1. Show that R^{*} is transitive.
2. Suppose R^{\prime} is another transitive relation on X such that $R \subseteq R^{\prime}$. (That is, R^{\prime} must be transitive, moreover for all $(x, y) \in R$, it must be true that $(x, y) \in R^{\prime}$ as well.) Show that $R^{*} \subseteq R^{\prime}$. This result shows that any transitive relation that is an extension of R must contain R^{*}. In other words, R^{*} is the smallest transitive relation that extends R.
3. Show that if X has n elements, $R^{*}=I \cup R \cup R^{2} \cup \ldots \cup R^{n-1}$. That is, one needs to find the union of only the first $n-1$ terms in the definition of transitive closure.

Question 3: Let R be an equivalence relation on a set X. Let $x \in X$. Define $R(x)=\{y \mid(x, y) \in R\}$.

1. Suppose $x, x^{\prime} \in X$ such that $R(x) \cap R(y) \neq \emptyset$, show that $R(x)=R(y)$.
2. Show that $\bigcup_{x \in R} R(x)=X$
3. Show that if $X_{1}, X_{2}, . . X_{m}$ are subsets of X such that $X_{i} \neq \emptyset$ and $X_{i} \cap X_{j}=\emptyset$ whenever $i \neq j$, then the relation $R=\left\{\left(x, x^{\prime}\right) \mid \exists X_{i}\right.$ such that $x \in X_{i}$ and $\left.x^{\prime} \in X_{i}\right\}$ is symmetric and transitive. What additional condition on $X_{1}, X_{2}, . . X_{m}$ is required for R to become reflexive?
4. For any positive integer n, show that the relation $R=\{(a, b) \mid(a-b)$ is a multiple of $n\}$ defined on the set of integers (denoted by \mathbf{Z}) is an equivalence relation. Find the partitions defined by this equivalence relation.

Question 4: Let X be any set. Consider the set 2^{X} (power set of X). Let g be any injective function from S to 2^{X}. That is, for each element $x \in X$, $g(x)$ (we will write g_{x} instead $g(x)$) is subset of X such that for each distinct $x, x^{\prime} \in X, g_{x}$ and $g_{x^{\prime}}$ are distinct subsets of X. The objective of this question is to show that g can't be surjective.

1. Consider the following subset of $X, S=\left\{x \in X \mid x \notin g_{x}\right\}$. That is an element x is present in S if and only if x is not a member of the set g_{x}.
2. Show that $S \neq g_{x}$ for any $x \in X$. Hence $S \notin$ Image (g). Thus g is not surjective.
3. Show that there do exist an injective map from X to 2^{X}. Hence argue that for any set $X,|X|<\left|2^{X}\right|$.
Question 5 Let X and Y be sets
4. if f is an injective map from X to Y, show that we can find a surjective map from Y to X.
5. if f is a surjective map from X to Y, construct an injective map from Y to X.
6. Let \mathbf{Z} be the set of integers. Find a map f from \mathbf{Z} to \mathbf{Z} which is injective but not surjective and another map g from \mathbf{Z} to \mathbf{Z} which is surjective but not injective. (The existance of an injective map and another surjective map between two sets does not immediately imply that we can find a bijective map between the sets. This fact known as Schoder Bernstein Theorem will be proved in class).
