- Marks:40
- 1. Can there exist a function f on a complete lattice (L, \leq) such that for all $x \in L$, x < f(x)? Soln: No. A complete lattice must have a maximum element 1. But f(1) > 1 is impossible.
- 2. In every poset (P, \leq) without maximal elements, does there exist a function f such that x < f(x) for all $x \in P$?

Soln: Yes, because for each $x \in P$, $GT(x) = \{y \in P : x < y\}$ is non-empty for otherwise x would be maximal. Using axiom of choice, for each x, we can choose an $f(x) \in GT(x)$.

3. Let f be a progressive function on a complete lattice (L, \leq) . Can there exist a non-empty chain $C \subseteq L$ such that whenever $x \in C$, $f(x) \in C$, but $\sup(C) \notin C$?

Soln: Yes. Consider the complete lattice $\overline{\mathbf{R}} = \mathbf{R} \cup \{\pm \infty\}$ with the normal \leq relation and the progressive function f(x) = x + 1. The chain $C = \{0, 1, 2, 3, ...\}$ satisfies $f(x) \in C$ whenever $x \in C$, but $sup(C) = +\infty \notin C$.

4. Let f be an injective map from a set A to another set B. Let g be an injective map from B to A. Let C be a subset of A such that A - C = g(B - f(C)). How will you define a bijection h between A and B?

Soln: Define h(x) = f(x) if $x \in C$ and $h(x) = g^{-1}(x)$ if $x \in A - C$.

5. Without using the Bourbaki Witt Theorem, prove that on a complete lattice (L, \leq) , a progressive function f has a fix point.

Soln: Let x be the maximum element in L. $f(x) \ge x \Rightarrow f(x) = x$

6. A poset (W, \leq) is well ordered if for each non-empty subset S of W, $\inf(S)$ exists and $\inf(S) \in S$. Is it true that every well ordered poset is a lattice?

Soln: Yes. Let $x, y \in W, x \neq y$. Since the set $\{x, y\}$ has a minimum element, one of the elements, say x must be smaller than the other one; that is x < y. But then $sup(\{x, y\}) = y$ and $inf(\{x, y\}) = x$ and W satisfies the lattice requirements.

7. Consider the set of all binary sequences $A = \{(a_0, a_1, a_2, \dots) : a_i \in \{0, 1\}\}$. Show that A is uncountably infinite.

Soln: Straightforward diagonal argument. Assume that $a^0, a^1, a^2, ...$ be an enumeration of all sequences, where each $a^i = (a_1^i, a_2^i, a_3^i..)$ is an infinite binary sequence. Construct the diagonal sequence $b = (b_0, b_1, b_2, ...)$ where $b_i = 1 - a_i^i$. It is easy to see that b differs from a^i in the value of the i^{th} term, and hence not part of the enumeration, contradicting the assumption that all binary sequences can be enumerated.

8. Let (P, \leq) be a poset. A subset S of P is an *antichain* if for each $x, y \in S$, **neither** x < y **nor** y < x. Does *every* poset contain a *maximal* antichain?

Soln: Yes. Apply Zorn's Lemma. Consider the set A(P) of all antichains in P with the subset relation \subseteq . If $\{C_i\}_{i\in I}$ is a collection of antichains, such that for each $i, j \in I$, either $C_i \subseteq C_j$ or $C_j \subseteq C_i$, then it is easy to see that $\bigcup_{i\in I} C_i$ is an antichain as well (why? - this statement could be succirtly stated as: "union of a chain of anti-chains is an anti-chain!"). Thus $(A(P), \subseteq)$ is a chain complete poset. In particular, every chain (of antichains) has an upper bound (their union). It follows by Zorn's lemma that A(P) contains a maximal element.

9. Let f be a progressive function on a chain complete poset (P, ≤). Let x₀ ∈ P A subset A of P is said to be open if 1) x₀ ∈ A, 2) Whenever x ∈ A, f(x) ∈ A and 3) for any chain C ⊆ A, sup(C) ∈ A. Let E be the intersection of all open subsets of P. Can we conclude that for each x ∈ E, x₀ ≤ x? Soln: Yes. Let Q = {x ∈ E : x ≥ x₀}. If we prove that Q is open, it follows that Q = E and proves the claim (why?). 1) x₀ ∈ Q by definition of E and Q. 2. If x ∈ Q, we have x ≥ x₀ and since

3

3

3

3

3

3

3

3

3

f is progressive, we have $f(x) \ge x$. Thus we have $f(x) \ge x \ge x_0$ ensuring that $f(x) \in Q$. Finally, 3. if C is a chain in Q and let x = sup(C). For each $c \in C$, $c \ge x_0$. Hence $sup(C) \ge x_0$ and thus $c \in Q$. Thus Q is open, proved.

10. Either construct a Herbrand Model or show a resolution proof for the unsatisfiability of the FOLG formula $\exists x \forall y \exists z (G(x, y) \land \neg G(x, z))$.

Soln: The functional form is $\phi(y) = \forall y(G(c, y) \land \neg G(c, f(y)))$, Herbrand Universe $\mathcal{D}(\phi) = \{c, f(c), f^2(c), ...\}$ and Herbrand expansion $\mathcal{H}(\phi) = \{\phi(c), \phi(f(c)), \phi(f^2(c)), ...\} = \{G(c, c) \land \neg G(c, f(c)), G(c, f(c)) \land \neg G(c, f^2(c)),\}.$ It is now an easy resolution to prove unsatisfiability of $\mathcal{H}(\phi)$

- 11. Consider the following FOLG(=, 0) axioms to capture $T = \{.. -3, -2, -1, 0\}$ with G modeling a successor function defined by succ(x) = x + 1: 1) 0 has a unique predecessor, but no successor. 2) Every non-zero element has a unique successor and predecessor different from itself.
 - 1. Formulate the above properties in FOLG(=). $Soln: 1. \exists x \forall y \forall u(G(x, 0) \land (G(y, 0) \Rightarrow (y = x)) \land \neg G(0, u))$ $2. \forall x[(x \neq 0) \Rightarrow \exists y \exists z \forall p \forall q \{G(x, y) \land G(z, x) \land (G(x, p) \Rightarrow (p = y)) \land (G(q, x) \Rightarrow (q = z))\}]$
 - 2. Give a model satisfying the above axioms that is not isomorphic to T. Soln: (A, R) with $A = T \cup \{a, b\}, R = \{(i - 1, i) : i < 0, i \text{ integer }\} \cup \{(a, b), (b, a)\}.$
 - 3. Show that it is impossible to categorically axiomize T by adding more FOLG(=) axioms to the above axiom set.

Soln: Suppose \mathcal{A} is a collection of FOLG(=) axioms that categorically axiomize the model T. Consider the extension of FOLG(=) with constants 0 and c yielding FOLG(=, 0, c). Add axioms $\phi_0 = \forall x \neg G(0, x), \phi_1 = \forall x_1 G(x_1, 0) \Rightarrow (x_1 \neq c), \phi_2 = \forall x_1 \forall x_2 G(x_2, x_1) \land G(x_1, 0) \Rightarrow (x_2 \neq c), \ldots$. Basically the axioms stipulate that 0 has no successor and c has no path to zero in finitely many steps. Since any finite subset of these added set is satisfied by our standard model T, by compactness theorem it follows that $\mathcal{A} \cup \{\phi_0, \phi_1, \ldots\}$ must have a model. However, T does not satisfy $\mathcal{A} \cup \{\phi_0, \phi_1, \ldots\}$ (why) and hence there must be some other model, not isomorphic to T, which is satisfied by $\mathcal{A} \cup \{\phi_0, \phi_1, \ldots\}$. But this model satisfies \mathcal{A} as well. Hence, \mathcal{A} fails to categorically axiomize T, proving the claim. 3x3