Assignment II

Question 1: A relation R defined on a set X which is reflexive, antisymmetric (that is $(x, y) \in R$ and $(y, x) \in R$ if and only if $x=y$ for all $x, y \in X)$ and transitive is called a partial order. For instance on the set of natural numbers $\mathbf{N}=\{0,1,2,3 \ldots\}$ let R be the divisibility relation (that is, $(x, y) \in R$ if y is a multiple of x). A partial order R is called a linear order if for every $x, y \in X$ either $(x, y) \in R$ or $(y, x) \in R$. Note that \mathbf{N} with divisibility is not a linear order.

Let $x, y \in X$. An element $a \in X$ is called the meet (or greatest lower bound) of x and y denoted by $a=x \wedge y$ if the following conditions hold: (i) $(a, x) \in R,(a, y) \in R$ (ii) If some other $a^{\prime} \in X$ satisfies $\left(a^{\prime}, x\right) \in R$, $\left(a^{\prime}, y\right) \in R$ then $\left(a^{\prime}, a\right) \in R$.

Similarly An element $b \in X$ is called the join (or least upper bound) of x and y denoted by $b=x \vee y$ if the following conditions hold: (i) $(x, b) \in R$, $(y, b) \in R$ (ii) If some other $b^{\prime} \in X$ satisfies $\left(x, b^{\prime}\right) \in R,\left(y, b^{\prime}\right) \in R$ then $\left(b, b^{\prime}\right) \in R$.

If $x \wedge y$ and $x \vee y$ exists for every pair $x, y \in X$, we say (X, R) is a lattice

1. if a and a^{\prime} satisfy conditions (i) and (ii) in the definition of $a \wedge b$, show that $a=a^{\prime}$. (Note that you need to use the fact is R is anti-symmetric here).
2. Let X be the set $\{1,2,3,4,5\}$ Let $R=\{(1,1),(2,2),(3,3),(4,4),(1,2)$, $(1,3),(2,4),(3,5),(1,4),(1,5)\}$. Show that (X, R) is a partial order but not a lattice.
3. Suppose $Y=2^{X}$, the set of all subsets of X. Let R be the inclusion relation in Y. That is, if A, B are subsets of X we say $(A, B) \in R$ when $A \subseteq B$. Show that R is a partial order. Is R a lattice? If so, what is $A \wedge B$ and $A \vee B$?
4. Show that \mathbf{N} with R being the divisibility relation is a lattice. What is $x \vee y$ and $x \wedge y$ in this case?
5. Let \mathbf{Q} and \mathbf{R} represent the set of rationals and the set of real numbers respectively. Let R be the \leq relation. Show that (\mathbf{Q}, \leq) and (\mathbf{R}, \leq) are linear orders. Show that they are also lattices. What is $x \wedge y$ and $x \vee y$ in these lattices?
6. Let (X, R) be a lattice. Let $S \subseteq X$. An element $a \in X$ is called the supremum of S (denoted by $\sup (S)$ or $L U B(S)$) if a satisfies conditions (i) $(x, a) \in R$ for all $x \in S$ and (ii) whenever some other a^{\prime} satisfies condition (i), $\left(a, a^{\prime}\right) \in R$. The infimum of $S(\inf (S))$ is defined similarly. Show that for the set $S=\left\{x \mid x^{2}<2\right\}, \sup (S)$ does not exist in (\mathbf{Q}, \leq) whereas $\sup (S)$ exists in (\mathbf{R}, \leq). A lattice in which $\sup (S)$ exists for every subset S of X is called a complete lattice

Question 2: Let (A, R) be a lattice. We will denote \leq for R and write $a \leq b$ whenever $(a, b) \in R$ for any $a, b \in A$ be arbitrary.

1. Show that $a \leq b$ if and only if $a \wedge b=a$ and $a \vee b=b$.
2. Show that $a \wedge(a \vee b)=a$ and $a \vee(a \wedge b)=b$.
3. Show that $a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)$ and $(a \wedge b) \vee(a \wedge c) \leq a \wedge(b \vee c)$ Give an example for a lattice where the inequalities are strict. A lattice is said to be distributive if equality holds for all a and b.
4. Let n be a natural number. By D_{n} we denote the set of divisors of n with the divisibility relation. For example $D_{30}=\{1,2,3,5,6,10,15,30\}$ with \mid denoting the divisibility relation. (that is, we write $a \mid b$ when b is a multiple of a). Draw the Hesse diagrams for the lattices D_{30}, D_{12}, D_{20} and D_{24}. Which among them are distributive? (Hint: There is a geometric way to figure out from the Hesse diagram whether a lattice is distributive. Learn it and then the problem becomes easy).

Question 3: Let (L, \leq) be a lattice. Suppose there is an element $x_{0} \in L$ such that $a \leq x_{0}$ for all $a \in L$, then we called x_{0} the greatest element and denote it by 1 . Similarly $y_{0} \in L$ satisfies $y_{0} \leq a$ for all $a \in L$, then y_{0} is called the least element of L and is denoted by 0 . (L, \leq) is said to be bounded lattice if 0 and 1 exits in which case we denote L by ($L, \leq, 0,1$). A pair elements a and b in a bounded lattice L are said to be complements of each other if $a \wedge b=0$ and $a \vee b=1$.

1. Give an example for a bounded lattice L in which an element a has two complements b and b^{\prime}.
2. Prove that in a distributive lattice if an element has complements b and b^{\prime} then $b=b^{\prime}$.

Question 4: Let f be a function from a bounded lattice ($L, \leq, 0,1$) to itself. We say f is monotone if $f(a) \leq f(b)$ whenever $a \leq b$.

1. Show that f is monotone if and only if $f(a \wedge b) \leq f(a) \wedge f(b)$ for all $a, b \in L$.
2. Consider the lattice (\mathbf{R}, \leq). Give an example for a function that satisfies $x \leq f(x)$ for all $x \in \mathbf{R}$ but is not monotone.

Question 5: Let f be a monotone function on a complete lattice ($L, \leq, 0,1$). Consider the set $S=\{y: y \leq f(y)\}$. Let $x=\sup (S) .(\sup (S)$ must exist even if S is infinite because L is complete). Show that x satisfies $f(x)=x$. An element satisfying this equality is called a fix point of f. Hence this observation proves that every monotone function on a complete lattice must have a fix point. This result is a special case of Tarski's fix point theorem.

Question 6: This question develops an algebraic way of defining a lattice. Suppose L be a set with two binary operations \wedge and \vee defined on L satisfying: (i) \wedge and \vee are associative (ii) \wedge and \vee are commutative (iii) $a \wedge(a \vee b)=a \vee(a \wedge b)=a$ for all $a, b \in L$. Define the relation R on L as follows: $(a, b) \in R$ if and only if $a \wedge b=a$.

1. Show that if $a \wedge b=a$ if and only if $a \vee b=b$.
2. Show that R is a partial order. (verify reflexivity, anti-symmetry and transitivity).
3. Show that R is a lattice with $\operatorname{LUB}(a, b)=a \vee b$ and $G L B(a, b)=a \wedge b$.

Question 7: Let $(L, \leq, 0,1)$ be a distributive lattice. Suppose every $a \in L$ has a complement also, then L is called a boolean lattice (or a boolean algebra). Thus a boolean lattice is a complemented distributive lattice.

1. Which among the following lattices are boolean $-D_{30}, D_{12}, D_{105}, D_{25}$?
2. Suppose p_{1}, p_{2}, p_{3} are prime numbers. Arugue that $D_{p_{1} p_{2} p_{3}}$ is a boolean lattice if and only if p_{1}, p_{2} and p_{3} are distinct prime numbers.
3. Let X be a finite set. Show that $\left(2^{X}, \subseteq, \emptyset, X\right)$ is a boolean lattice. (you may assume properties of set union and set intersection). Suppose $Y \subseteq X$, what is the complement of Y in this lattice?
