1. Can there exist a function f on a complete lattice (L, \leq) such that for all $x \in L, x<f(x)$?

Soln: No. A complete lattice must have a maximum element 1 . But $f(1)>1$ is impossible.
2. In every poset (P, \leq) without maximal elements, does there exist a function f such that $x<f(x)$ for all $x \in P$?
Soln: Yes, because for each $x \in P, G T(x)=\{y \in P: x<y\}$ is non-empty for otherwise x would be maximal. Using axiom of choice, for each x, we can choose an $f(x) \in G T(x)$.
3. Let f be a progressive function on a complete lattice (L, \leq). Can there exist a non-empty chain $C \subseteq L$ such that whenever $x \in C, f(x) \in C$, but $\sup (C) \notin C ?$
Soln: Yes. Consider the complete lattice $\overline{\mathbf{R}}=\mathbf{R} \cup\{ \pm \infty\}$ with the normal \leq relation and the progressive function $f(x)=x+1$. The chain $C=\{0,1,2,3, \ldots\}$ satisfies $f(x) \in C$ whenever $x \in C$, but $\sup (C)=+\infty \notin C$.
4. Let f be an injective map from a set A to another set B. Let g be an injective map from B to A. Let C be a subset of A such that $A-C=g(B-f(C))$. How will you define a bijection h between A and B ?
Soln: Define $h(x)=f(x)$ if $x \in C$ and $h(x)=g^{-1}(x)$ if $x \in A-C$.
5. Without using the Bourbaki Witt Theorem, prove that on a complete lattice (L, \leq), a progressive function f has a fix point.
Soln: Let x be the maximum element in $L . f(x) \geq x \Rightarrow f(x)=x$
6. A poset (W, \leq) is well ordered if for each non-empty subset S of $W, \inf (S)$ exists and $\inf (S) \in S$. Is it true that every well ordered poset is a lattice?
Soln: Yes. Let $x, y \in W, x \neq y$. Since the set $\{x, y\}$ has a minimum element, one of the elements, say x must be smaller than the other one; that is $x<y$. But then $\sup (\{x, y\})=y$ and $\inf (\{x, y\})=x$ and W satisfies the lattice requirements.
7. Consider the set of all binary sequences $A=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots.\right): a_{i} \in\{0,1\}\right\}$. Show that A is uncountably infinite.
Soln: Straightforward diagonal argument. Assume that $a^{0}, a^{1}, a^{2}, \ldots$ be an enumeration of all sequences, where each $a^{i}=\left(a_{1}^{i}, a_{2}^{i}, a_{3}^{i} ..\right)$ is an infinite binary sequence. Construct the diagonal sequence $b=$ $\left(b_{0}, b_{1}, b_{2}, ..\right)$ where $b_{i}=1-a_{i}^{i}$. It is easy to see that b differs from a^{i} in the value of the $i^{t h}$ term, and hence not part of the enumeration, contradicting the assumption that all binary sequences can be enumerated.
8. Let (P, \leq) be a poset. A subset S of P is an antichain if for each $x, y \in S$, neither $x<y$ nor $y<x$. Does every poset contain a maximal antichain?
Soln: Yes. Apply Zorn's Lemma. Consider the set $A(P)$ of all antichains in P with the subset relation \subseteq. If $\left\{C_{i}\right\}_{i \in I}$ is a collection of antichains, such that for each $i, j \in I$, either $C_{i} \subseteq C_{j}$ or $C_{j} \subseteq C_{i}$, then it is easy to see that $\bigcup_{i \in I} C_{i}$ is an antichain as well (why? - this statement could be succintly stated as: "union of a chain of anti-chains is an anti-chain!"). Thus $(A(P), \subseteq)$ is a chain complete poset. In particular, every chain (of antichains) has an upper bound (their union). It follows by Zorn's lemma that $A(P)$ contains a maximal element.
9. Let f be a progressive function on a chain complete poset (P, \leq). Let $x_{0} \in P$ A subset A of P is said to be open if 1) $\left.x_{0} \in A, 2\right)$ Whenever $x \in A, f(x) \in A$ and 3) for any chain $C \subseteq A, \sup (C) \in A$. Let E be the intersection of all open subsets of P. Can we conclude that for each $x \in E, x_{0} \leq x$?
Soln: Yes. Let $Q=\left\{x \in E: x \geq x_{0}\right\}$. If we prove that Q is open, it follows that $Q=E$ and proves the claim (why?). 1) $x_{0} \in Q$ by definition of E and Q. 2. If $x \in Q$, we have $x \geq x_{0}$ and since
f is progressive, we have $f(x) \geq x$. Thus we have $f(x) \geq x \geq x_{0}$ ensuring that $f(x) \in Q$. Finally, 3. if C is a chain in Q and let $x=\sup (C)$. For each $c \in C, c \geq x_{0}$. Hence $\sup (C) \geq x_{0}$ and thus $c \in Q$. Thus Q is open, proved.
10. Either construct a Herbrand Model or show a resolution proof for the unsatisfiability of the $F O L G$ formula $\exists x \forall y \exists z(G(x, y) \wedge \neg G(x, z))$.
Soln: The functional form is $\phi(y)=\forall y(G(c, y) \wedge \neg G(c, f(y)))$, Herbrand Universe $\mathcal{D}(\phi)=$ $\left\{c, f(c), f^{2}(c), ..\right\}$ and Herbrand expansion
$\mathcal{H}(\phi)=\left\{\phi(c), \phi(f(c)), \phi\left(f^{2}(c)\right), \ldots\right\}=\left\{G(c, c) \wedge \neg G(c, f(c)), G(c, f(c)) \wedge \neg G\left(c, f^{2}(c)\right), \ldots\right\}$.
It is now an easy resolution to prove unsatisfiability of $\mathcal{H}(\phi)$
11. Consider the following $\operatorname{FOLG}(=, 0)$ axioms to capture $T=\{. .-3,-2,-1,0\}$ with G modeling a successor function defined by $\operatorname{succ}(x)=x+1: 1) 0$ has a unique predecessor, but no successor. 2) Every non-zero element has a unique successor and predecessor different from itself.

1. Formulate the above properties in $\operatorname{FOLG}(=)$.

Soln: 1. $\exists x \forall y \forall u(G(x, 0) \wedge(G(y, 0) \Rightarrow(y=x)) \wedge \neg G(0, u))$
2. $\forall x[(x \neq 0) \Rightarrow \exists y \exists z \forall p \forall q\{G(x, y) \wedge G(z, x) \wedge(G(x, p) \Rightarrow(p=y)) \wedge(G(q, x) \Rightarrow$ $(q=z))\}]$
2. Give a model satisfying the above axioms that is not isomorphic to T.

Soln: (A, R) with $A=T \cup\{a, b\}, R=\{(i-1, i): i<0, i$ integer $\} \cup\{(a, b),(b, a)\}$.
3. Show that it is impossible to categorically axiomize T by adding more $F O L G(=)$ axioms to the above axiom set.
Soln: Suppose \mathcal{A} is a collection of $F O L G(=)$ axioms that categorically axiomize the model T. Consider the extension of $\operatorname{FOLG(=)}$ with constants 0 and c yielding $\operatorname{FOLG}(=, 0, c)$. Add axioms $\phi_{0}=\forall x \neg G(0, x), \phi_{1}=\forall x_{1} G\left(x_{1}, 0\right) \Rightarrow\left(x_{1} \neq c\right), \phi_{2}=\forall x_{1} \forall x_{2} G\left(x_{2}, x_{1}\right) \wedge$ $G\left(x_{1}, 0\right) \Rightarrow\left(x_{2} \neq c\right), \ldots$. Basically the axioms stipulate that 0 has no successor and c has no path to zero in finitely many steps. Since any finite subset of these added set is satisfied by our standard model T, by compactness theorem it follows that $\mathcal{A} \cup\left\{\phi_{0}, \phi_{1}, \ldots\right\}$ must have a model. However, T does not satisfy $\mathcal{A} \cup\left\{\phi_{0}, \phi_{1}, \ldots\right\}$ (why) and hence there must be some other model, not isomorphic to T, which is satisfied by $\mathcal{A} \cup\left\{\phi_{0}, \phi_{1}, \ldots\right\}$. But this model satisfies \mathcal{A} as well. Hence, \mathcal{A} fails to categorically axiomize T, proving the claim.

