
Assignment I

1. Give a resolution proof for the unsatisfiability of the set of propositaional formulas
{(p1 ∨ ¬p2 ∨ p3), (p2 ∨ p3), (¬p1 ∨ p3), (p2 ∨ ¬p3), (¬p2)}.

2. (For non CS Students): Understand the notions of an algorithm, polynomial time algorithm, NP-hard
problem and NP-complete problem. Understand the statement of the famous “Cook’s Theorem” and
the notion of how a problem can be shown to be NP-complete by showing that there exits a polynomial
time reduction from a problem already known to be NP-hard.

3. Suppose each clause in a finite set of propositional clauses has atmost two literals, show that resolution
gives a polynomial time algorithm for checking satisfiability of the clause set. (Hint: Each clause can
be written in the from (pi → pj) (or (pi → ¬pj) or (¬pi → pj) or (¬pi → ¬pj)). This may be
thought of as a dependency relation — if pi is set to T , then pj must be (or must not be) set to T in any
satisfying truth assignment for the formula. Now construct a dependency graph and the satisfiability
problem becomes a graph problem.)

4. (For CS Students): A Horn formula is a formula in CNF such that in every clause, all except at most one
literal is negated. (that is the formula can be written as a conjuction of clauses where, each clause looks
like (p1∧p2∧ . . . pk → pk+1). or like (p1∧p2∧ . . . pk → F ). Show that there is a polynomial time
algorithm for checking whether the forumla is satisfiable in this case. (Note: Such clauses are known as
Horn Clauses. HORNSAT is in P even as the general formula satisfiability problem is NP complete).

5. Trace through the steps of the compactness theorem to find a satisfying truth assignment (if one
exists) given by the proof of the theorem for the collection of formulas:
{(p1), (¬p1 ∨ ¬p2), (p1 ∨ p2 ∨ p3), (¬p1 ∨ ¬p2 ∨ ¬p3 ∨ ¬p4), . . . }.

6. (For Math Students:) In this question, we will develop another proof for the compactness theorem for
propositional logic. This proof will also make it clear why this theorem is called compactness theorem

Consider the set {T, F} with the discrete topology. Show that w.r.t. this toplogy, every subset is
both open and closed and the space is compact. Now look at the product space {T, F}N . (i.e., the
product space T = {T, F} × {T, F} × . . . .). What can you say about this space using Tichonoff
theorem? Each truth assignment is a point in this product space.

Now, let F be a collection of formulas. assume that every finite subset of F is satisfiable. Let p1, p2, . . .
be the variables in the formulas. Suppose F ′ be a finite subset of F . Denote by TF ′ the subset of T
that satisfies F ′. Denote by C the collection of all finite subsets of F . Thus for each F ′ ∈ C, TF ′ 6= ∅.
Show that for each F ′ ∈ C, TF ′ is a closed subset of T . Can you conlude that

⋂
F ′∈C TF ′ 6= ∅?

(Hint: Tichonoff theorem). Hence argue that any truth assignment in this intersection will satisfy F .
(Note that this proof extends to the case when there are uncountably many propositional formulas and
variables)

7. Let A, B be arbitrary sets and R ⊆ A × B be a binary relation. For any A′ ⊆ A, R(A′) = {b′ ∈
B : (a′, b′) ∈ R for some a′ ∈ A′}. An R-Matching from A to B is an injective map f : A −→ B
such that for each a ∈ A, f(a) ∈ R({a}). The relation R is said to satisfy the Hall Condition if
for each A′ ⊂ A, A′ finite, |R(A′)| ≥ |A′|.
The Hall’s theorem states that if A, B are finite sets and R satisfies the Hall’s condition, then there
exists at least one R-matching from A to B.

Use compactness theorem to prove that the theorem is true even if A and B are infinite sets.


