
Discrete Mathematics

Hans Cuypers

October 11, 2007

1



Discrete Mathematics

Contents

1. Relations 4
1.1. Binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Relations and Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Composition of Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5. Transitive Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Maps 16
2.1. Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Special Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Order relations 22
3.1. Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Maximal and Minimal Elements . . . . . . . . . . . . . . . . . . . . . . . 24
3.3. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. Recursion and Induction 28
4.1. Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2. Linear recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3. Natural Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4. Strong Induction and Minimal Counter Examples . . . . . . . . . . . . . 36
4.5. Structural Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5. Bounding some recurrences 42
5.1. Growth of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2. The Master Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6. Graphs 47
6.1. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2. Some special graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3. Euler and Hamilton Cycles . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4. Spanning Trees and Search Algorithms . . . . . . . . . . . . . . . . . . . 49
6.5. Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6. Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.7. Graph Colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.8. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2



Discrete Mathematics

7. Lattices and Boolean Algebras 61
7.1. Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2. Boolean Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3. Examples from Logic and Electrical Engineering . . . . . . . . . . . . . 67
7.4. The Structure of Boolean Algebras . . . . . . . . . . . . . . . . . . . . . 68
7.5. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3



Discrete Mathematics

1. Relations

1.1. Binary relations

A (binary) relation R between the sets S and T is a subset of the cartesian product
S × T .

If (a, b) ∈ R, we say a is in relation R to be b. We denote this by aRb. The set S
is called the domain of the relation and the set T the codomain. If S = T we say R is
a relation on S.

Example 1.1.1 We give some examples:

1. “Is the mother of” is a relation between the set of all females and the set of
all people. It consists of all the pairs (person 1,person 2 where person 1 is the
mother of person 2.

2. “There is a train connection between” is a relation between the cities of the
Netherlands.

3. The identity relation “=” is a relation on a set S. This relation is often denoted
by I. So,

I = {(s, s) | s ∈ S}.

4. We say an integer n divides an integer m, notation n | m, if there is an element
q ∈ Z such that an = m. Divides | is a relation on Z consisting of all the pairs
(n, m) ∈ Z× Z with n | m.

5. “Greater than” > or “less than” < are relations on R.

6. R = {(0, 0), (1, 0), (2, 1)} is a relation between the sets S = {0, 1, 2} and T =
{0, 1}.

7. R = {(x, y) ∈ R2 | y = x2} is a relation on R.

8. Let Ω be a set, then “is a subset of” ⊆ is a relation on the set S of all subsets of
Ω.

Besides binary relations one can also consider n-ary relations with n ≥ 0. An n-ary
relation R on the sets S1, . . . , Sn is a subset of the cartesian product S1 × · · · × Sn. In
these notes we will restrict our attention to binary relations. Unless stated otherwise,
a relation will be assumed to be binary.

Let R be a relation from a set S to a set T . Then for each element a ∈ S we define
[a]R to be the set

[a]R := {b ∈ S | aRb}.
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(Sometimes this set is also denoted by R(a).) This set is called the (R-) image of a.
For b ∈ T the set

R[b] := {a ∈ S | aRb}

is called the (R-) pre-image of b or R-fiber of b.

Definition 1.1.2 If S = {s1, . . . , sn} and T = {t1, . . . , tm} are finite sets and R ⊆
S×T is a binary relations, then the adjacency matrix AR of the relation R is the n×m
matrix whose rows are indexed by S and columns by T defined by

As,t = 1 if (s, t) ∈ R;
= 0 otherwise.

Notice that a presentation of the adjacency matrix of a relation is defined upto
permutations of the rows and columns of the matrix. If the sets S and T are equal,
then it is customary to put the rows in the same order as the columns.

If s ∈ S, then [s]R consists of those t ∈ T such that the entry t of the row s in AR

equals 1. For t ∈ T the set R[t] consists of the nonzero entries in the column of t.

Example 1.1.3 1. The adjacency matrix of the relation R = {(0, 0), (1, 0), (2, 1)}
between the sets S = {0, 1, 2} and B = {0, 1} equals 1 0

1 0
0 1

 .

(We number rows from top to bottom and columns from left to right.)

2. The adjacency matrix of the identity relation on a set S of size n is the n × n
identity matrix

In =


1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1

 .

3. The adjacency matrix of relation ≤ on the set {1, 2, 3, 4, 5} is the upper triangular
matrix 

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 .
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Some relations have special properties:

Definition 1.1.4 Let R be a relation on a set S. Then R is called

• Reflexive if for all x ∈ S we have (x, x) ∈ R;

• Irreflexive if for all x ∈ S we have (x, x) 6∈ R;

• Symmetric if for all x, y ∈ S we have xRy implies yRx;

• Antisymmetric if for all x, y ∈ S we have that xRy and yRx implies x = y;

• Transitive if for all x, y, z ∈ S we have that xRy and yRz implies xRz.

Example 1.1.5 We consider some of the examples given above:

1. “Is the mother of” is a relation on the set of all people. This relation is irreflexive,
antisymmetric and not transitive.

2. “There is a train connection between” is a symmetric and transitive relation.

3. “=” is a reflexive, symmetric and transitive relation on a set S.

4. divides | is a reflexive, antisymmetric and transitive relation on N.

5. “Greater than” > or “less than” < on R are irreflexive, antisymmetric and tran-
sitive.

6. The relation R = {(x, y) ∈ R2 | y = x2} is not reflexive nor irreflexive.

If R is a relation on a finite set S, then special properties like reflexivity, symmetry
and transitivity can be read of from the adjacency matrix A. For example, the relation
R on a set S is reflexive if and only if the main diagonal of A only contains 1’s, i.e.,
As,s = 1 for all s ∈ S.

The relation R is symmetric if and only if the transposed matrix A> of A equals
A. (The transposed matrix M> of an n×m matrix M is the m× n matrix with entry
i, j equal to Mj,i.)

1.2. Equivalence relations

As we noticed in the above example, “being equal” is a reflexive, symmetric and transi-
tive relation on any set S. Relations having these three properties deserve some special
attention.

Definition 1.2.1 A relation R on a set S is called an equivalence relation on S if and
only if it is reflexive, symmetric and transitive.

6
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Example 1.2.2 Consider the plane R2 and in it the set S of straight lines. We call
two lines parallel in S if and only if they are equal or do not intersect. Notice that
two lines in S are parallel if and only if their slope is equal. Being parallel defines an
equivalence relation on the set S.

Example 1.2.3 Fix n ∈ Z, n 6= 0, and consider the relation R on Z by aRb if and
only if a− b is divisible by n. We also write a = b mod n. As we will see in Chapter
2 of [1], this is indeed an equivalence relation.

Example 1.2.4 Let Π be a partition of the set S, i.e., Π is a set of nonempty subsets
of S such that each element of S is in a unique member of Π. In particular, the union
of all members of Π yields the whole set S and any two members of Π have empty
intersection.

We define the relation RΠ as follows: a, b ∈ S are in relation RΠ if and only if
there is a subset X of S in Π containing both a and b. we check that the relation RΠ

is an equivalence relation on S.

• Reflexivity. Let a ∈ S. Then there is an X ∈ Π containing a. Hence a, a ∈ X and
aRΠa

• Symmetry. Let aRΠb. then there is an X ∈ Π with a, b ∈ X. But then also
b, a ∈ X and bRΠa.

• Transitivity. If a, b, c ∈ S with aRΠb and bRΠc, then there are X, Y ∈ Π with
a, b ∈ X and b, c ∈ Y . However, then b is in both X and Y . But then, as Π
partitions S, we have X = Y . So a, c ∈ X and aRΠc.

The following theorem implies that every equivalence relation on a set S can be
obtained as a partition of the set S.

Lemma 1.2.5 Let R be an equivalence relation on a set S. If b ∈ [a]R, then [b]R =
[a]R.

Proof. Suppose b ∈ [a]R. Thus aRb. If c ∈ [b]R, then bRc and, as aRb, we have by
transitivity aRc. In particular, [b]R ⊆ [a]R.

Since, by symmetry of R, aRb implies bRa and hence a ∈ [b]R, we similarly get
[a]R ⊆ [b]R. 2

Theorem 1.2.6 Let R be an equivalence relation on a set S. Then the set of R-
equivalence classes partitions the set S.
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Proof. Let ΠR be the set of R-equivalence classes. Then by reflexivity of R we find
that each element a ∈ S is inside the class [a]R of ΠR.

If an element a ∈ S is in the classes [b]R and [c]R of Π, then by the previous lemma
we find [b]R = [a]R and [b]R = [c]R. In particular [b]R equals [c]R. Thus each element
a ∈ S is inside a unique member of ΠR, which therefore is a partition of S. 2

1.3. Relations and Directed Graphs

A directed edge of a set V is an element of V × V . If e = (v, w) then v is called its tail
and w its head. Both v and w are called endpoints of the edge e. The reverse of the
edge e is the edge (w, v).

A directed graph (also called digraph) Γ = (V,E) consists of a set V of vertices
and a subset E of V × V of (directed) edges. The elements of V are called the vertices
of Γ and the elements of E the edges of Γ. Clearly, the edge set of a directed graph is a
relation on the set of vertices. Conversely, if R is a binary relation on a set S, then R
defines a directed graph (S, R) (also called digraph) on the set S, which we denote by
ΓR. Hence there is a one-to-one correspondence between directed graphs and relations.
It is often convenient to switch from a relation to the corresponding digraph or back.

In this subsection we introduce some graph theoretical language and notation to
be used in the sequel.

Suppose Γ = (V,E) is a digraph. A path from v to w, where v, w ∈ V , is a sequence
v0, v1, . . . , vk of vertices with v0 = v, vk = w and (vi, vi+1) ∈ E for all 0 ≤ i < k. The
length of the path is k. A path is called simple if all the vertices v0 up to vk−1 are
distinct. A cycle is a path form v to v and is called simple if the path is simple.

If v, w ∈ V are vertices of the digraph Γ, then the distance from v to w is the
minimum of the lengths of the paths from v to w. (The distance is set to ∞ if there is
no path from v to w.)

The digraph is called connected if for any two vertices v and w there is a path
from v to w or from w to v. It is called strongly connected if there exist paths in both
directions.

If W is a subset of V , then the induced subgraph of Γ on W is the digraph
(W,E ∩W ×W ). A connected component C of Γ is a maximal subset of V such that
the induced subgraph is connected. This means that the induced subgraph is connected
and there is no path between a vertex inside and one outside C.

A strongly connected component is a maximal subset of V such that the induced
subgraph is strongly connected. This means that the induced subgraph is strongly
connected and there are no vertices v ∈ C and w 6∈ C such that there are paths in
both directions between v and w.
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1.4. Composition of Relations

If R1 and R2 are two relations between a set S and a set T , then we can form new
relations between S and T by taking the intersection R1 ∩ R2 or the union R1 ∪ R2.
Also the complement of R2 in R1, R1 − R2, is a new relation. Furthermore we can
consider a relation R> (sometimes also denoted by R−1, R∼ or R∨) from T to S as
the relation {(t, s) ∈ T × S | (s, t) ∈ R}.

Another way of making new relations out of old ones is the following. If R1 is a
relation between S and T and R2 is a relation between T and U then the composition
or product R = R1;R2 (sometimes denoted by R2 ◦ R1 or R1 ∗ R2) is the relation
between S and U defined by sRu if and only if there is a t ∈ T with sR1t and tR2u.

Example 1.4.1 Suppose R1 is the relation {(1, 2), (2, 3), (3, 3), (2, 4)} from {1, 2, 3} to
{1, 2, 3, 4} and R2 the relation {(1, a), (2, b), (3, c), (4, d)} from {1, 2, 3, 4} to {a, b, c, d}.
Then R1;R2 is the relation {(1, b), (2, c), (3, c), (2, d)} form {1, 2, 3} to {a, b, c, d}.

Suppose R1 is a relation from S to T and R2 a relation from T to U with adjacency
matrices A1 and A2, repsectively. Consider the matrix product M = A1A2. An entry
Ms,u is obtained by multiplying row s from A1 with column u from A2 and equals the
number of t ∈ T with (s, t) ∈ R1 and (t, u) ∈ R2.

Notice, if R1 = R2, then entry s, t equals the number of paths of length 2 in ΓR

starting in s and ending in t.
The adjacency matrix A of R1;R2 can be obtained from M by replcing every

nonzero entry by a 1.

Example 1.4.2 Suppose R1 {(1, 2), (2, 3), (3, 3), (2, 4), (3, 1)} from {1, 2, 3} to {1, 2, 3, 4}
and R2 the relation {(1, 1), (2, 3), (3, 1), (3, 3), (4, 2)} from {1, 2, 3, 4} to {1, 2, 3}. Then
the adjacency matrices A1 and A2 for R1 and R2 are

A1 =

 0 1 0 0
0 0 1 1
1 0 1 0

 , A2 =


1 0 0
0 0 1
1 0 1
0 1 0

 .
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The product of these matrices equals

M =

 0 0 1
1 1 1
2 0 1

 .

So, the adjacency matrix of R1;R2 is 0 0 1
1 1 1
1 0 1

 .

Proposition 1.4.3 Suppose R1 is a relation from S to T , R2 a relation from T to U
and R3 a relation from U to V . Then R1; (R2;R3) = (R1;R2);R3.

Proof. Suppose s ∈ S and v ∈ V with sR1; (R2;R3)v. Then we can find a t ∈ T with
sR1t and t(R2;R3)v. But then there is also a u ∈ U with tR2u and uR3v. For this u
we have sR1;R2u and uR3v and hence s(R1;R2);R3v.

Similarly, if s ∈ S and v ∈ V with s(R1;R2);R3v, then we can find a u ∈ U with
s(R1;R2)u and uR3v. But then there is also a t ∈ T with sR1t and tR2u. For this t
we have tR2;R3u and sR1t and hence sR1; (R2;R3)v. 2

Let R be a relation on a set S and denote by I the identity relation on S, i.e.,
I = {(a, b) ∈ S × S | a = b}. Then we easily check that I;R = R; I = R.

Let R be a relation on a set S and consider the directed graph ΓR with vertex set
S and edge set R. Then two vertices a and b are in relation R2 = R;R, if and only if
there is a c ∈ S such that both (a, c) and (c, b) ∈ R. Thus aR2b if and only if there is
a path of length 2 from a to b.

For n ∈ N, the n-th power Rn of the relation R is recursively defined by R0 = I
and Rn+1 = R;Rn. Two vertices a and b are in relation Rn if and only if, inside ΓR,
there is a path from a to b of length n.

We notice that whenever R is reflexive, we have R ⊆ R2 and thus also R ⊆ Rn

for all n ∈ N with n ≥ 1. Actually, a and b are then in relation Rn if and only if they
are at distance ≤ n in the graph ΓR.

1.5. Transitive Closure

Lemma 1.5.1 Let C be a collection of relations R on a set S. If all relations R in
C are transitive (symmetric or reflexive), then the relation

⋂
R∈C R is also transitive

(symmetric or reflexive, respectively).

Proof. Let R =
⋂

R∈C R. Suppose all members of C are transitive. Then for all
a, b, c ∈ S with aRb and bRc we have aRb and bRc for all R ∈ C. Thus by transitivity

10
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of each R ∈ C we also have aRc for each R ∈ C. Thus we find aRc. Hence R is also
transitive.

The proof for symmetric or reflexive relations is left to the reader. 2

The above lemma makes it possible to define the reflexive, symmetric or transitive
closure of a relation R on a set S. It is the the smallest reflexive, symmetric or transitive
relation containing R. This means, as follows from Lemma 1.5.1, it is the intersection⋂

R′∈C R′, where C is the collection of all reflexive, symmetric or transitive relations
containing R. Indeed, the above lemma implies that

⋂
R′∈C R′ is the smallest transitive

(symmetric or reflexive) relation containing R if we take for C the appropriate set of
all transitive (symmetric or reflexive) relations containing R.

Example 1.5.2 Suppose

R = {(1, 2), (2, 2), (2, 3), (5, 4)}

is a relation on S = {1, 2, 3, 4, 5}.
The reflexive closure of R is then the relation

{(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (4, 4), (5, 5), (5, 4)}.

The symmetric closure equals

{(1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (5, 4), (4, 5)}.

And, finally, the transitive closure of R equals

{(1, 2), (2, 2), (2, 3), (1, 3), (5, 4)}.

One easily checks that the reflexive closure of a relation R equals the relation
I ∪ R and the symmetric closure equals R ∪ R>. The transitive closure is a bit more
complicated. It contains R,R2, . . . . In particular, it contains

⋃
n>0 Rn, and, as we will

show below, is equal to it.

Proposition 1.5.3
⋃

n>0 Rn is the transitive closure of the relation R.

Proof. Define R̄ =
⋃

n>0 Rn. We prove transitivity of R̄. Let aR̄b and bR̄c, then there
are sequences a1 = a, . . . , ak = b and b1 = b, . . . , bl = c with aiRai+1 and biRbi+1. But
then the sequence c1 = a1 = a, . . . , ck = ak = b1, . . . , ck+l−1 = bl = c is a sequence
from a to c with ciRci+1. Hence aRk+l−2c and aR̄c. 2

The transitive, symmetric and reflexive closure of a relation R is an equivalence
relations. In terms of the graph ΓR, the equivalence classes are the strongly connected
components of ΓR.
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Example 1.5.4 If we consider the whole World Wide Web as a set of documents,
then we may consider two documents to be in a (symmetric) relation R if there is a
hyperlink from one document to the another.

The reflexive and transitive closure of the relation R defines a partition of the web
into independent subwebs.

Example 1.5.5 Let S be the set of railway stations in the Netherlands. Two stations
a and b are in relation R if there is a train running directly from a to b.

If R̄ denotes the transitive closure of R, then the railway stations in [a]R̄ are
exactly those stations you can reach by train when starting in a.

Algorithm 1.5.6 [Warshall’s Algorithm for the Transitive closure] Suppose
a relation R on a finite set S of size n is given by its adjacency matrix AR. Then
Warshall’s Algorithm is an efficient method for finding the adjacency matrix of the
transitive closure of the relation R.

In the algorithm we construct a sequence W 0, . . . Wn of n× n-matrices with only
0’s and 1’s, starting with W 0 = AR and ending with the adjacency matrix of the
transitive closure of R.

On the set of rows of a matrix we define the operation ∨ by (s1, . . . , sn) ∨
(t1, . . . , tn) = (max(t1, s1), . . . ,max(tn, sn)).

Now the algorithm proceeds as follows.

• The initial step is to set W 0 equal to AR.

• For k ≥ 1, the matrix W k equals W k−1 if the kth row r is completely zero and
otherwise is obtained from W k−1 by replacing each nonzero row s having a 1 at
position k by r ∨ s.

• The matrix Wn is given as the adjacency matrix of the transitive closure of R.

To prove that the resulting matrix Wn is indeed the adjacency matrix of the
transitive closure of R, we argue as follows. We claim that the following holds:

Claim. The matrix W k has a 1 at entry i, j if and only if there is a path

ai = v0, v1, . . . , vl−1, vl = aj

from ai to aj with v1, . . . , vl−1 in {a1, . . . , ak} in the graph ΓR.

Indeed, for k = 0 the set {a1, . . . , ak} is empty, so the claim true. In W 1 we only
have a one at entry i, j if and only if (ai, aj) was already in R, or (ai, a1) and (a1, aj)
are in R and there is a path ai, a1, aj from ai to aj only using vertices in {a1}.

Now suppose for some 0 ≤ l ≤ n − 1 an entry i, j in W l is 1 if and only if there
is a path from ai to aj only using vertices from {a1, . . . , ak}. Then a new 1 at entry

12
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i, j in W l+1 is only added to W l if there are paths from ai to al+1 and from al+1 to aj

using only vertices in {a1, . . . , al}. Hence entry i, j in W l+1 is only 1 if there is a path
from ai to aj only using vertices from {a1, . . . , al+1}.

Since for l = 1, our claim is true, the above shows that it is also true for l = 2.
But then also for l = 3 and so on. Thus our claim holds for all k and in particular for
k = n. But that means that entry i, j in Wn is equal to 1 if and only if there is a path
from ai to aj . So Wn is indeed the adjacency matrix of the transitive closure of R.

The above proof is an example of a proof by induction. Later, in Chapter 4, we
will encounter more examples of proofs by induction.

Example 1.5.7 Consider the relation R on {1, 2, 3, 4, 5} given by the adjacency ma-
trix

A =


1 1 0 0 0
0 1 1 0 0
1 0 0 0 0
0 0 0 1 1
0 0 0 0 1

 .

We will run Warshall’s algorithm to find the adjacency matrix of the transitive
closure of R.

We start with W 0 = A. As only row 1 and 3 have a 1 at position 1, we get

W 1 =


1 1 0 0 0
0 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 0 0 1

 .

Now row 1, 2 and 3 have a 1 at position 2 and we find

W 2 =


1 1 1 0 0
0 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 0 1

 .

The first three rows do have now a 1 at position 3, so W 3 equals

W 3 =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 0 1

 .
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As only row 4 has a 1 at position 4, we also have W 4 = W 3. Finally W 5 also equals

W 5 =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 0 1

 .

In the corresponding graph we see that edges are added in the following way:

1.6. Exercises

Exercise 1.6.1 Which of the following relations on the set S = {1, 2, 3, 4} is reflexive,
irreflexive, symmetric, antisymmetric or transitive?

1. {(1, 3), (2, 4), (3, 1), (4, 2)};

2. {(1, 3), (2, 4)};

3. {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (2, 4), (3, 1), (4, 2)};

4. {(1, 1), (2, 2), (3, 3), (4, 4)};

5. {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 3), (3, 4), (4, 3), (3, 2), (2, 1)}.

Exercise 1.6.2 Let A = {1, 2, 3, 4} and R1 = {(1, 2), (1, 3), (2, 4), (2, 2), (3, 4), (4, 3)}
and R2 = {(1, 1), (1, 2), (3, 1), (4, 3), (4, 4)}. Compute R1;R2 and R2;R1. Is the com-
position of relations commutative?

14
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Exercise 1.6.3 Compute for each of the relations R in Exercise 1.6.1 the adjacency
matrix and draw the digraph ΓR.

Exercise 1.6.4 Compute for each of the relations R in Exercise 1.6.1 the adjacency
matrix of R2.

Exercise 1.6.5 Compute for each of the relations in Exercise 1.6.1 the reflexive clo-
sure, the symmetric closure and the transitive closure.

Exercise 1.6.6 Suppose R is a reflexive and transitive relation on S. Show that R2 =
R.

Exercise 1.6.7 Suppose R1 and R2 are two relations from the finite set S to the finite
set T with adjacency matrices A1 and A2, respectively.

What is the adjacency matrix of the relation R1 ∩R2, R1 ∪R2, or R>
1 ?

Exercise 1.6.8 Suppose R1 and R2 are two relations on a set S. Let R be the product
R1;R2. Prove or disprove the following statements

1. If R1 and R2 are reflexive, then so is R.

2. If R1 and R2 are irreflexive, then so is R.

3. If R1 and R2 are symmetric, then so is R.

4. If R1 and R2 are antisymmetric, then so is R.

5. If R1 and R2 are transitive, then so is R.

Exercise 1.6.9 Use Warshall’s algorithm to compute the transitive closure of the
relations given by the adjacency matrices

 1 0 1
1 0 0
0 1 1

 ,


1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 0 1 1 0
0 1 0 1 1

 and


0 0 1 0 1
0 0 0 1 1
0 1 1 1 0
0 0 1 1 0
0 0 0 0 0

 .

Exercise 1.6.10 Implement Warshall’s algorithm in your favorite programming lan-
guage.
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2. Maps

2.1. Maps

Examples of maps are the well known functions f : R → R given by f(x) = x2,
f(x) = sinx, or f(x) = 1

x2+1
. We can view these maps as relations on R. Indeed, the

function f : R → R can be viewed as the relation {(x, y) | y = f(x)}. Actually, maps
are special relations:

Definition 2.1.1 A relation F from a set A to a set B is called a map or function
from A to B if for each a ∈ A there is one and only one b ∈ B with aFb.

If F is a map from A to B, we write this as F : A → B. Moreover, if a ∈ A and
b ∈ B is the unique element with aFb, then we write b = F (a).

A partial map F from a set A to a set B is a relation with the property that for
each a ∈ A there is at most one b with aFb. In other words, it is a map from a subset
A′ of A to B.

Example 2.1.2 We have encountered numerous examples of maps. Below you will
find some familiar ones.

1. polynomial functions like f : R → R, with f(x) = x3 for all x.

2. goneometric functions like cos, sin and tan.

3. √ : R+ → R, taking square roots.

4. ln : R+ → R, the natural logarithm.

If f : A → B and g : B → C, then we can consider the product f ; g as a relation
from A to C. We also use the notation g ◦ f and call it the composition of f and g. We
prefer the latter notation for the composition of functions, as for all a ∈ A we have

(g ◦ f)(a) = g(f(a)).

Proposition 2.1.3 Let f : A → B and g : B → C be maps, then the composition g ◦f
is a map from A to C.

Proof. Let a ∈ A, then g(f(a)) is an element in C in relation f ; g with a. If c ∈ C is an
element in C that is in relation f ; g with a, then there is a b ∈ B with afb and bgc. But
then, as f is a map, b = f(a) and, as g is a map, c = g(b). Hence c = g(b) = g(f(a)).
2

Let A and B be two sets and f : A → B a map from A to B. The set A is called
the domain of f , the set B the codomain. If a ∈ A, then the element b = f(a) is called
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the image of a under f . The subset of B consisting of the images of the elements of
A under f is called the image or range of f and is denote by Im(f). So

Im(f) = {b ∈ B | there is a a ∈ A with b = f(a)}.

If A′ is a subset of A, then the image of A′ under f is the set f(A′) = {f(a) | a ∈ A′}.
So, Im(f) = f(A).

If a ∈ A and b = f(a), then the element a is called a pre-image of b. Notice that
b can have more than one pre-image. Indeed if f : R → R is given by f(x) = x2 for
all x ∈ R, then both −2 and 2 are pre-images of 4. The set of all pre-images of b is
denoted by f−1(b). So,

f−1(b) = {a ∈ A | f(a) = b}.

If B′ is a subset of B then the pre-image of B′, denoted by f−1(B′) is the set of
elements a from A that are mapped to an element b of B′. In particular,

f−1(B′) = {a ∈ A | f(a) ∈ B′}.

Example 2.1.4 1. Let f : R → R with f(x) = x2 for all x ∈ R. Then f−1([0, 4]) =
[−2, 2].

2. Consider the map mod 8 from Z to Z. The inverse image of 3 is the set
{. . . ,−5, 3, 11, . . . }.

Theorem 2.1.5 Let f : A → B be a map.

• If A′ ⊆ A, then f−1(f(A′)) ⊇ A′.

• If B′ ⊆ B, then f(f−1(B′)) ⊆ B′.

Proof. Let a′ ∈ A′, then f(a′) ∈ f(A′) and hence a′ ∈ f−1(f(A′)). Thus A′ ⊆
f−1(f(A′)).

Let a ∈ f−1(B′), then f(a) ∈ B′. Thus f(f−1(B′)) ⊆ B′. 2

Example 2.1.6 Let f : R → R be defined by f(x) = x2 for all x ∈ R. Then
f−1(f([0, 1]})) equals [−1, 1] and thus properly contains [0, 1]. Moreover, f(f−1([−4, 4])) =
[0, 4] which is properly contained in [−4, 4]. This shows that we can have strict inclu-
sions in the above theorem.

Theorem 2.1.7 Let f : A → B and g : B → C be maps. Then Im(g ◦ f) = g(f(A)) ⊆
Im(g).
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2.2. Special Maps

Definition 2.2.1 A map f : A → B is called surjective, if for every b ∈ B there is an
a ∈ A with b = f(a). In other words if Im(f) = B.

The map f is called injective if for each b ∈ B, there is at most one a with f(a) = b.
So the pre-image of b is either empty or consist of a unique element. In other words,
f is injective if for any elements a and a′ from A we find that f(a) = f(a′) implies
a = a′.

The map f is bijective if it is both injective and surjective. So, if for each b ∈ B
there is a unique a ∈ A with f(a) = b.

Example 2.2.2 1. The map sin : R → R is not surjective nor injective.

18



Discrete Mathematics

2. The map sin : [−π/2, π/2] → R is injective but not surjective.

3. The map sin : R → [−1, 1] is a surjective map. It is not injective.

4. The map sin : [−π/2, π/2] → [−1, 1] is a bijective map.

Theorem 2.2.3 [Pigeonhole Principle] Let f : A → B be a map between two sets
of size n ∈ N. Then f is injective if and only if it is surjective.

Remark 2.2.4 The above result is called the pigeonhole principle because of the
following. If one has n pigeons (the set A) and the same number of holes (the set B),
then one pigeonhole is empty if and only if one of the other holes contains at least two
pigeons.

Example 2.2.5 Suppose p and q are two distinct prime numbers. We consider the
map φ : {0, 1, . . . , p− 1} → {0, 1, . . . , p− 1} defined by φ(x) = y where y is the unique
element in {0, 1, . . . , p− 1} with y = q · x mod p.

We claim that the map φ is a bijection. By the pigeon hole principle it suffices to
show that φ is injective.

So, let x, x′ be two elements with φ(x) = φ(x′). Then q ·x mod p = q ·x′ mod p
from which we deduce that q · (x− x′) = 0 mod p. Since p is a prime distinct from q,
we find p | x − x′. (We will go deeper into this in Chapter 2 of [1].) But then x = x′.
Hence φ is injective and thus also bijective.

If f : A → B is a bijection, i.e., a bijective map, then for each b ∈ B we can find
a unique a ∈ A with f(a) = b. So, also the relation f> = {(b, a) ∈ B × A | (a, b) ∈ f}
is a map. This map is called the inverse map of f and denoted by f−1.

Proposition 2.2.6 Let f : A → B be a bijection. Then for all a ∈ A and b ∈ B we
have f−1(f(a)) = a and f(f−1(b)) = b. In particular, f is the inverse of f−1.
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Proof. Let a ∈ A. Then f−1(f(a)) = a by definition of f−1. If b ∈ B, then, by
surjectivity of f , there is an a ∈ A with b = f(a). So, by the above, f(f−1(b)) =
f(f−1(f(a))) = f(a) = b. 2

Theorem 2.2.7 Let f : A → B and g : B → C be two maps.

1. If f and g are surjective, then so is g ◦ f ;

2. If f and g are injective, then so is g ◦ f ;

3. If f and g are bijective, then so is g ◦ f .

Proof.

1. Let c ∈ C. By surjectivity of g there is a b ∈ B with g(b) = c. Moreover, since
f is surjective, there is also an a ∈ A with f(a) = b. In particular, g ◦ f(a) =
g(f(a)) = g(b) = c. This proves g ◦ f to be surjective.

2. Let a, a′ ∈ A with g ◦f(a) = g ◦f(a′). Then g(f(a)) = g(f(a′)) and by injectivity
of g we find f(a) = f(a′). Injectivity of f implies a = a′. This shows that g ◦ f
is injective.

3. (i) and (ii) imply (iii).

2

Proposition 2.2.8 If f : A → B and g : B → A are maps with f ◦ g = IB and
g ◦ f = IA, where IA and IB denote the identity maps on A and B, respectively. Then
f and g are bijections. Moreover, f−1 = g and g−1 = f .

Proof. Let b ∈ B, then f(g(b)) = b. Thus the map f is surjective. If a, a′ ∈ A with
f(a) = f(a′), then a = g(f(a)) = g(f(a′)) = a′. Hence f is also injective. In particular,
f is bijective. By symmetry we also find g to be bijective, and it follows that f−1 = g
and g−1 = f . 2

Lemma 2.2.9 Suppose f : A → B and g : B → C are bijective maps. Then the
inverse of the map g ◦ f equals f−1 ◦ g−1.

Proof. (f−1 ◦ g−1)(g ◦ f)(a) = f−1(g−1(g(f(a)))) = f−1(f(a)) = a. 2
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2.3. Exercises

Exercise 2.3.1 Which of the following relations are maps from A = {1, 2, 3, 4} to A?

1. {(1, 3), (2, 4), (3, 1), (4, 2)};

2. {(1, 3)(2, 4)};

3. {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (2, 4), (3, 1), (4, 2)};

4. {(1, 1), (2, 2), (3, 3), (4, 4)}.

Exercise 2.3.2 Suppose f and g are maps from R to R defined by f(x) = x2 and
g(x) = x + 1 for all x ∈ R. What is g ◦ f and what is f ◦ g?

Exercise 2.3.3 Which of the following maps is injective, surjective or bijective?

1. f : R → R, f(x) = x2 for all x ∈ R.

2. f : R → R≥0, f(x) = x2 for all x ∈ R.

3. f : R≥0 → R≥0, f(x) = x2 for all x ∈ R.

Exercise 2.3.4 Suppose R1 and R2 are relations on a set S with R1;R2 = I and
R2;R1 = I. Prove that both R1 and R2 are bijective maps.

Exercise 2.3.5 Let R be a relation from a finite set S to a finite set T with adjacency
matrix A. Prove the following statements:

1. If every row of A contains one nonzero entry, then R is a map.

2. If moreover, every column contains at most one entry, then the map R is injective.

3. If every row and column contain only one 1, then R is a bijection. What is the
adjacency matrix of the inverse map?

Exercise 2.3.6 Let S and T be two sets. If R is a relation of S × T , then for each
t ∈ T we have the pre-image

R[t] = {s ∈ S | sRt}

which is a subset of S.
Prove that the relation {(t,R [t]) | t ∈ T} is a map from T to the power set P(S)

of S.
Moreover, show that, if f : T → P(S) is a map, then Rf = {(s, t) | s ∈ f(t)} is a

relation on S × T with Rf
[t] = f .
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3. Order relations

3.1. Posets

Definition 3.1.1 A relation v on a set P is called an order if it is reflexive, antisym-
metric and transitive. That means that for all x, y and z in P we have:

• x v x;

• if x v y and y v x, then x = y;

• if x v y and y v z, then x v z.

The pair (P,v) is called a partially ordered set, or for short, a poset.
Two elements x and y in a poset (P,v) are called comparable if x v y or y v x.

The elements are called incomparable if x 6v y and y 6v x.
If any two elements x, y ∈ P are comparable, so we have x v y or y v x, then the

relation is called a linear order.

Example 3.1.2 • The identity relation I on a set P is an order.

• On the set of real numbers R the relation ≤ is an order relation. For any two
numbers x, y ∈ R we have x ≤ y or y ≤ x. This makes ≤ into a linear order.
Restriction of ≤ to any subset of R is again a linear order.

• Let P be the power set P(X) of a set X, i.e., the set of all subsets of X. Inclusion
⊆ defines a partial order on P . This poset contains a smallest element ∅ and a
largest element X. Clearly, ⊆ defines a partial order on any subset of P .

• The relation “Is a divisor of” | defines an order on the set of natural numbers
N. We can associate this example to the previous one in the following way. For
each a ∈ N denote by D(a) the set of all divisors of a. Then we have

a | b ⇔ D(a) ⊆ D(b).

• On the set P of partitions of a set X we define the relation “refines” by the
following. The partition Π1 refines Π2 if and only if each π1 ∈ Π1 is contained in
some π2 ∈ Π2. The relation “refines” is a partial order on P .

Notice, for the corresponding equivalence relations RΠ1 and RΠ2 we have Π1

refines Π2 if and only if RΠ1 ⊆ RΠ2 .

• If v is an order on a set P , then w also defines an order on P . Here x w y if and
only if y v x. The order w is called the dual order of v.
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Definition 3.1.3 If v is an order on the set P , then the corresponding directed graph
with vertex set P and edges (x, y) where x v y is acyclic (i.e., contains no cycles of
length > 1).

If we want to draw a picture of the poset, we usually do not draw the whole
digraph. Instead we only draw an edge from x to y from P with x v y if there is no
z, distinct from both x and y, for which we have x v z and z v y. This digraph is
called the Hasse diagram for (P,v), named after the german mathematician Helmut
Hasse (1898-1979). Usually pictures of Hasse diagrams are drawn in such a way that

two vertices x and y with x v y are connected by an edge going upwards. For example
the Hasse diagram for the poset ({1, 2, 3},⊆) is drawn as below.

3.1.4 [New posets from old ones] There are various ways of constructing new
posets out of old ones. We will discuss some of them. In the sequel both P and Q are
posets with respect to some order, which we usually denote by v, or, if confusion can
arise, by vP and vQ.

• If P ′ is a subset of P , then P ′ is also a poset with order v restricted to P ′. This
order is called the induced order on P ′.
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• w induces the dual order on P .

• Let S be some set. On the set of maps from S to P we can define an ordering
as follows. Let f : S → P and g : S → P , then we define f v g if and only if
f(s) v g(s) for all s ∈ S.

• On the cartesian product P×Q we can define an order as follows. For (p1, q1), (p2, q2) ∈
P ×Q we define (p1, q1) v (p2, q2) if and only if p1 v p2 and q1 v q2. this order
is called the product order.

• A second ordering on P×Q can be obtained by the following rule. For (p1, q1), (p2, q2) ∈
P ×Q we define (p1, q1) v (p2, q2) if and only if p1 v p2 and p1 6= p2 or if p1 = p2

and q1 v q2. This order is called the lexicographic order on P ×Q.

Of course we can now extend this to direct products of more than two sets.

3.2. Maximal and Minimal Elements

Definition 3.2.1 Let (P,v) be a partially order set and A ⊆ P a subset of P . An
element a ∈ A is called the largest element or maximum of A, if for all a′ ∈ A we have
a′ v a. Notice that a maximum is unique, see Lemma 3.2.2 below.

An element a ∈ A is called maximal if for all a′ ∈ A we have that either a′ v a or
a and a′ are incomparable.

Similarly we can define the notion of smallest element or minimum and minimal
element.

If the poset (P,v) has a maximum, then this is often denoted as > (top). A
smallest element is denoted by ⊥ (bottom).

If a poset (P,v) has a minimum ⊥, then the minimal elements of P \ {⊥} are
called the atoms of P .

Lemma 3.2.2 Let (P,v) be a partially order set. Then P contains at most one max-
imum and one minimum.

Proof. Suppose p, q ∈ P are maxima. Then p v q as q is a maximum. Similarly q v p
as p is a maximum. But then by antisymmetry of v we have p = q. 2

Example 3.2.3 • If we consider the poset of all subsets of a set S, then the empty
set ∅ is the minimum of the poset, whereas the whole set S is the maximum. The
atoms are the subsets of S containing just a single element.

• If we cosider | as an order on N, then 1 is the minimal element and 0 the maximal
element. The atoms are those natural numbers > 1, that are only divisible by 1
and itself, i.e., the prime numbers.
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Lemma 3.2.4 Let (P,v) be a finite poset. Then P contains a minimal and a maximal
element.

Proof. Consider the directed graph associated to (P,v) and pick a vertex in this
graph. If this vertex is not maximal, then there is an edge leaving it. Move along this
edge to the neighbor. Repeat this as long as no maximal element is found. Since the
graph contains no cycles, we will never meet a vertex twice. Hence, as P is finite, the
procedure has to stop. This implies we have found a maximal element.

A minimal element of (P,v) is a maximal element of (P,w) and thus exists also.
2

Example 3.2.5 Notice that minimal elements and maximal elements are not neces-
sarily unique. In fact, they do not even have to exist. In (R,≤) for example, there is
no maximal nor a minimal element.

Algorithm 3.2.6 [Topological sorting] Given a finite poset (P,v), we want to sort
the elements of P in such a way that an element x comes before an element y if x v y.
This is called topological sorting. In other words, topological sorting is finding a map
ord : P → {1, . . . , n}, where n = |P |, such that for distinct x and y we have that x v y
implies ord(x) < ord(y). We present an algorithm for topological sorting.

Suppose we are given a finite poset (P,v), then for each element p in P we
determine the indegree, i.e., the number of elements q with q v p. While there are
vertices in P with indegree 0, pick one of them, say q, and set ord(q) to be the smallest
value in {1, . . . , n} which is not yet an image of some point. Now remove q from P and
lower all the indegrees of the neighbors of q by 1.

Notice that, by Lemma 3.2.4, we will always find elements in P with indegree 0,
unless P is empty.

Example 3.2.7 Topological sort has various applications. For example consider a
spreadsheet. In a spreadsheet various tasks depend on each other. In particular, some
of the computations need input from other computations and therefore they can only
be carried out after completion of the other computations. If there are no cycles in
these computations, this puts a partial order on the set of tasks within a spreadsheet.
By topological sort the task list can be linearized and the computations can be done
in a linear order.

Definition 3.2.8 If (P,v) is a poset and A ⊆ P , then an upperbound for A is an
element u with a v u for all a ∈ A.

A lowerbound for A is an element u with u v a for all a ∈ A.
If the set of all upperbounds of A has a minimal element, then this element is

called the largest upperbound or supremum of A. Such an element, if it exists, is denoted
by sup A. If the set of all lowerbounds of A has a maximal element, then this element
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is called the least lowerbound or infimum of A. If it exists, the infimum of A is denoted
by inf A.

Example 3.2.9 Let S be a set. In (P(S),⊆) any set A of subsets of S has a supremum
and an infimum. Indeed,

supA =
⋃

X∈A

X and inf A =
⋂

X∈A

X.

Example 3.2.10 If we consider the poset (R,≤), then not every subset A of R has a
supremum or infimum. Indeed, Z ⊆ R has no supremum an no infimum.

Example 3.2.11 In (N, |) the supremum of two elements a and b is the least common
multiple of a and b. Its infinum is the greatest common divisor.

If (P,v) is a finite poset, then as we have seen above, we can order the elements
from P as p1, p2, . . . , pn such that pi v pj implies i < j. This implies that the adjacency
matrix of v is uppertriangular, which means that it has only nonzero entries on or
above the main diagonal.

Definition 3.2.12 An ascending chain in a poset (P,v) is a (finite or infinite) se-
quence p0 v p1 v . . . of elements pi in P . A descending chain in (P,v) is a (finite or
infinite) sequence of elements pi, i ≥ 0 with p0 w p1 w . . . of elements pi in P .

The poset (P,v) is called well founded if any descending chain is finite.

Example 3.2.13 The natural numbers N with the ordinary ordering≤ is well founded.
Also the ordering | on N is well founded.

However, on Z the order ≤ is not well founded.

3.3. Exercises

Exercise 3.3.1 Let | denote the relation “is a divisor of ” defined on Z. Even if we
let 0 be a divisor of 0, then this does not define an order on Z. Prove this.

Exercise 3.3.2 Let | denote the relation “is a divisor of ” . This relation defines an
order on the set D = {1, 2, 3, 5, 6, 10, 15, 30} of divisors of 30. Draw the Hasse diagram.

Draw also the Hasse diagram of the poset of all subsets of {2, 3, 5}. Compare the
two diagrams. What do you notice?

Exercise 3.3.3 Let v denote an order relation on a finite set P . By H we denote the
relation defining adjacency in the Hasse diagram of v. Prove that v is the transitive
reflexive closure of H.
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Exercise 3.3.4 Let m,n ∈ N. By Πm we denote the partition of Z into equivalence
classes modulo m. What is a necessary and sufficient condition on n and m for Πm to
be a refinement of Πn.

Exercise 3.3.5 Suppose vP and vQ are linear orders on P and Q, respectively. Show
that the lexicographical order on P ×Q is also linear.

Exercise 3.3.6 Show that the relations as defined in 3.1.4 are indeed orders.

Exercise 3.3.7 In the figure below you see three diagrams. Which of these diagrams
are Hasse diagrams?

Exercise 3.3.8 Consider N>0 the set of positive integers. a partition of n is a multi-set
of positive integers such that the sum of all elements in this multi-set equals n.

For example {1, 1, 3, 5} is a partition of 10, and so are {10} and {5, 5}. We call a
multi-set M less than or equal to a Multiset M ′ if M is obtained by partitioning 0 or
some members of M ′. So, {1, 1, 2, 2, 3}, {1, 1, 1, 1, 1, 1, 4} and {2, 2, 2, 3} are less than
{4, 5}.

a) Show that “less than or equal to” for multi-sets is an order.

b) Determine all partitions of 6 and draw the Hasse diagram on all these partitions.

Exercise 3.3.9 Suppose (A,vA) and (B,vB) are posets. If A and B are disjunct,
then we define the relation v o A ∪B as follows:

x v y if x, y ∈ A and x vA y;
or x, y ∈ B and x vB y;

and if x ∈ A and y ∈ B.

a) Prove that v is an order on A ∪B.

b) Give necessary and sufficient conditions such that v is a linear order on A ∪B.

Exercise 3.3.10 On Z we define v by x v y if and only if x− y is odd and x is even,
or, x− y is even and x ≤ y.

Show that v is an order on Z. Is this order linear?
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4. Recursion and Induction

4.1. Recursion

A recursive definition tells us how to build objects by using ones we have already built.
Let us start with some examples of some common functions from N to N which can be
defined recursively:

Example 4.1.1 The function f(n) = n! can be defined recursively:

f(0) := 1;
for n > 0: f(n) := n · f(n− 1).

Example 4.1.2 The sum 1+2+ · · ·+n can also be written as
∑n

i=1 i. Here we make
use of the summation symbol

∑
, which, for any map f with domain N, we recursively

define by: ∑1
i=1 f(i) := f(1);

for n > 1:
∑n

i=1 f(i) := [
∑n−1

i=1 f(i)] + f(n);

Similarly, n! is often expressed as
∏n

i=1 i. Here we use the product symbol
∏

which is recursively defined by:∏1
i=1 f(i) := f(1);

for n > 1:
∏n

i=1 f(i) := [
∏n−1

i=1 f(i)] · f(n);

Example 4.1.3 [Fibonacci sequence] The Italian mathematician Fibonacci (1170-
1250) studied the population growth of rabbits. He considered the following model of
growth. Start with one pair of rabbits, one male and one female rabbit.

As soon as a pair of rabbits, male and female, is one months old, it starts producing
new rabbits. It takes another month before the young rabbits, again a pair consisting
of a male and a female rabbit, are born. Let F (n) denote the number of pairs in month
n. We have the following recursive definition for F . Here n ∈ N:
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F (1) := 1;
F (2) := 1;

F (n + 2) := F (n + 1) + F (n).

Indeed, in month n + 2 we still have the pairs of one month earlier, i.e., F (n + 1),
but also the young pairs of those pairs which are at least one month old in month
n + 1, i.e., the number of pairs in month n.

In the examples above we see that for a recursively defined function f we need
two ingredients:

• a base part, where we define the function value f(n) for some small values of n
like 0 or 1.

• a recursive part in which we explain how to compute the function in n with the
help of the values for integers smaller than n.

Of course, we do not have to restrict our attention to functions with domain N.
Recursion can be used at several places.

Example 4.1.4 Let S be the subset of Z defined by:

3 ∈ S;
if x, y ∈ S then also −x and x + y ∈ S.

Then S consists of all the multiples of 3. Indeed, if n = 3m for some m ∈ N, then
n = (. . . (3 + 3) + 3) + · · ·+ 3) + 3, and hence is in S. But then also −3m ∈ S. Thus S
contains all multiples of 3.

On the other hand, if S contains only multiples of 3, then in the next step of the
recursion, only multiples of 3 are added to S. So, since initially S contains only 3, S
contains only multiples of 3.

Example 4.1.5 Suppose R is a relation on a set S. We define R ⊆ S × S recursively
by

R ⊆ R

if (a, b) and (b, c) in R then also (a, c) ∈ R.

Then R is the transitive closure of R. Indeed, R contains R and is transitive. Hence it
contains the transitive closure of R. We only have to show that R is contained in the
transitive closure of R. This will be shown 4.5.2.
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Example 4.1.6 Suppose Σ is a set of symbols. By Σ∗ we denote the set of all strings
over Σ. The set Σ∗ can be defined by the following:

λ (the empty string) is in Σ∗;
if w ∈ Σ∗ and s ∈ Σ, then w.s is in Σ∗.

Here . stands for concatenation of the strings. So, If Σ = {a, , b, c}, then

Σ∗ = {λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, . . . }.

Example 4.1.7 A (finite, directed) tree is a (finite) digraph Γ such that:

• Γ contains no cycles;

• there is a unique vertex, called the root of the tree with indegree 0; all other
vertices have indegree 1;

• for any vertex v there is a path from the root to v.

A tree is called binary is every vertex has outdegree 0 or 2. Notice that the graph
consisting of a single vertex is a binary tree.

Moreover, if T1 = (V1, E1) and T2 = (V2, E2) are binary trees, then we can make a
new binary tree Tree(T1, T2) in the following way. As vertex set we take the vertices of
T1 and T2 and add a new vertex r. This vertex r is the root of the new tree and is the
tail of two new edges with head r1 and r2, the roots of T1 and T2, respectively. All other
edges come from T−1 and T2. So Tree(T1, T2) = (V1∪V2∪{r}, E1∪E2∪{(r, r1), (r, r2).

We can also give a recursive definition of the set of finite binary trees in the
following way.

The set T of finitary trees is defined by:
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• the binary tree on a single vertex in in T ;

• if T1 and T2 are in T , then Tree(T1, T2) is in T .

Notice that a recursive definition of some operation or structure consists of:

• a definition of the basic structures or operations

• a procedure to construct new basic structures or operations out of already con-
structed ones.

These two ingredients do not guarantee that a recursion is well defined. To avoid
contradicting rules, we assume that if an object x is used (at some stage) in the
construction of an object y, then y is not used in the construction of x.

This leads to an ordering v on the objects constructed. The basic objects are the
minimal elements of the order; if x1, . . . , xn are objects used to create y then we say
xi < y. The transitive and reflexive closure v of this relation is an order.

Indeed, if x v y, then x is used in the construction of y but, unless x = y, the
object y is not used for constructing x. As each object is constructed in finitely many
steps, the order v only has descending chains of finite length. It is well founded.

Example 4.1.8 Consider the set T of finite directed binary trees as defined in Ex-
ample 4.1.7. If Ti = (Vi, Ei), i = 1, 2, are trees in T , then we say T1 v T2 if and only
if V1 ⊆ V2 and E1 is the set of all edges in E2 with tail in V1.

This relation is a well founded order on T . (Prove this!) It is the transitive closure
of the relation < defined above.

31



Discrete Mathematics

4.2. Linear recurrences

We now consider a special class of recurrence relations. A linear recursion is a function
F : N → C satisfying the following recursion:

F (n) = a1F (n− 1) + a2F (n− 2) + · · ·+ akF (n− k)

for some fixed a1, . . . , ak ∈ C.
In various cases it is possible to give a closed formula for the function F . First an

example.

Example 4.2.1 (Fibonnaci) Consider the recursive fuction F : N → N given by

F (n + 2) = F (n + 1) + F (n).

The Fibonacci sequence is an example of a function satisfying this linear recurrence,
but there are more. If F (x) = αn for some α, then we deduce from the recursion that

α2 = α + 1.

So, for α = 1+
√

5
2 and α = 1−

√
5

2 we have found two more examples satisfying the
recursion. Moreover, combinining the latter two examples we get a whole family of
fucntions satisfying the recursion. Indeed, for all λ, µ ∈ C we see that

F (n) := λ(
1 +

√
5

2
)n + µ(

1−
√

5
2

)n

satisfies the recursion.
The Fibonocci sequence is among these functions, we have to set both λ and

µ equal to 1. Actually by varying λ and µ we obtain all functions F satisfying the
recursion. This is clear from the following. A function F satisfying the above recurrence
relation is completely determined by the values of F at 1 and 2. Taking for λ and µ a
solution to the system

F (1) = λ(
1 +

√
5

2
) + µ(

1−
√

5
2

)

F (2) := λ(
1 +

√
5

2
)2 + µ(

1−
√

5
2

)2

have found a way to express F as

F (n) := λ(
1 +

√
5

2
)n + µ(

1−
√

5
2

)n
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The method as described in the above example works for all linear recurrences.
If F is a function satisfying the recursion

F (n) = a1F (n− 1) + a2F (n− 2) + · · ·+ akF (n− k)

for some fixed a1, . . . , ak ∈ R, then we can try F (n) = αn for F .
This will work if and only if

αk = a1α
k−1 + a2α

n−2 · · ·+ ak−1α + ak.

So, α is a root of the polynomial equation

xk = a1x
k−1 + · · ·+ ak−1x + ak.

This equation is called the characteristic polynomial equation related to the recursion.
In general, there are k (complex) solutions to this equation, α1, . . . , αk yielding k
functions Fi(n) = αn

i satisfying the recursion. If all roots α1, . . . , αk are distinct, then
the functions Fi are linearly independent. This implies that there are unique λ1, . . . , λk

with F (i) = λ1α
i
1 + · · ·+ λkα

i
k for i = 1, . . . , k. So, if F satifies the recursion, then F

is uniquely determined by the values F (1), . . . , F (k) and

F (n) = λ1F1(n) + · · ·+ λkFk(n) = λ1α
n
1 + · · ·+ λkα

n
k ,

for all n ∈ N.
If not all αi are distinct, we have some additional solutions to the recursion.

Suppose α is a root of multiplicity d of the equation

xk = a1x
k−1 + a2x

n−2 · · ·+ ak−1x + ak.

Then not only αn satisfies the recursion but also nαn, . . . , nd−1αn. Again we find
enough independent solutions to form all solutions to the recursion.

Example 4.2.2 Consider the recursion F (n) = 3F (n − 2) − 2F (n − 3). The charac-
teristic polynomial related to the recursion equals x3 = 3x − 2, whch can be written
as

(x− 1)2(x− 2) = 0.

So, the roots of the equation are 1 (with multiplicity 2) and 2. Three function satisfying
the recursion are then F1(n) = 1n, F2(n) = n·1n = n and F3(n) = n2. So, the arbitrary
solution to the recurcence is given by

F (n) = λ + µn + ρn2,

where λ, µ and ρ are some real or complex numbers.
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4.3. Natural Induction

4.3.1 Principle of Natural Induction. Suppose P (n) is a predicate for n ∈ Z. Let
b ∈ Z. If the following holds:

• P (b) is true;

• for all k ∈ Z, k ≥ b we have that P (k) implies P (k + 1).

Then P (n) is true for all n ≥ b.

We give some examples:

Example 4.3.2 We claim that for all n ∈ N the sum

n∑
i=1

i =
1
2
n(n + 1).

We first check the claim for n = 1:

1∑
i=1

i = 1 =
1
2
1(1 + 1).

Now suppose that for some k ∈ N we do have

k∑
i=1

i =
1
2
k(k + 1).

Then

k+1∑
i=1

i = (
k∑

i=1

i) + (k + 1) =
1
2
k(k + 1) + (k + 1) =

1
2
(k + 1)(k + 2).

Hence if the claim holds for some k in N, then it also holds for k + 1.
The principle of natural Induction implies now that for all n ∈ N we have

n∑
i=1

i =
1
2
n(n + 1).

Example 4.3.3 For all n ∈ N and x ∈ R, x 6= 1, we have

n∑
i=1

xi =
xn+1 − x

x− 1
.
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Here is a proof of this statement using natural induction. First consider the case
n = 1. Then the left hand side of the above equation equals x. The right hand side
equals x2−x

x−1 = x. So, for n = 1, equality holds.

Now assume that
∑k

i=1 xi = xk+1−x
x−1 for some k ∈ N. Then

∑k+1
i=1 xi = [

∑k
i=1 xi]+

xk+1. By assumption this equals xk+1−x
x−1 + xk+1 = xk+2−x

x−1 .
The Principle of Natural Induction implies now that for all n ∈ N we have

n∑
i=1

xi =
xn+1 − x

x− 1
.

Example 4.3.4 Let a, b, c ∈ R. A linear recurrence is a recurrence relation of the form

a0 := a;
an+1 := b · an + c;

This is a generalization of the the recurrence relation as given in Example 4.3.3.
For linear recurrence relations we can find a closed formula. Indeed,

an = bn · a + bn−1c + bn−1 · c + · · ·+ b · c + c = bn · a +
(

bn − 1
b− 1

)
· c.

We give a proof by induction.
For n = 1 we indeed have a1 = b · a + c = b1 · a +

(
b1−1
b−1

)
· c.

Suppose that for some k ∈ N we do have the equality

ak = bk · a +
(

bk − 1
b− 1

)
· c.

Then

ak+1 = b · ak + c

= b · (bk · a +
(

bk−1
b−1

)
· c) + c

= bk+1 · a +
(

bk+1−b
b−1

)
· c + c

= bk+1 · a +
(

bk−b+(b−1)
b−1

)
· c

= bk+1 · a +
(

bk−1)
b−1

)
· c.

By the principle of natural induction we now have proven that

an = bn · a +
(

bn − 1
b− 1

)
· c.

for all n ∈ N with n > 0.
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Example 4.3.5 Let S be a set with n elements, then P(S), the set of all subsets of
S has size 2n. We give a proof by induction.

For n = 0, the set S is the empty set and S itself is the only subset of S. So
indeed, in this case P(S) has size 20 = 1.

Suppose for some k ∈ N all sets of size k have exactly 2k distinct subsets. Then
consider a set S of size k+1. Fix an element s ∈ S. Then all subsets of S not containing
s are precisely the subsets of S \ {s}. Hence, there are 2k such subsets of S. For each
such subset T there is a unique subset T ∪ {s} of S containing s. As every subset T ′

of S containing s is obtained as T ′ \ {s} ∪ {s} there are also 2k subsets containing s.
We conclude that P(S) contains 2k + 2k = 2k+1 elements.
Now the principle of natural induction implies that every set S of n elements

admits exactly 2n subsets.

Example 4.3.6 Consider the function f defined by:
f(0) = 1;
f(n + 1) = 1

n2+1
f(n), where n ∈ N.

As we have seen in the above examples, a proof by natural induction consists of
4 steps:

• A statement P (n) for all n ∈ N.

• A base b, for which P (b) is true.

• A proof that for all k ∈ N (or k ≥ b) we have: P (k) implies P (k + 1).

• The conclusion that for all n ≥ b we have P (n) is true.

4.4. Strong Induction and Minimal Counter Examples

In this section we discuss two variations on Natural Induction. The first is strong
induction.

4.4.1 Principle of Strong Induction. Suppose P (n) is a predicate for n ∈ Z. Let
b ∈ Z. If the following holds:

• P (b) is true;

• for all k ∈ Z, k ≥ b we have that P (b), P (b + 1), . . . , P (k − 1) and P (k) together
imply P (k + 1).

Then P (n) is true for all n ≥ b.

(Of course strong induction is just a variation of natural induction. Indeed, just
replace the predicate P (n) by the predicate Q(n) := P (b) ∧ P (b + 1) ∧ · · · ∧ P (n).)

We give some examples.
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Example 4.4.2 Consider the game of Nimm. In this game for two players a (positive)
number of sticks is placed on the table. The two players take turns removing one, two
or three sticks from the table. The player to remove the last stick form the table loses.

The first player has a winning strategy if and only if the number of sticks, n
say, is not of the form 4m + 1, with m ∈ N. Otherwise, the second player has a
winning strategy.

We prove this statement with strong induction.
If n = 1, then the first player has to take the stick from the table and loses.
Now suppose that the statement is correct for all values of n with 1 ≤ n ≤ k for

some k ∈ N. We will prove it to be true for n = k + 1.
We divide the prove in two parts:

• k + 1 = 4m + 1 > 1 for some m ∈ N.
Since the first player can remove 1, 2 or 3 sticks, the second player is faced with
k, k − 1 or k − 2 sticks. Since these numbers are not of the form 4l + 1, l ∈ N,
our induction hypothesis implies that there is a winning strategy for the second
player.

• k + 1 = 4m + i for some m ∈ N and i = 2, 3 or 4.
The first player can removes i−1 sticks. Then the second player is facing 4m+1
sticks. By our induction hypothesis, there is a winning strategy for the first
player.

Example 4.4.3 Suppose you have to divide an n ×m chocolate bar into nm pieces.
Then you will need to break it at least nm− 1 times.

This we can prove by strong induction. Suppose nm.
If nm = 1, then we are dealing with a single piece of chocolate, and we don’t have

to do anything. So indeed, we need zero breaks.
Suppose, nm > 1 and for all n′ × m′ bars with n′m′ < nm, we need at least

n′m′−1 breaks to divided into n′m′ pieces. Then consider an n×m bar. Break it ones.
Then one obtains two bars B0 and B1 of size n0 ×m0 and n1 ×m1, respectively, with
n0m0 + n1m1 = nm. By our induction hypothesis, one has to break bar B0 at least
n0m0 − 1 times and bar B0 at least n0m0 − 1 times. Hence in total we have to break
the bar at least 1 + (n0m0 − 1) + (n1m1 − 1) = nm− 1.

By the principle of strong induction we have shown that indeed one has to break
an n×m chocolate bar at least nm− 1 times to get nm pieces.

The second variation of natural induction that we discuss is the (non)-existence
of a minimal counter example.
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4.4.4 Minimal Counter Example. Let P (n) be a predicate for all n ∈ Z. Let b ∈ Z.
If P (n) is not true for all n ∈ Z, n ≥ b, then there is a minimal counter example. That
means, there is an m ∈ Z,m ≥ b with

P (m) false and
P (n) true for all n ∈ N with b ≤ n < m.

Example 4.4.5 A prime is a a natural number p > 2 such that each divisor of p
equals 1 orp. Every element n ∈ N with n > 1 is divisible by a prime.

Suppose m is a minimal counter example to this statement. Then, as m|m, we
find that m cannot be prime. Hence, it admits a divisor 1 < m1 < m. As m is a
minimal counter example to the statement, m1 is divisible by some prime p. But by
transitivity of the relation “divides”, p also divides m. This contradicts m being the
minimal counter example. Hence we have proved the statement.

4.5. Structural Induction

In this final section we discuss another variation of induction, the so-called structural
induction. If a structure of data types is defined recursively, then we can use this
recursive definition to derive properties by induction.

In particular,

• if all basic elements of a recursively defined structure satisfy some property P ,

• and if newly constructed elements satisfy P , assuming the elements used in the
construction already satisfy P ,

then all elements in the structure satisfy P .
We give some examples.

Example 4.5.1 In Example 4.1.7 we have given a recursive definition of the set T of
finite binary trees.

(∗) In every binary tree T the number edges is one less than the number of vertices.

We prove this by induction:
The tree consisting of a single vertex has 1 vertex and 0 edges. Hence for this tree

the statement is correct.
Now assume suppose a tree T = (V,E) is obtained as Tree(T1, T2) where T1 =

(V1, E1) and T2 = (V2, E2) are two binary trees satisfying (∗). Then the number of
vertices in T equals 1 + |V1| + |V2|, and the number of edges equals 2 + |E1| + |E2|.
Since |V1| = |Ei|+1 we find that |V | = |V1|+|V2|+1 = (|E1|+1)+(|E2|+1)+1 = |E|+1.
Hence T also satisfies (∗).

This proves that all finite binary trees satisfy (∗).
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Example 4.5.2 Let R be a relation on a set S. In 4.1.5 we defined the relation R.
We will use structure induction to show that R is the transitive closure of R.

We already showed that R contains the transitive closure. So it remains to prove
that R is contained in the closure.

Denote the transitive closure of R by TR. Our first step in the proof is to show
that R is contained in TR. But this is by definition of TR. Next suppose (a, b), (b, c) of
R are also in TR, then the element (a, c) of R is also in TR as TR is transitive. Hence
by structural induction, we have R ⊆ TR and hence we may conclude that R = TR.

Although we will not go into the details, we want to mention that natural, strong
and structural induction are actually a particular cases of induction on a well founded
order:

4.5.3 The Principle of Induction on a well founded order. Let (P,v) be a
well founded order. Suppose Q(x) is a predicate for all x ∈ P satisfying:

• Q(b) is true for all minimal elements b ∈ P .

• If x ∈ P and Q(y) is true for all y ∈ P with y v x but y 6= x, then P (x) holds.

Then Q(x) holds for all x ∈ P .

4.6. Exercises

Exercise 4.6.1 John wants to buy a new house. Therefore he needs $200,000 from the
bank. He can pay off this mortgage in 20 years, $10,000 a year. Besides these $10,000,
John also has to pay 8% intrest a year over the amount, he is still has to pay to the
bank.

What is the total amount John has to pay to the bank for this mortgage of
$200.000?

Exercise 4.6.2 Suppose f(n) is the number of strings of length n with symbols from
the alphabet {a, b, c, d} with an even number of a’s.

a) What is f(0)? And what f(1)?

b) Show that f satisfies the recurrence

f(n + 1) = 2 · f(n) + 4n.

Exercise 4.6.3 Suppose f satisfies the recurrence relation

f(n + 2) := 2f(n + 1)− 4f(n).

Show that for all n ∈ N we have f(n + 3) = −8f(n).
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Exercise 4.6.4 Let F be the Fibonacci sequence.

a) Show that for all n > 2 we have

F (n + 2) = 1 +
n∑

i=1

F (i).

b) Show that for all n > 2 we have

F (2n + 1) = 1 +
n∑

i=1

F (2i).

Exercise 4.6.5 Suppose f is defined on N by

f(0) := 1,
f(n) = 2n

n+1f(n− 1) for all n > 0

Compute f(1), f(2), . . . , f(5). Can you find a closed formula for f(n)? Prove that your
formula is correct for all n ∈ N.

Exercise 4.6.6 Suppose f is defined on N by

n∑
i=1

2i− 1
i4 − 2i3 + 3i2 − 2i + 2

Compute f(1), f(2), . . . , f(5). Can you find a closed formula for f(n)? Prove that your
formula is correct for all n ∈ N.

Exercise 4.6.7 Suppose f is defined on N by

n∑
i=1

3i2 − 3i + 1
(i3 + 1)(i3 − 3i2 + 3i)

Compute f(1), f(2), . . . , f(5). Can you find a closed formula for f(n)? Prove that your
formula is correct for all n ∈ N.

Exercise 4.6.8 In a triangle in the plane, the sum of all the three angles equals 180◦.
In a 4-gon, the sum of all the four angles equals 360◦. How about the sum of the angles
in a convex n-gon with n ≥ 5? (An n-gon is called convex, if any straight line between
two vertices of the n-gon does not leave the interior of the n-gon.)

Exercise 4.6.9 Use strong induction to show that for dividing an n × m chocolate
bar into nm pieces, one has to break it at most nm− 1 times.
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Exercise 4.6.10 Suppose you have an infinite collection of coins of 2 and 5 Euro
cents.

Prove, using strong induction, that you can pay any amount of n Euro cents,
where n ∈ N, n ≥ 4.

Give also a proof by assuming the existence of a minimal counter example and
reaching a contradiction.

Exercise 4.6.11 Give a recursive definition of the set of all finite directed trees.
Use structural induction to prove that in all finite directed trees the number of

edges is one less than the number of vertices.

Exercise 4.6.12 Consider the set T of binary trees as recursively defined in Example
4.1.7.

A leaf of a tree is a vertex with outdegree 0. Denote by l the number of leaves in
a tree T ∈ T . Then l = (v + 1)/2 where v is the number of vertices. Prove this using
structural induction.

Exercise 4.6.13 Let S be the subset of Z defined by

−12, 20 ∈ S;

if x, y ∈ S, then x + y ∈ S.

We use structural induction to show that S = {4k | k ∈ Z}. The proof is divided into
three parts.

a) Show that 4 and −4 are in S.

b) Prove, by structural induction, that S ⊆ {4k | k ∈ Z}.

c) Use a) and structural induction to prove that S ⊇ {4k | k ∈ Z}.

Exercise 4.6.14 Find in each of the following cases a closed formula for an.

1. an = 2an−1 + 2, a1 = 3;

2. an = an−1 + 3an−2, a1 = 1 and a2 = 2;

3. an = an−1 + an−3, a1 = 1, a2 = 2, and a3 = 0;

4. an = 2an−1 − an−1, a1 = 1 and a2 = 0.
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5. Bounding some recurrences

5.1. Growth of a function

Definition 5.1.1 Let f, g be fucntions from N to C. We write

f(n) = O(g(n))

and say f(n) is of order at most g(n) if there exists a positive constant C1 such that

|f(n)| ≤ C1|g(n)|

for all but finitely many n ∈ N.
We write

f(n) = Ω(g(n))

and say f(n) is of order at most g(n) if there exists a positive constant C2 such that

|f(n)| ≥ C1|g(n)|

for all but finitely many n ∈ N.
We write

f(n) = Θ(g(n))

and say f(n) is of order g(n) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Example 5.1.2 Let p(n) = a0 + a1n + · · · + akn
k, with ak 6= 0 be a polynomial

function, then p(n) = O(nk). Indeed, let C = |a0|+ |a1|+ · · ·+ |ak|, then for all n ∈ N
we have

|p(n)| = |a0 + a1n + · · ·+ akn
k| ≤ |a0|+ |a1|n + · · ·+ |ak|nk ≤ (|a0|+ · · ·+ |ak|)nk.

If all the coefficients ai are nonnegeative, then p(n) is also Ω(nk), as in this case
we have for all n ∈ N that

|p(n)| = a0 + a1n + · · ·+ akn
k ≥ akn

k.

Example 5.1.3 Consider fucntion f(n) =
∑n

i=1
1
i . Then f(n) = Θ(ln(n)), where ln

denotes the natural logarithm. Indeed, as ln(n) =
∫ n
1

1
xdx, we find

n∑
i=2

1
i
≤ ln(n) ≤

n−1∑
i=1

1
i
.

So, ln(n) ≤ f(n) ≤ ln(n) + 1 ≤ 2 ln(n) for all n ≥ e2.
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Theorem 5.1.4 Suppose f, g, h, k are functions from N to C.
If f = O(g) and h = O(k), then f + h = O(|h|+ |k|) and fh = O(gk).
If f = Ω(g) and h = Ω(k), then |f |+ |h| = Ω(|h|+ |k|) and fg = Ω(gk).

Proof. Suppose f = O(g) and h = O(k). Then there exist n1 and C1 such that
|f(n)| ≤ C1|g(n)| for all n ≥ n1 and n2 and C2 such that |h(n)| ≤ C2|k(n)| for all
n ≥ n2. But then for all n ≥ max(n1, n2) we have |f(n) + h(n)| ≤ |f(n)| + |h(n)| ≤
C1|g(n)| + C2|k(n)| ≤ (C1 + C2)(|g(n)| + |k(n)|) and |f(n)h(n)| = |f(n)| · |h(n)| ≤
C1|g(n)| · C2|k(n)| ≤ (C1C2)(|g(n)k(n)|.

Suppose f = Ω(g) and h = Ω(k). Then there exist n1 and C1 such that |f(n)| ≥
C1|g(n)| for all n ≥ n1 and n2 and C2 such that |h(n)| ≥ C2|k(n)| for all n ≥ n2.
But then for all n ≥ max(n1, n2) we have |f(n)| + |h(n)| ≥ C1|g(n)| + C2|k(n)| ≥
min(C1 + C2)(|g(n)| + |k(n)|) and |f(n)h(n)| = |f(n)| · |h(n)| ≥ C1|g(n)| · C2|k(n)| =
(C1C2)(|g(n)k(n)|.

In the following list we collect a few basic Theta-function with which arbitrary
functions are usually compared.

Symbol Name
Θ(1) Constant
Θ(n) linear
Θ(nm) Polynomial
Θ(mn) with m > 1 Exponential
Θ(n!) Factorial
Θ(ln(n)) logariithmic
Θ(n ln(n)) n log n
Θ(ln ln(n)) log log n

Example 5.1.5 The function f : N → N given by f(n) = ln(n!) is Θ(n ln(n)).
Indeed, f = O(n ln(n)) since

f(n) = ln(n!) = ln(n) + ln(n− 1) + · · ·+ ln(2) + ln(1) ≤ n ln(n)

for all n ∈ N. But we also have
f(n) = ln(n) + ln(n− 1) + · · ·+ ln(2) + ln(1)

≥ ln(n) + ln(n− 1) + · · ·+ ln(dn
2 e)

≥ dn
2 e ln(dn

2 e).
(Here dxe denotes the unique integer m with m− 1 < x ≤ m.)

Since for all n ≥ e2 we have

ln(n/2) = ln(n)− ln(2) ≥ ln(n)− ln(n)/2,

we have
f(n) ≥ n

2
ln(

n

2
) ≥ 1

4
· n ln(n),

which implies f = Ω(n ln(n)).
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5.2. The Master Theorem

The complexity of an algorithm measures the total cost of applying the algorithm in
terms of some basic operations (having cost 1).

Suppose an algorithm splits a problem of size n in a subproblems of the same
type, but of smaller size n/b. If the splitting into subproblems costs g(n) and if f(n)
represents the cost of basic operations to apply the algorithm, then we see that f
satisfies the recurrence

f(n) = af(n/b) + g(n).

This type of recurrence relation is called a divide and conquer relation.

Example 5.2.1 Suppose you have to find the word ‘mathematics’ in a dictionary. You
can start at the first page and search word by word till you have found ‘mathematics’.
Of course, this is not a very efficient way. You probably do something like the following.

Divide the dictinory into two parts and the dicide to which part the word ‘mathe-
matics‘ belongs. Then divide that part in two equal pieces and find the part where the
word ‘mathematics’ is. You repeat this procedure until you have found the word. This
so-called binary search is an example of divide-and-conquer. Suppose n is the number
of words in the part of the dictonary in which you are looking for the word ‘mathemat-
ics’. If the number of operations ‘divide into 2 parts’ and ‘check in which part the word
is’ that is still needed to find the word is denoted by f(n), then f(n) = f(n/2) + 2 for
even n.

Example 5.2.2 Suppose a = [a1, a2, . . . , an] is a list of real numbers. We want to
locate the maximum (or minumum) of a. If a has length 1 then a1 is of course the
maximum. If the length of a is larger than 1, then we split a into two subsequences
of size bn/2c and dn/2e respectively. Then we proceed by search for the maximum in
both parts and set the maximum of a to be the maximum of the two found maxima.
Of course, to find the maximum in each subsequence we use the same procedure. The
number of comparisons we have to make to find the maximum is denoted by f(n). The
functio f staisfies the following recurrence relation: f(n) = 2f(n) + 2, when n is even
and f(n) = f((n− 1)/2) + f((n + 1)/2) + 2 when n is odd.

Theorem 5.2.3 (Master Theorem) Let f be a positive and increasing function that
satisfies the recurrence relation

f(n) = af(bn/bc) + c,

where a ≥ 1, b > 1 is an integer and c ∈ R+. Then

f(n) = O(nlogb a) if a > 1
= O(lnn) if a = 1

44



Discrete Mathematics

Proof. First consider the case that n = bk for some k. Then we can proof by induction
on k that

f(n) = akf(1) + c

k−1∑
j−0

aj .

If a = 1, then f(n) = f(1) + ck and

ck ≤ f(n) ≤ (c + f(1))k.

If a 6= 1, then f(n) = akf(1) + c(ak+1−1
a−1 ) which implies that

f(1)ak ≤ f(n) ≤ (f(1) +
ca

a− 1
)ak.

Now suppose n is arbitrary. Then there is a k ∈ N with bk ≤ n ≤ bk+1. Since f is
an increasing function we have

f(bk) ≤ f(n) ≤ f(bk+1).

So, if a = 1 then
ck ≤ f(n) ≤ (c + f(1))(k + 1)

and, since k ≤ logb(n) ≤ k + 1

f(n) = Θ(logb(n)) = Θ(ln(n)).

If a > 1, then

f(1)ak ≤ f(n) ≤ (f(1) +
ca

a− 1
)a · ak.

from which we deduce that
f(n) = Θ(nlogb(a)).

2

Example 5.2.4 The number of search operations in a binary search is given by the
recursion f(n) = f(n/2) + 2, see 5.2.1. Thus one needs Θ(ln(n)) operations to do such
search.

Example 5.2.5 searching a maximum in a sequence as in 5.2.2 requires Θ(nlog2(2)) =
Θ(n) comparisons.
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5.3. Exercises

Exercise 5.3.1 Select a Theta-notation from the table in Section 5.1. for the function
f in each of the following functions.

1. f(n) = 6n3 + ln(n);

2. f(n) = en + n6;

3. f(n) = ln(n5 + n4 + n3);

4. f(n) = (n+1)(n+2)
n+3 ;

5. f(n) = (n+1)(n+2)
n+3 ;

6. f(n) = n2+ln(n)
n+1 ;

Exercise 5.3.2 Suppose that f(n) = 2f(n/2) + 3 when n is even. Find f(1024)

Exercise 5.3.3 Find f(3k) when f satisfies the recursion f(n) = 2f(n/3) + 4 and
f(1) = 1.

Exercise 5.3.4 In a computer addition, subtraction of intgeres and multiplications
with powers of 2 (as these are shifts in the binary representation) can be done in Θ(n)
bit-operations, where n is the number of bits needed for the representation of an integer
(i.e., the number of digits in the binary representation of the integer). Multiplication
is harder.

Suppose a and b are to integers with binary representation

a = (a2n−1a2n−2 · · · a1a0)2,

b = (b2n−1b2n−2 · · · b1b0)2.

The product ab can be compute in the following way. Notice that a = 2nA1 + A0 and
b = 2nB1 + B0 where

A1 = (a2n−1a2n−2 · · · an)2,

A0 = (an−1an−2 · · · a0)2,

B1 = (b2n−1b2n−2 · · · bn)2,

A0 = (bn−1bn−2 · · · b0)2,

and
ab = (22n + 2n)A1B1 + 2n(A1 −A0)(B0 −B1) + (2n + 1)A0B0.

If f(n) denotes the number of bit operations needed for the multiplication of a
and b then f(n) = 3f(n) + Cn. Prove this.
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6. Graphs

6.1. Graphs

As we noticed before, a directed graph with vertex set A and edge set R is nothing else
than a binary relation R on a set A. An ordinary graph with vertex set A has as edges
subsets of size two from A. A symmetric and irreflexive relation R is often identified
with the ordinary graph with edges {a, b} where (a, b) ∈ R.

Many questions about relations can be phrased in terms of graphs. In this section
we will discuss some of them. Although many of the definitions and result can also be
stated for directed graphs, we will restrict our attention to ordinary graphs. We start
with introducing some graph theoretical notation.

Let Γ = (V,E) be an ordinary graph with vertex set V and edge set E. A walk in
Γ is a sequence (v1, . . . , vn) in V such that {vi, vi+1} ∈ E. A path in Γ is a sequence
(v1, . . . , vn) in V such that {vi, vi+1} ∈ E and vi 6= vi+2. The length of the path
(v1, . . . , vn) equals n − 1. The point v1 is the starting point of the path and vn is the
end point. A shortest path from a to b is a path from a to b of minimal length. The
distance between two points equals the length of a shortest path between them. If
there is no such path, the distance is set to infinity. The graph Γ is called connected
whenever for every two vertices a and b of Γ there is a path with starting point a and
end point b. A cycle is a path (v1, . . . , vn) with the same starting and end point so,
v1 = vn.

The degree deg(v) of a vertex v ∈ V equals the cardinality of the set Γv = {w ∈
V | {v, w} ∈ E}. A graph is called regular if all its vertices have the same degree, it is
called k-regular if all its vertices have degree k.

A connected graph without cycles is called a tree. A tree contains vertices of degree
1. These special vertices are called the leafs of the tree.

If Γ = (V,E) is a graph the the complement Γ of Γ is the graph with the same
vertex set as Γ but with two vertices adjacent if and only if they are not adjacent in
Γ. So, if

(
V
2

)
denotes sthe set of all subsets of V of size 2, then Γ = (V,

(
V
2

)
\ E).

6.2. Some special graphs

A complete graph is a graph in which any two vertices are adjacent. By Kn we denote
the complete graph with n vertices.

A graph Γ = (V,E) is called completely bipartite if its vertex set V can be parti-
tioned into two subsets V1 and V2 such that any edge e ∈ E meets both V1 and V2 in
a vertex. The complete bipartite graph with |V1| = m and |V2| = n will be denoted by
Km,n.

If Γ = (V,E) is a graph, then its line graph is the graph whose vertices are the
edges of Γ and two of such edges are adjacent if and only if they meet in a vertex of Γ.
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6.3. Euler and Hamilton Cycles

Example 6.3.1 One of most famous problems in graph theory is the problem of the
bridges of Königsberg (now called Kaliningrad). The Preusian city of Königsberg was
divided into 4 parts by a river, one of these parts being an island in the river. The
4 regions of the city were connected by 6 bridges. On sunny Sundays the people of
Königsberg used to go walking along the river and over the bridges. The question is, is
there a walk using all the bridges once, that brings the pedestrian back to its starting
point. The problem was solved by Leonard Euler, who showed that such a walk is not
possible.

A cycle in a graph is called an Euler cycle if it contains all edges of the graph
once.

The following result is due to Euler.

Theorem 6.3.2 A finite connected graph contains an Euler cycle if and only if all
vertices have even degree.

Proof. Suppose Γ is a graph admitting an Euler cycle E. Suppose v is a vertex of the
graph. Then inside the Euler cycle E, we see v just as often as an end point of an edge
from E as a starting point. Hence the number of edges on v is even.

Now suppose all vertices of the finite graph Γ have even degree. We start a path
of Γ in the vertex v. Each time we arrive in a vertex u, there are only an odd number
of edges on u in the path. Except when we arrive back in v. If the path P1 constructed
in this way is not an Euler cycle yet, there is at least one edge, e say, in Γ not visited
yet. We may even assume, by connectedness of Γ, that this edge contains a vertex w
from P1. Now we make a path P2 starting in w containing e. As soon as, in the process
of constructing this path, we hit on a vertex of P1, then, as we only have met an odd
number of edges on this vertex, there has to be an edge not in P1 and not yet part of
P2. So, the path P2 may be constructed in such a way that it has no edges in common
with P1. The paths P1 and P2 can be combined to a path P (with more edges than
P1) in the following way. Start in v, follow the path P1 until one reaches w, then follow
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the path P2 completely, and finally continue from w over the path P1 to end in v.
Repeating this process will eventually yield an Euler cycle in Γ. 2

Notice that the above not only proves the theorem, but also describes an algorithm
to find an Euler cycle.

A Hamilton cycle in a graph Γ is a cycle in the graph containing every vertex
exactly ones. It does not seem to be possible to given a characterization of graphs
admitting Hamilton cycles, similar to Theorem 6.6.2. However, the following result
due to Ore, gives a partial result in this direction.

Theorem 6.3.3 If in the finite graph Γ on v vertices for every two nonadjacent ver-
tices a and b we have deg(a) + deg(b) ≥ v, then Γ contains a Hamilton cycle.

Proof. Suppose Γ is a finite graph on v vertices and for any two nonadjacent vertices
a and b we have deg(a) + deg(b) ≥ v. Suppose Γ contains no Hamilton cycle. We add
edges to Γ as long as possible, but we avoid producing a Hamilton cycle. Since the
complete graph on v vertices admits a Hamilton cycle, we end up with a graph Γ0 in
which there is no Hamilton cycle, but addition of any new edges produces one. Notice
that, also in Γ0, we still have that for any two nonadjacent vertices a and b the sum
deg(a) + deg(b) is greater or equal than v.

Now suppose a, b are nonadjacent vertices. Then after adding the edge {a, b} to
Γ0 we obtain a Hamilton cycle a = a0, a1, . . . , av = b in Γ0. Since deg(a) + deg(b) ≥ v,
there are two vertices ai and ai+1 with b adjacent to ai and a adjacent to ai+1. However,
then consider the path a = a1, . . . , ai, b = av, av−1, . . . , ai+1, a in Γ0. This is a Hamilton
cycle and contradicts our assumption on Γ0. Thus Γ has to have a Hamilton cycle.2

6.4. Spanning Trees and Search Algorithms

Example 6.4.1 A search engine at the university wants to search all the web servers
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on campus. These servers are connected by cables within an intranet. To do its search
the search engine does not want to put too much load on the connections between the
different web servers. In fact, it wants to use as as few connections as possible. If we
represent the computer network as a graph with the web servers (and search engine)
as vertices, two vertices connected, if and only if there is a cable connecting them, then
we can phrase the problem as follows: find a connected subgraph on all the vertices
with as few edges as possible.

Trees are graphs with the least number of vertices as follows from the following
theorem.

Theorem 6.4.2 Let Γ be a finite connected graph on v vertices. Then Γ contains at
least v − 1 edges, with equality if and only if Γ is a tree.

Proof. Notice that in a connected graph each vertex is on at least one edge. We prove
this result with induction to the number v of vertices in the graph.

Clearly, for v = 1 the result is true. Now suppose v > 1 and suppose Γ is a tree.
Then removing a leaf of Γ, together with the unique edge on this leaf, yields a tree Γ′

with v− 1 vertices. By induction Γ′ contains v− 2 edges. Thus Γ contains v− 1 edges.
Now suppose Γ contains ≤ v − 1 edges. Since |E| · 2 = 2 · (v − 1) = Σv∈V deg(v),

we find at least one vertex, x say, of degree 1. Removing this vertex and the unique
edge on it from Γ yields a connected graph Γ′ with v − 1 vertices and ≤ v − 2 edges.
By induction, Γ′ is a tree with v − 2 edges. But then, since the vertex x has degree 1
in Γ, we also find Γ to be a tree with v − 1 edges. 2

A spanning tree of a graph Γ is a subgraph of Γ which is a tree, containing all
vertices and some edges of Γ. So the problem of Example 6.4.1 is equivalent to finding a
spanning tree in a graph. Now we describe two search algorithms that in fact construct
spanning trees.

Algorithm 6.4.3 [Depth First Search and Breadth First Search] Consider a
finite connected graph Γ. Fix a vertex v of Γ and label it by Label := 1. The vertex v
will be the root of a spanning tree in Γ. We construct this tree now as follows.

While there is a labeled vertex that has a neighbor not in the tree, find the vertex,
say w with the highest label that has neighbors not in the tree. Add the edge on w
and one of its neighbors not yet in the tree to the tree, and label this neighbor by
Label := Label + 1.

This algorithm is called “Depth First Search”. “Breadth First Search” is a similar
algorithm. However, here the while loop reads a little bit differently:

While there is a labeled vertex that has an unlabeled neighbor, find the vertex,
say w with the smallest label that has neighbors not in the tree. Add the edge on w
and one of its neighbors not yet in the tree to the tree, and label this neighbor by
Label := Label + 1.
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Clearly both algorithms stop after at most |Γ| steps and do indeed yield a tree.
Actually they both construct a spanning tree. To see this we have to show that every
vertex of the graph gets a label. Suppose not, then by connectivity of the graph, there
is a path starting with a labeled vertex w and ending with an unlabeled vertex u.
walking through this path we will find a labeled vertex adjacent to an unlabeled one.
However, this means the while-loop is not finished yet.

Actually the above algorithms imply the following theorem.

Theorem 6.4.4 Let Γ be a finite connected graph, then Γ contains a spanning tree.

6.5. Networks

Example 6.5.1 Consider the set A of (big) cities in the Netherlands. As we have
seen in 1.5.5, the relation “there is a direct train connection between a and b” defines
a binary relation R on this set. The transitive closure of this relation tells us whether
we can travel by train from one city to another. It does not tell us what the best or
fastest way to travel is. Therefore we need some extra information on the relation. For
example, we do not only want to know that there is a train connection from Eindhoven
to Tilburg, but we also want to know how long it takes the train to get form Eindhoven
to Tilburg. So, for each (a, b) ∈ R we want to know the time it costs to travel from a
to b. Such extra information can be encode by a so-called “cost function”. Having this
information it is natural to ask for the fastest connection between two cities, i.e., to
find the shortest path from a to b.
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A graph Γ = (V,E) together with a cost function cost on the set E of edges, i.e.,
a map from E to (usually )R (or any other set) is called a network. In such a network
the length of a path (v1, . . . , vn) equals to sum Σn−1

i=1 cost({vi, vi+1}). The following
algorithm due to Dijkstra describes a way to find a shortest path in a network.

Algorithm 6.5.2 [Dijkstra’s shortest path algorithm] Suppose Γ = (V,E) is a
finite connected graph with cost function cost : E → R+ a positive valued cost function.
Given two elements s and t of V , a shortest (i.e., of minimal cost) path from s to t can
be found as in the following algorithm.

In the process of the algorithm we will keep track of the sets Done and Remainder
and some partial maps DefiniteDistance, EstimatedDistance and Predecessor.

Initiate the algorithm by setting Done := {s}, Remainder := V \ Done. The
distances are set by DefiniteDistance(s) := 0 and EstimatedDistance(r) := ∞ for all
r ∈ Remainder.

While Remainder contains the element t, determine for all elements r in Remain-
der the EstimatedDistance(r), being the minimum of DefiniteDistance(d) + cost(d, r),
where d runs through the set of elements n ∈ Done with {n, r} ∈ E. Moreover, set
Predecessor(r) to be one of the elements d for which this minimum is attained.

For those elements r ∈ Remainder for which EstimatedDistance(r) is minimal, we
can decide that their distance to s is actually equal to EstimatedDistance(r). So, for
those r we set DefiniteDistance(r) = EstimatedDistance(r), and we remove these points
from Remainder and add them to Done.

Since in each step of the While-loop at least one element is added to Done, the
algorithm will terminate and we will find the minimal length DefiniteDistance(t) of
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a path from s to t. Moreover, with the help of Predecessor we even can find a path
realizing this minimal length.

Sometimes one is not interested in finding a shortest path in a network, but a
longest. Notice that this question only makes sense if we are dealing with a network
without cycles, or more in particular, when we are dealing with a directed network
without cycles. The following variation on Dijkstra’s shortest path algorithm yields a
solution to that problem.

Algorithm 6.5.3 [Dijkstra’s longest path algorithm] First we notice that we
may assume that there are no cycles in the network. For otherwise the problem does
not make sense.

Again we set Done := {s}, Remainder := V \ Done. The distances, however, are
set by DefiniteDistance(s) := 0 and EstimatedDistance(r) := 0 for all r ∈ Remainder.

While Remainder contains the element t, determine for all elements r in Remainder
which can only be reached by an edge starting in Done the DefiniteDistance(r), being
the maximum DefiniteDistance(d)+cost(d, r), where d runs through the set of elements
n ∈ Done with {n, r} ∈ E. Moreover, set Predecessor(r) to be one of the elements d for
which this maximum is attained.

We remove these points from Remainder and add them to Done.
Since in each step of the While-loop at least one element is added to Done, then

algorithm will terminate, and we will find the maximal length DefiniteDistance(t) of
a path from s to t. Moreover, with the help of Predecessor we even can find a path
realizing this maximal length.

Algorithm 6.5.4 [Kruskal’s Greedy Algorithm] Suppose Γ is a network. To find
a minimal spanning tree, we first sort the edges with respect to their weight (or cost).
We start with the minimal edge and each time we add an edge of minimal weight to
the graph which does not close a cycle. The resulting subgraph will be a spanning tree
of minimal weight.

Algorithm 6.5.5 [Prim’s Algorithm] In Kruskal’s Greedy Algorithm 6.5.4 we first
have to sort the edges. The following algorithm avoid this. Start with a vertex v and
put it into the set T . At this vertex choose a neighbor outside T on an edge with
minimal weight. Add the neighbor and edge to the subgraph T . Now choose a minimal
edge among the edges with a vertex in T and one outside T a vertex outside T and add
it, together with its end points to T . Repeat this procedure till we have all vertices in
T .

Proposition 6.5.6 Kruskal’s Greedy Algorithm and Prim’s Algorithm provide us with
a minimal spanning tree.
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Proof. Let Tm be the tree obtained after m steps in Kruskal’s or Prim’s algorithm. With
induction on m we prove that there exists a minimal spanning tree T containing Tm.
In particular, taking m to be the number of vertices in Γ, we find that the algorithms
indeed yield a minimal spanning tree.

For m = 1 the graph Tm is just one vertex and hence contained in any minimal
spanning tree. Suppose Tm ⊆ T for some minimal spanning tree T . Then in the next
step of the algorithm we add an edge {v, w} to Tm to obtain Tm+1. If {v, w} is also
an edge of T , then clearly Tm+1 ⊆ T . Thus assume T does not contain {v, w}. This
implies that {v, w} with some vertices of T forms a cycle C. Inside that cycle there is
an edge {v′, w′} 6= {v, w} with v′ ∈ Tm but w′ 6∈ Tm.

By the choice of {v, w} in the algorithm, we have cost({v, w}) ≤ cost({v′, w′}.
Hence, replacing the edge {v′, w′} in T by {v, w} we obtain again a spanning tree,
T ′ say, with cost(T ) ≥ cost(T ′). In particular, T ′ is also a minimal spanning tree
containing Tm+1.

2

6.6. Planar Graphs

A graph is called planar if one can draw the graph in the plane (on paper) such that
no two edges cross. If a graph is planar, then it is possible to draw it in many different
ways. Such a drawing is called a map of the graph.

Suppose Γ is a finite planar graph mapped into the plane. Then the following two
constructions lead to a new graph also mapped into the plane.

• Add a new vertex and connect it to a vertex of Γ via an edge not crossing any
edge of the map.

• Connect two non adjacent vertices of Γ by an edge not crossing any edge of the
map.

Actually it is not hard to see that any planar map of a finite graph can be obtained
by the appplying the above procedure |E| times, (where E is the edges set of the graph)
starting from a graph with a single vertex.

A map of a graph divides the plane in various different regions. The degree of a
region is the number of edges at its border. As each edge of the graph borders exactly
two regions we find the following formula for a finite graph Γ = (V,E).

Lemma 6.6.1 Let Γ = (V,E) be a finite planar graph mapped into the plane. Then∑
r∈R

degree(R) = 2|E|,

where R is the set of regions of the map of Γ in the plane.
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The famous mathematician Euler proved the following formula.

Theorem 6.6.2 [Euler’s Formula] |V | − |E|+ |R| = 2.

Proof. We will prove the theorem using structural induction.
For the graph with just one vertex and no edges the results holds true.
Now any planar map can be obtained from this graph with a single vertex by

applying step 1 or 2 described above.
In step 1, no new region is createdm but both V and E get bigger by 1. So

|V | − |E|+ |R| does not alter.
In step 2, |V | remains the same, |E| increases by 1 but also the number of regions

increases by 1. Again |V | − |E|+ |R| does not alter.
Hence by structural induction, we have proved the theorem. 2

Example 6.6.3 A map of the complete graph K4 in the plane.

A planar graph with 8 vertices, 13 edges and 7 regions.

A consequence of Euler’s formula is the following.
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Proposition 6.6.4 Suppose Γ = (V,E) is a planar graph with at least 3 vertices. If
every region of the graph is bounded by at least e edges, then 2 ≤ |V | − (1− 2/e)|E|.

In particular, if Γ is connected and contains at 3 vertices, then |E| ≤ 3|V | − 6.

Proof. Let R the set of regions of a map of Γ into the plane. Then by 6.6.2 we have

|V | − |E|+ |R| = 2.

As each region is bounded by at least e edges, 6.6.1 we find

2|E| ≥ e|R|.

But then we find

2 = |V | − |E|+ |R| ≤ |V | − (1− 2/e)|E|,

which implies
|E|+ 2 ≤ 3|V | − 6.

If Γ is connected and contains at 3 vertices, then every region is bounded by at
least 3 edges, so we obtain |E| ≤ 3|V | − 6. 2

Example 6.6.5 The graph K5 is not planar. Indeed, K5 has 5 vertices and 10 edges,
so 10 = |E| > 3|V | − 6 = 9.

Consider the graph K3,3 . This graph has 6 vertices and 9 edges, so it does satisfy
the conditions as given in the above proposition. However, K3,3 is not planar. We will
prove this by contradiction. So suppose K3,3 is planar. Then by Euler’s formula any
map of K3,3 has 5 regions. Since K3,3 does not contain triangles, any region is bounded
by at least 4 edges. So, we can apply the above proposition to obtain a contradiction.
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In 1930, the polish mathematician Kuratowski obtained the following beautiful
characterization of planar graphs.

Theorem 6.6.6 [Kuratowski’s Theorem] A finite graph Γ is planar if and only if
it contains no subgraph homeomorphic to K5 or K3,3.

Two graphs are called homeomorphic if one can obtain one graph from the other,
by replacing edges by strings.

Example 6.6.7 Below you see two homeomorphic graphs.
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6.7. Graph Colorings

Consider a graph Γ = (V,E). A coloring of Γ is an assigment of colors to the vertices of
Γ such that two adjacent vertices have different colors. The minimal number of colors
needed to color Γ is called the chromatic number of Γ.

One of the most famous results in graph theory is the following theorem due to
Appel and Haken.

Theorem 6.7.1 [Four Color Theorem] Any finite planar graph can be colored with
at most 4 colors.

6.8. Exercises

Exercise 6.8.1 A graph Γ is called regular of degree d if all its vertices have degree
d. Show that in a finite regular graph Γ = (V,E) of degree d we have

|V | · d = 2 · |E|.

Exercise 6.8.2 A tree Γ is called binary if all its vertices either have degree ≤ 3 or
are leafs and one vertex, called the root and denoted by r, is a vertex of degree 2.

Let Γ be a finite binary tree. Fix a vertex r (called root) of Γ. By l we denote the
number of leafs of Γ and by d the maximal distance of a vertex v in Γ to r. Prove that
l ≤ 2d.

For sorting algorithms based on comparison of two elements we can make a deci-
sion tree. For example, for sorting the three elements {a, b, c} the decision tree looks
as follows:

How many leaves does such a decision tree have when sorting n elements? Suppose
r is the starting point of the decision tree. Can you give a lower bound on d? What
does this mean for the complexity of sorting algorithms based on comparison of two
elements?
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Exercise 6.8.3 Find spanning trees in the following graph using both “Depth first
search” and “Breadth first search”.

Exercise 6.8.4 Suppose T is a spanning tree in a finite connected graph Γ. If e is an
edge of Γ which is not in T , then there is an edge d of T , such that replacing d by e in
T yields again a spanning tree of Γ. Prove this.

Exercise 6.8.5 How can one use Theorem 6.6.2 to solve the problem of the Königsberger
bridges, see 6.3.1?

Exercise 6.8.6 An Euler path is a path from a vertex a to a vertex b in a graph
containing all edges of the graph just ones. Show that a finite connected graph Γ
contains an Euler path from a to b if and only if a and b are the only vertices of odd
degree in Γ.

Exercise 6.8.7 How does Theorem 6.6.2 generalize to directed graphs?

Exercise 6.8.8 Can one find an Euler cycle in the cube? And a Hamilton cycle?

Exercise 6.8.9 Can one find an Euler cycle in the following graph? And a Hamilton
cycle?

Exercise 6.8.10 Use Dijkstra’s algorithm to find both the shortest path from s to t.
If we assume that one can only walk through the network from left to right, then

what is the longest path from s to t?

Exercise 6.8.11 Apply both Kruskal’s Greedy Algorithm and Prim’s Algorithm to
find a minimal spanning tree in the following network.

Exercise 6.8.12 The diameter of a graph is the maximal distance between any of
its vertices. Describe an algorithm that determines the diameter of a finite connected
graph.
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7. Lattices and Boolean Algebras

7.1. Lattices

Definition 7.1.1 Let (P,v) be a partially order set and A ⊆ P a subset of P . An
element p ∈ P is called an upper bound for A if a v p for all a ∈ A. It is called a
lower bound for A if p v a for all a ∈ A. If the set of all upper bounds of A has a
smallest element, then this element is called the supremum or least upper bound of A.
If it exists, it is denoted by supA.

Similarly the largest lower bound of A (if it exists) is called the infimum or greatest
lower bound of A and is denoted by inf A.

Example 7.1.2 • If S is a set and P = P(S) the poset of all subsets of S with
relation ⊆, then for any subset X of P the supremum supX equals

⋃
x∈X x and

the infimum inf X equals
⋂

x∈X x.

• Consider the set N of natural numbers with order relation |, “is a divisor of”.
Then the supremum of two elements a, b ∈ N equals lcm(a, b). The greatest
common divisor gcd(a, b) is the infimum of {a, b}.

• Suppose X and Y are two sets and P is the set of all partial maps from X to
Y . We consider the order v on P as in Example ??. If f and g are two distinct
maps from X to Y , then there is no supremum of f and g, as there is no partial
map having the same graph as both f and g. But the infimum of f and g is the
partial map whose graph is the intersection of the graph of f and g.

Definition 7.1.3 A poset (P,v) is called a lattice, if for all x, y ∈ P the subset {x, y}
of P has a supremum and an infimum. The supremum of x and y is denoted by x t y
and the infimum as x u y.

Example 7.1.4 Here are some examples of lattices we already encountered before.

• (R,≤) is a lattice. If x, y ∈ R, then sup{x, y} = max{x, y} and inf{x, y} =
min{x, y}.

• If S is a set and P = P(S) the poset of all subsets of S with relation ⊆, then P
is a lattice with u = ∩ and t = ∪.

• The poset (N, |) of natural numbers with order relation | is a lattice with the
least common multiple as t and the greatest common divisor as u.

Theorem 7.1.5 Let (L,v) be a lattice. Then for all x, y, z ∈ L we have the following:

1. x t x = x and x u x = x;

2. x t y = y t x and x u y = y u x;
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3. x t (y t z) = (x t y) t z and x u (y u z) = (x u y) u z;

4. x t (x u y) = x u (x t y) = x.

Proof. The first two statements are obvious. To prove the third, we will show that
x t (y t z) is the supremum of the set {x, y, z}. Clearly, x t (y t z) is an upper bound
for x and y t z and thus also for y and z. Any other upper bound u of x, y and z,
is also an upper bound of x and y t z and therefore an upper bound for x t (y t z).
This implies that x t (y t z) is the smallest upper bound of x, y and z. But so is also
(xt y)t z and we obtain the first statement of (iii). The second equation follows from
the first by considering the dual poset.

It remains to prove (iv). Clearly x is an upper bound of x and x u y. For any
other upper bound u of x and xu y we clearly have x v u. Thus x equals the smallest
common upper bound x t (x u y) of x and x u y.

Dually we obtain x u (x t y) = x. 2

Remark 7.1.6 Actually, if L is a set with two operations t and u from L × L → L
satisfying (i) upto (iv) of the previous Theorem, then the relation v given by x v y if
and only if x = x u y defines a lattice structure on L.

The standard example of a lattice is the lattice of all subsets of a set V . All four
properties listed above can easily be checked in this particular example. However not
all laws carry over. The so-called distributive laws

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

and
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

for all A,B, C ⊂ V , do not hold in general. A weaker version, however, is valid:

Theorem 7.1.7 Let (L,v) be a lattice. Then for all x, y, z ∈ L we have the following:

x t (y u z) v (x t y) u (x t z)

and dually,
x u (y t z) w (x u y) t (x u z).

Proof. Let x, y, z ∈ L. Then we have that x t y is an upper bound for x and for y.
Furthermore, as y u z v y, we find that y is an upper bound for y u z. Thus x t y is
an upper bound for both x and y u z. Hence we have xt (y u z) v xt y. Similarly we
find that x t (y u z) v x t z. But then we find x t (y u z) v (x t y) u (x t z).

The second statement is just the dual of the first. 2
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Definition 7.1.8 Lattices in which we have for all x, y, z

x t (y u z) = (x t y) u (x t z)

and dually,
x u (y t z) = (x u y) t (x u z)

are called distributive laticces.

Example 7.1.9 Consider the poset (P (V ),⊆) of all linear subspaces of a vector space
V . Let X, Y, Z be three distinct 1-dimensional subspaces inside a 2-dimensional sub-
space W . Then X t (Y uZ) equals X whereas (X t Y )u (X tZ) = W uW = W . So,
we have encountered a nondistributive lattice. (See Exercise 7.5.4.)

Definition 7.1.10 A partial order in which every chain p1 v p2 v . . . has a supremum
is called a complete partial order (CPO).

A lattice in which every subset has a supremum and infimum, is called a complete
lattice. Notice that a complete lattice has a maximal element.

Example 7.1.11 Every finite poset or lattice is complete.

Example 7.1.12 Consider the poset (P(V ),⊆) of all subsets of a set V . Then this
poset is a lattice. It is also complete. Indeed, for any subset C of P(V ) the supremum
is the union

⋃
c∈C c.

Example 7.1.13 Consider the poset of partial functions from a set A to a set B. This
poset is complete. Indeed, if we have a chain f1 v f2 v . . . , then this is a chain of
subsets of A×B with respect to inclusion. Hence f =

⋃
i∈N fi is the supremum of the

chain.

Example 7.1.14 The poset (R,≤) is a lattice, but it is not complete. However, every
interval [a, b] with a < b is a complete lattice.

Theorem 7.1.15 Let (P,v) be a poset in which every subset has an infimum. Then
every subset has also a supremum. In particular, (P,v) is a complete lattice.

Proof. Let A be a subset of P . By B we denote the set of all upper bounds of A. The
infimum b of B is an upper bound of A. Indeed, every element a is a lower bound for
all the elements in B and thus also for the infimum of B. In particular, we find b ∈ B.
The element b is the supremum of A. 2
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7.2. Boolean Algebras

In the previous section we have encountered the operations u and t in a lattice (L,v).
In this section we will have a closer look at these operations.

We start with some examples.

Example 7.2.1 Let Ω be a set and P(Ω) the set of all subsets of Ω. Then the inter-
section ∩ and the union ∪ are two binary operations on P(Ω). These operations ∩ and
∪ satisfy the following laws, where X, Y and Z are elements from P(Ω):

• commutativity: X ∩ Y = Y ∩X en X ∪ Y = Y ∪X;

• associativity: X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z en X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z;

• absorption: X ∪ (X ∩ Y ) = X en X ∩ (X ∪ Y ) = X;

• distributivity: X∪(Y ∩Z) = (X∪Y )∩(X∪Z) and X∩(Y ∪Z) = (X∩Y )∪(X∩Z).

The empty set ∅ and complete set Ω are special elements with respect to these
operations ∩ en ∪. For all X ∈ P(Ω) we have:

• X ∩ ∅ = ∅;

• X ∪ Ω = Ω.

Finally, for each element X from P(Ω) there exists a complement Xc with:

• X ∩Xc = ∅ and X ∪Xc = Ω.

Example 7.2.2 For n ∈ N denote by D(n) the set of positive divisors of n. Suppose
n is a product of distinct primes.

On D(n) we can consider the operations gcd and lcm. These operations are com-
mutative, associative en distributive. Also the absorption laws hold, for lcm(x, gcd(x, y)) =
x and gcd(x, lcm(x, y)) = x. Special elements for these operations are 1 for gcd and n
for lcm: gcd(1, x) = 1 en lcm(x, n) = n. Finally, to each x ∈ D(n) we can associate a
complement: n/x. For this complement we have: gcd(x, n/x) = 1 and lcm(x, n/x) = n.
Thus D(n) together with the operations gcd, lcm, 1, n and x 7→ n/x satisfies the same
7 laws as in the previous example.

Definition 7.2.3 A set V together with the binary operations u en t, special elements
⊥ and >, called the bottom and top, respectively, and a unary operation X 7→ Xc (the
complement of v) satisfying for all X, Y ∈ V :

• u and t are commutative, associative and distributive;

• the absorption laws: X t (X u Y ) = X and X u (X t Y ) = X;
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• Xu ⊥=⊥ en X t > = >;

• X tXc = > en X uXc =⊥,

is called a Boolean algebra.

Remark 7.2.4 Boolean algebras are named after the British mathematician George
Boole (1815–1864), who was the first to investigate the algebraic laws for the operations
∪ en ∩ on sets.

Example 7.2.5 Let V be the set of sequences of zeros and ones of length n. On V we
define an addition min and multiplication max as follows:

(a1, . . . , an)min(b1, . . . , bn) = (min(a1, b1), . . . ,min(an, bn)).

(a1, . . . , an)max(b1, . . . , bn) = (max(a1, b1), . . . ,max(an, bn))

As special elements we have ⊥= (0, . . . , 0) and > = (1, . . . , 1). For each v ∈ V the
element vc is defined as as the unique element with at coordinate i a 0, if and only if
the coordinate i of v has value 1. These operation and elements turn V into a Boolean
algebra.

The above example and Example 7.2.1 do not really differ. For, if Ω is a set of
n elements, then we can fix and order ω1, . . . , ωn on these elements of Ω, and every
subset X of Ω can be identified with the sequence of zeros and ones with a one at
position i if and only if ωi ∈ X.

Addition min corresponds to taking intersections, and multiplication max with
taking unions.

Example 7.2.6 Suppose Ω is an infinite set and B the Boolean algebra of subsets of
Ω as described in 7.2.1. By F we denote the set of subsets of Ω with finitely many
points or missing finitely many points form Ω. Then F contains the empty set ∅ as well
as the full set Ω. Moreover, F is closed under ∪, ∩ and c. For, if X, Y ∈ F then also
X ∪ Y , X ∩ Y and Xc are in F . (Prove this!) The set F together with the elements ∅
and Ω, and the operations ∪, ∩ and c is also a Boolean algebra.

Lemma 7.2.7 Let (V,u,t,⊥,>, v 7→ vc) be a Boolean algebra. Then V contains a
unique bottom and a unique top element. Moreover, for each v ∈ V the complement vc

is the unique element w in V satisfying v ∪ w = > and v ∩ w =⊥.

Proof. Let v be an element in V with v u w = v for all w ∈ V . Then we have
v = vu ⊥=⊥. Thus the bottom element ⊥ is unique.

If v is an element in V with vtw = v for all w ∈ V . Then we have v = vt> = >.
Thus also the top element > is unique.
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To prove uniqueness of the complement we first notice that for all v ∈ V we have:

vt ⊥= v t (vu ⊥) = v, v u > = v u (v t >) = v.

Suppose, to prove uniqueness of the complement of v, that vuw =⊥ and vtw = >
for some element w ∈ V . Then the above implies:

w = w u >
= w u (v t vc)
= (w u v) t (w ∩ vc)
=⊥ t(w u vc)
= (v u vc) t (w u vc)
= (v t w) u vc

= > u vc

= vc,

and thus w = vc. 2

Exercise 7.2.1 Show that in a Boolean algebra we have:

⊥c= > and >c =⊥ .

Exercise 7.2.2 Suppose V with the operations u,t,⊥,> and v 7→ vc is a Boolean
algebra. Show that for all v and w in V we have :

1. (vc)c = v;

2. (v u w)c = vc t wc;

3. (v t w)c = vc u wc.

The last two rules are called the rules of De Morgan.

Exercise 7.2.3 Let n ∈ N and denote by D(n) the set of divisors of n. On D(n) we
consider the operations as defined in Example 7.2.2. Does this always turn D(n) into
a Boolean algebra? Give necessary an sufficient conditions on n to turn D(n) into a
Boolean algebra.

Exercise 7.2.4 Prove that there is no Boolean algebra on three elements.
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7.3. Examples from Logic and Electrical Engineering

Example 7.3.1 In logic we often make use of the following truth table:

X Y X∧Y X∨Y ¬X
True True True True False
True False False True False
False True False True True
False False False False True

the symbols X and Y can be interpreted as maps on a (not further specified) set taking
the values True or False. The first two columns give the various values X and Y can
take.

From this table we easily check that ∧, ∨ and ¬ define a Boolean algebra on the
set {False, T rue}.

Example 7.3.2 In the design of electrical circuits one also often uses three basic gates,
a NOT-gate, an AND-gate and an OR-gate, see [?].

The NOT-gate gives a signal if there is no input signal, and gives no signal if
there is an input signal. The AND-gate accepts two signal and returns only a signal if
there are indeed two signals coming in. The OR-gate accepts two signal and returns a
signal if there is at least one signal coming in. Several of these gates are set together to
form the electrical circuit. In such a circuit we have n input channels and one output
channel. We denote a signal at a channel by 1 and no signal by 0. The input is then a
sequence of n zeros or ones. The output is just 1 or 0. We regard such a circuit as a
map from the n input channels to the output channel, or from the set of 0, 1-sequences
of length n to {0, 1}.

For example, if we consider the a circuit with five input channels A, B, C, D
and E as in the figure below, then we can think of A to represent the function which
is projection on the Ath-coordinate, B is projection on the Bth-coordinate, etc. The
AND-gate corresponds to taking the minimum, the OR-gate to taking the maximum.
So A and B is minimum of the functions A and B, and A or B is the maximum of the
functions A and B . The NOT-gate changes the value of a map from 1 to 0 or from 0
to 1.

The circuit displayed in the figure corresponds to the map

(not (A and B) or (C or D)) and (not E).
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The AND-gate, OR-gate and NOT-gate turn the set of electrical circuits into a Boolean
algebra.

Exercise 7.3.1 What is ⊥ and what is > in the Boolean algebra of Example 7.3.1?
The map X ∧ Y evaluates only in one case to True. Construct three other maps that
also evaluate only ones to True.

Exercise 7.3.2 What is ⊥ and what is > in the Boolean algebra of Example 7.3.2?
Can you prove that the AND-gate, OR-gate and NOT-gate turn the set of electrical
circuits indeed into a Boolean algebra?

Exercise 7.3.3 The following electrical circuit represents the so-called Hotel switch.
What does it do? Why is it called Hotel switch? Can you find another element in the

Boolean algebra of electrical circuits representing this Hotel switch?

7.4. The Structure of Boolean Algebras

Proposition 7.4.1 Let B = (V,u,t,⊥,>, v 7→ vc) be a Boolean algebra. For x, y ∈ V
the following three statements are equivalent.

1. x u y = x;

2. x t y = y;
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3. ∃z ∈ V : y = x t z.

Proof. (i)⇒(iii). Suppose (i). Let z = y. Then

x t z = (y u x) t (y u >) = y u (x t >) = y u > = y,

which proves (iii).
(iii)⇒(ii). Suppose (iii) . Then with z as in (iii):

y t x = x t z t x = x t z = y.

Hence (ii).
(ii)⇒(i). If (ii) holds, then, by the second absorption law,

y ∩ x = (y ∪ x) ∩ x = x,

from which we deduce (i). 2

Definition 7.4.2 Let B = (V,u,t,⊥,>, v 7→ vc) be a Boolean algebra. Define the
relation v on V by

x v y ⇔ x u y = x

for x, y ∈ V . (One of the three equivalent statements from 7.4.1.)

Lemma 7.4.3 Let B = (V,u,t,⊥,>, v 7→ vc) be a Boolean algebra. Then v defines
a partial order on V with minimum ⊥ and maximum >.

Proof. Let x, y, z ∈ V .
v is reflexief: Indeed, since x = x u x, we have x v x.
v is antisymmetric: Suppose x v y v x. Then x = x u y = y, so x = y.
v is transitive: Suppose x v y v z. Then we have x = y u x = (z u y) u x =

z u (y u x) = z u x, and hence x v z.
We have proved v to be reflexive, antisymmetric and transitive. Hence it is a

partial order.
Finally, since ⊥=⊥ ux en > = > t x (see 7.4.1), we find ⊥ and > to be the

minimum and maximum of (V,v). 2

Definition 7.4.4 An element x of a Boolean algebra is called an atom if is there is
no other element y than ⊥ and x itself with y v x.
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By Proposition 7.4.1 an element x different from ⊥ in a Boolean algebra is an
atom if and only if for all y 6=⊥ we have: if x u y = y, then y = x. If a1, . . . , am are
elements in a Boolean algebra, then

a1 t · · · t am

is well defined (t is associative). Moreover, this expression is independent of the order
of the ai (t is commutative) and finally it is independent of the multiplicity of the ai

(for, a t a = a). Therefore, we can express this the element a1 t · · · t am also by⊔
1≤i≤m

ai.

Similarly, also
a1 u · · · u am

is well defined, and we write it as
1≤i≤mai.

Theorem 7.4.5 [Representation Theorem of Finite Boolean Algebras] Let
B = (V,u,t,⊥,>, v 7→ vc) be a finite Boolean algebra. Suppose A is the set of atoms
in B. Then every element b ∈ V can be written as

b =
⊔

a∈A,avb

a.

Moreover, this expression is unique, i.e., if b =
⊔

a∈A′ a for some subset A′ of A,
then A′ = {a ∈ A, a v b}.

Proof. Suppose the right hand side of

b =
⊔

a∈A,avb

a

equals w. Then by 7.5.11 we have w v b. Therefore

b = (b u w) t (b u wc) = w t (b u wc).

We will show b u wc =⊥. For, then we have b = wt ⊥= w, and we are done.
If α ∈ A satisfies α v b u wc, then

α v b and α va∈A,avb ac.

In particular, α v αc, so α = αuαc =⊥. A contradiction. This implies that no element
from A is less than or equal to b∩wc. Since V is finite, there is for each element v 6=⊥
an atom a with a v v: if v is not an atom, then there is an element v1 6=⊥ with v1 v v.
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Then v1 is an atom, or there is an element v2 6=⊥ with v2 v v1. Etc. Conclusion:
b ∩ wc = 0.

Remains to prove the uniqueness of this expression for b. Suppose that b =
⊔

a∈A′ a
for some subset A′ of A. Then clearly A′ ⊆ {a ∈ A, a v b}. If a0 ∈ {a ∈ A | a v b}\A′,
then

a0 = a0 u b = a0 u (
⊔

a∈A′

a) =
⊔

a∈A′

(a0 u a) =
⊔

a∈A′

⊥=⊥ .

A contradiction. 2

The above theorem states that a finite Boolean algebra B can be identified with
the Boolean algebra of subsets of A, the set of atoms of B. In the next section we will
make this statement more precise.

Notice that the above result is not true for infinite Boolean algebras. Indeed, the
Example 7.2.6 shows that an infinite Boolean algebra can not always be identified with
the set of subsets of its atoms.

Example 7.4.6 Consider the Boolean algebra of electrical circuits with n input chan-
nels as described in Example 7.3.2. Then the AND-gate corresponds to u and the
OR-gate to t. In terms of maps from the set of 0, 1-sequences of length n to {0, 1},
AND corresponds to taking the minimum of two functions. Hence, the map which
sends everything to 0 is the minimal element ⊥ in this Boolean algebra. The atoms are
the elements that take the value 1 only ones. Hence there are just as many atoms as
there 0, 1-sequences and that number is 2n. Now Theorem 7.4.5 implies that there are
exactly 22n

different elements in this Boolean algebra. But as there are also exactly 22n

different maps from the set of 0, 1-sequences to {0, 1}, this implies that each possible
map can be realized by a circuit.

It remains the problem to find for a given map a circuit that realizes the map. Or
even better, a small circuit doing so. This is still a difficult task. But our translation of
the problem into a problem of Boolean algebras makes it easier to solve this question
with the help of the computational power of computers.

7.5. Exercises

Exercise 7.5.1 Let (P,v) be a poset and A a subset of P . Prove that an element
a ∈ A is maximal if and only if for all x ∈ A we have a v x implies a = x.

Exercise 7.5.2 Let (L,v) be a lattice and x, y, z ∈ L. Prove that

1. x v y implies x t z v y t z.

2. x v z implies z t (x u y) = z.

Exercise 7.5.3 In the figure below you see three diagrams. Which of these diagrams
are Hasse diagrams? Which of these diagrams represents a lattice?
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Exercise 7.5.4 Let V be a vector space. Show that the poset (P (V ),⊆) is a complete
lattice.

Exercise 7.5.5 Consider the poset of partial functions from a set A to a set B as in
7.1.13. This is a complete poset. Prove this.

Exercise 7.5.6 Is the poset ({1, 2, 3, 4, . . . }, |) a complete lattice? How about ({0, 1, 2, 3, 4, . . . }, |
)?

Exercise 7.5.7 Suppose (L,v) is a lattice and a, b ∈ L with a v b. Prove that v
induces a lattice on the interval [a, b].

Exercise 7.5.8 Let (L,v) be a lattice. If for all x, y, z ∈ L we have

x t (y u z) = (x t y) u (x t z)

then we also have for all x, y, z ∈ L that

x u (y t z) = (x u y) t (x u z).

Prove this. (Hint: use x u (y t z) = (x u (y t x)) u (y t z).)

Exercise 7.5.9 Determine the atoms of all the Boolean algebras from 7.2.2, 7.2.1,7.2.6,
and 7.3.1.

Exercise 7.5.10 Prove for elements a, b in a Boolean algebra:

a v b ⇔ bc v ac.

Exercise 7.5.11 Prove, for elements x, y, z in a Boolean algebra,

1. that x v z and y v z is equivalent to x t y v z;

2. that z v x and z v y is equivalent to z v x u y;
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3. that x u y =⊥ is equivalent to x v yc. [hint: look at x u (y t yc).]

Exercise 7.5.12 Let a be an atom in a Boolean algebra and suppose x, y are two
arbitrary elements. Prove:

1. a v xc ⇔ a 6v x. [hint: ⇒ 7.5.11 (ii); ⇐ 7.5.11 (iii).]

2. a v x t y ⇔ a v x or a v y.

Exercise 7.5.13 Suppose (V,∩,∪, 0, 1, v 7→ vc) is a Boolean algebra. Show that for
all v in V we have:

1. v u v = v;

2. v t v = v.

Exercise 7.5.14 In Exercise 7.2.4 one should prove that there is no Boolean algebra
on three elements. With the results of this section at hand, one can prove much more.
What order can a finite Boolean algebra have?
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