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Abstract.
Transfinite induction is like ordinary induction, only more so. The salient feature of

transfinite induction is that it works by not only moving beyond the natural numbers,
but even works in uncountable settings.

Wellordering
A partial order on a set S is a binary relation, typically written as < or ≺
or some similar looking symbol (let us pick ≺ for this definition), which is
transitive in the sense that, if x ≺ y and y ≺ z, then x ≺ z, and antireflexive
in the sense that x ≺ x never holds. The order is called total if, for every
x, y ∈ S, either x ≺ y, x = y, or y ≺ x. We write x � y if y ≺ x.

Furthermore, we write x 4 y if x ≺ y or x = y. When ≺ is a partial order
then 4 is also a transitive relation. Furthermore, 4 is reflexive, i.e., x 4 x
always holds, and if x 4 y and y 4 x both hold, then x = y. If a relation 4
satisfies these three conditions (transitivity, reflexivity, and the final condition)
then we can define ≺ by saying x ≺ y if and only if x 4 y and x 6= y. This
relation is then a partial order (exercise: prove this). We will call a relation
of the form 4 a partial order, too. We rely on the shape of the symbol used
(whether it includes something vaguely looking like an equals sign) to tell us
which kind is meant.

Obvious examples of total orders are the usual orders on the real numbers,
written < or ≤.

A much less obvious example is the lexicographical order on the set RN of
sequences x = (x1, x2, . . .) of real numbers: x < y if and only if, for some n,
xi = yi when i < n while xn < yn. Exercise: Show that this defines a total
order.

An example of a partially ordered set is the set of all real functions on the
real line, ordered by f ≤ g if and only if f(x) ≤ g(x) for all x. This set is
not totally ordered. For example, the functions x 7→ x2 and x 7→ 1 are not
comparable in this order.

Another example is the set P(S) of subsets of a given set S, partially ordered
by inclusion ⊂. This order is not total if S has at least two elements.

A wellorder on a set S is a total order ≺ so that every nonempty subset
A ⊆ S has a smallest element. That is, there is some m ∈ A so that m 4 a for
every a ∈ A.
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One example of a wellordered set is the set of natural numbers {1, 2, . . .}
with the usual order.

Morover, every subset of a wellordered set is wellordered in the inherited
order.

1 Proposition. (Principle of induction) Let S be a wellordered set, and
A ⊆ S. Assume that, for every x ∈ S, if y ∈ A for every y ≺ x, then x ∈ A.
Then A = S.

Proof: Let B = S \ A. If A 6= S then B 6= ∅. Let x be the smallest element
of B. But then, whenever y ≺ x then y ∈ A. It follows from the assumption
that x ∈ A. This is a contradiction which completes the proof.

An initial segment of a partially ordered set S is a subset A ⊆ S so that, if
a ∈ A and x ≺ a, then x ∈ A. Two obvious examples are {x ∈ S : x ≺ m} and
{x ∈ S : x 4 m} where m ∈ S. An initial segment is called proper if it is not
all of S.

Exercise: Show that every initial segment of a wellordered set S is either of
the form {x ∈ S : x ≺ m}, where m ∈ S, or all of S.

A map f : S → T between partially ordered sets S and T is called order
preserving if x ≺ y implies f(x) ≺ f(y). It is called an order isomorphism if it
has an inverse, and both f and f−1 are order preserving. Two partially ordered
sets are called order isomorphic if there exists an order isomorphism between
them.

Usually, there can be many order isomorphisms between order isomorphic
sets. However, this is not so for wellordered sets:

2 Proposition. There can be only one order isomorphism between two well-
ordered sets.

Proof: Let S and T be wellordered, and f , g two order isomorphisms from S
to T . We shall prove by induction that f(x) = g(x) for all x ∈ S. We do this
by applying Proposition 1 to the set of all x ∈ S for which f(x) = g(x).

Assume, therefore, that x ∈ S and that f(y) = g(y) for all y ≺ x.
Let t be the smallest element of T which is greater than f(y) for all y ≺ x. It

must exist, for f(x) is one such t, and T is wellordered. In particular, f(x) < t.
We shall prove that f(x) = t. Since this must hold equally well for g, it will

follow that f(x) = g(x), and this will finish the proof.
But we cannot have f(x) � t, for then t = f(y) for some y ∈ S with x � y,

because f is an order isomorphism. But this would contradict the definition of
t.

Thus f(x) = t as claimed, and the proof is complete.
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3 Corollary. If S and T are wellordered and f : S → T is an order isomor-
phism of S to an initial segment of T , then for each s ∈ S, f(s) is the smallest
t ∈ T greater than every f(x) where x ≺ s.

Proof: Examine the proof of the previous proposition.

4 Proposition. Given two wellordered sets, one of them is order isomorphic
to an initial segment of the other (which may be all of the other set).

Proof: Let S and T be wellordered sets, and assume that T is not order iso-
morphic to any initial segment of S. We shall prove that S is order isomorphic
to an initial segment of T .

Let W be the set of w ∈ S so that {y ∈ S : y 4 w} is order isomorphic to
an initial segment of T .

Clearly, W is an initial segment of S. In fact, if w1 ∈ S and w2 ∈ W with
w1 ≺ w2 and we restrict the order isomorphism of {y ∈ S : y 4 w2} to the set
{y ∈ S : y 4 w1}, we obtain an order isomorphism of the latter set to an initial
segment of T . By using Corollary 3, we conclude that the union of all these
mappings is an order isomorphism f of W to an initial segment of T . Since T
not order isomorphic to an initial segment of S, f [W ] 6= T .

Assume that W 6= S. Let m be the smallest element of S \W . Extend f by
letting f(m) be the smallest element of T \ f [W ]. Then the extended map is
an order isomorphism, so that m ∈ W . This is a contradiction

Hence W = S, and the proof is complete.

It should be noted that if S and T are wellordered and each is order isomorphic
to an initial segment of the other, then S and T are in fact order isomorphic.
For otherwise, S is order isomorphic to a proper initial segment of itself, and
that is impossible (the isomorphism would have to be the identity mapping).

5 Theorem. (The wellordering principle) Every set can be wellordered.

Proof: The proof relies heavily on the axiom of choice. Let S be any set, and
pick a “complementary” choice function c : P(S) \ {S} → S.

More precisely, P(S) is the set of all subsets of S, and so c is to be defined
on all subsets of S with nonempty complement. We require that c(A) ∈ S \ A
for each A. This is why we call it a complementary choice function: It chooses
an element of each nonempty complement for subsets of S.

We consider subsets G of S. If G is provided with a wellorder, then G (and
the wellorder on it) is called good if

c({x ∈ G : x ≺ g}) = g

for all g ∈ G.
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The idea is simple, if its execution is less so: In a good wellorder, the smallest
element must be x0 = c(∅). Then the next smallest must be x1 = c({x0}),
then comes x2 = c({x0, x1}), and so forth. We now turn to the formal proof.

If G1 and G2 are good subsets (with good wellorders ≺1 and ≺2) then one
of these sets is order isomorphic to an initial segment of the other. It is easily
proved by induction that the order isomorphism must be the identity map.
Thus, one of the two sets is contained in the other, and in fact one of them is
an initial segment of the other. Let G be the union of all good subsets of S.
Then G is itself a good subset, with an order defined by extending the order
on all good subsets. In other words, G is the largest good subset of S.

Assume G 6= S. Then let G′ = G∪{c(G)}, and extend the order on G to G′

by making c(G) greater than all elements of G. This is a wellorder, and makes
G′ good. This contradicts the construction of G is the greatest good subset of
S, and proves therefore that G = S.

Ordinal numbers. We can define the natural numbers (including 0) in terms
of sets, by picking one set of n elements to stand for each natural number n.
This implies of course

0 = ∅,

so that will be our starting point. But how to define 1? There is one obvious
item to use as the element of 1, so we define

1 = {0}.

Now, the continuation becomes obvious:

2 = {0, 1}, 3 = {0, 1, 2}, . . .

In general, given a number n, we let its successor be

n+ = n ∪ {n}.

We define n to be an ordinal number if every element of n is in fact also a
subset of n, and the relation ∈ wellorders n.

Obviously, 0 is an ordinal number. Perhaps less obviously, if n is an ordinal
number then so is n+. Any element of an ordinal number is itself an ordinal
number, and each element is in fact the set of all smaller elements.

On the other hand, you may verify that, e.g., {0, 1, 2, 4} is not an ordinal
number, for though it is wellordered by ∈, 4 is not a subset of the given set.

If m and n are ordinal numbers, then either m = n, m ∈ n, or n ∈ m.
For one of them is order isomorphic to an initial segment of the other, and an
induction proof shows that this order isomorphism must be the identity map.
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For the proof of our next result, we are going to need the concept of definition
by induction. This means to define a function f on a well-ordered set S by
defining f(x) in terms of the values f(z) for z ≺ x. This works by letting A
be the subset of S consisting of those a ∈ S for which there exists a unique
function on {x ∈ S : x 4 a} satisfying the definition for all x 4 a, and then
using transfinite induction to show that A = S. In the end we have a collection
of functions, each defined on an initial segment of S, all of which extend each
other. The union of all these functions is the desired function. We skip the
details here.

6 Proposition. Every wellordered set is order isomorphic to a unique ordinal
number.

Proof: The uniqueness part follows from the previous paragraph. We show
existence.

Let S be wellordered. Define by induction

f(x) = {f(z) : z ≺ x}.

In particular, this means that f(m) = ∅ = 0 where m is the smallest element
of S. The second smalles element of S is mapped to {f(m)} = {0} = 1, the
next one after that to {0, 1} = 2, etc.

Let
n = {f(s) : s ∈ S}.

Then every element of n is a subset of n. Also n is ordered by ∈, and f is
an order isomorphism. Since S is wellordered, then so is n, so n is an ordinal
number.

An ordinal number which is not 0, and is not the successor n+ of another
ordinal number n, is called a limit ordinal.

We call an ordinal number finite if neither it nor any of its members is
a limit ordinal. Clearly, 0 is finite, and the successor of any finite ordinal is
finite. Let ω be the set of all finite ordinals. Then ω is itself an ordinal number.
Intuitively, ω = {0, 1, 2, 3, . . .}. ω is a limit ordinal, and is in fact the smallest
limit ordinal.

There exist uncountable ordinals too; just wellorder any uncountable set,
and pick an order isomorphic ordinal number. There is a smallest uncountable
ordinal, which is called Ω. It is the set of all countable ordinals, and is a rich
source of counterexamples in topology.

Arithmetic for ordinals can be tricky. If m and n are ordinals, let A and B be
wellordered sets order isomorphic to m and n, with A ∩ B = ∅. Order A ∪ B by
placing all elements of B after those of A. Then m + n is the ordinal number order
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isomorphic to A ∪ B ordered in this way. You may verify that 0 + n = n + 0 = n
and n+ = n + 1. However, addition is not commutative on infinite ordinals: In fact
1 + n = n whenever n is an infinite ordinal. (This is most easily verified for n = ω.)
You may also define mn by ordering the cross product m × n lexicographically. Or
rather, the convention calls for reverse lexicographic order, in which (a, b) < (c, d)
means either b < d or b = d and a < c. For example, 0n = n0 = 0 and 1n = n1 = n,
but ω2 = ω + ω while 2ω = ω:

ω × 2 is ordered (0, 0), (1, 0), (2, 0), . . . , (0, 1), (1, 1), (2, 1), . . . ,

2× ω is ordered (0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), . . .

Zorn’s lemma and the Hausdorff maximality principle
As powerful as the wellordering principle may be, perhaps the most useful
method for doing transfinite induction is by Zorn’s lemma. We need some
definitions.

A chain in a partially ordered set is a subset which is totally ordered. A
partially ordered set is called inductively ordered if, for every chain, there is an
element which is greater than or equal to any element of the chain. An element
of a partially ordered set is called maximal if there is no element of the set
greater than the given element.

7 Theorem. (Zorn’s lemma) Every inductively ordered set contains a max-
imal element.

Proof: Denote the given, inductive, order on the given set S by ≺. Let < be
a wellorder of S.

We shall define a chain (whenever we say chain in this proof, we mean a
chain with respect to ≺) on S by using induction on S. First, we include the
<-smallest element s0 of S in our chain. Next, we include the second smallest
element s1 if s1 � s0. We continue in the same way, always including the next
element s if s � x for every x included so far.

To put this on a firm footing, let us say that s dominates a subset X ⊂ S
if s < x for each x ∈ X. We shall define f(s) so that it becomes a chain built
from a subset of {x : x ≤ s} for each s, and so that f(s) ⊆ f(t) whenever s < t.
The induction becomes a bit complicated to account for the case when s has
no predecessor in the < order; the auxiliary function F will take care of that
little problem.

More precisely, define f : S → P(S) by induction as follows. When s ∈ S,
let F (s) =

⋃
x<s f(x). Assuming the induction hypothesis that f(x) is a chain

for each x < s and also f(x) ⊆ f(y) whenever x < y < s, then F (s) is also a
chain. Let f(s) = F (s) ∪ {s} if s dominates F (s), f(s) = F (s) otherwise. By
induction, f(x) is a chain for every x, and f(x) ⊆ f(y) whenever x < y.
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Let C =
⋃

s∈S f(s). Then C is a chain with respect to ≺. Since S is induc-
tively ordered, there is an element s ∈ S so that s dominates C.

We claim that s is maximal. For if not, then there is some t � s. Then, in
particular, t dominates F (t). But then t ∈ f(t) by the definition of f , so t ∈ C.
This contradicts the fact that t � s and s < x for every x ∈ C.

The next theorem is very similar to Zorn’s lemma. Some people seem to prefer
one, some the other. They can usually be used interchangably.

8 Theorem. (Hausdorff’s maximality principle) Any partially ordered
set contains a maximal chain.

Proof: Let S be a partially ordered set, and let C be the set of chains in S,
ordered by inclusion. Then C is inductively ordered (exercise: prove this), so it
has a maximal element by Zorn’s lemma.

Exercise: Use Hausdorff’s maximality principle to prove Zorn’s lemma.

The wellordering principle, Zorn’s lemma, and Hausdorff’s maximality lemma
are all equivalent to the Axiom of choice. To see this, in light of all we have
done so far, we only need to prove the Axiom of choice from Zorn’s lemma.

To this end, let a set S be given, and let a function f be defined on S, so
that f(s) is a nonempty set for each s ∈ S. We define a partial choice function
to be a function c defined on a set Dc ⊆ S, so that c(x) ∈ f(x) for each x ∈ Dc.
We create a partial order on the set C of such choice function by saying c 4 c′ if
Dc ⊆ Dc′ and c′ extends c. It is not hard to show that C is inductively ordered.
Thus it contains a maximal element c, by Zorn’s lemma. If c is not defined on
all of S, we can extend c by picking some s ∈ S \Dc, some t ∈ f(s), and letting
c′(s) = t, c′(x) = c(x) whenever x ∈ Dc. This contradicts the maximality of c.
Hence Dc = S, and we have proved the Axiom of choice.

We end this note with an application of Zorn’s lemma. A filter on a set X is
a set F of subsets of X so that

∅ /∈ F , X ∈ F ,
A ∩B ∈ F whenever A ∈ F and B ∈ F ,
B ∈ F whenever A ∈ F and A ⊆ B ⊆ X.

A filter F1 is called finer than another filter F2 if F1 ⊇ F2. An ultrafilter is a
filter U so that no other filter is finer than U .

9 Proposition. For every filter there exists at least one finer ultrafilter.
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Proof: The whole point is to prove that the set of all filters on X is inductively
ordered by inclusion ⊆. Take a chain C of filters, that is a set of filters totally
ordered by inclusion. Let F =

⋃
C be the union of all these filters. We show

the second of the filter properties for F , leaving the other two as an exercise.
So assume A ∈ F and B ∈ F . By definition of the union, A ∈ F1 and

B ∈ F2 where F1,F2 ∈ C. But since C is a chain, we either have F1 ⊆ F2 or
vice versa. In the former case, both A ∈ F2 and B ∈ F2. Since F2 is a filter,
A ∩B ∈ F2. Thus A ∩B ∈ F .
Ultrafilters can be quite strange. There are some obvious ones: If x ∈ X, {A ⊆
X : x ∈ A} is an ultrafilter. Any ultrafilter that is not of this kind, is called free. It
can be proved that no explicit example of a free ultrafilter can be given, since there
are models for set theory without the axiom of choice in which no free ultrafilters
exist. Yet, if the axiom of choice is taken for granted, there must exist free ultrafilters:
On the set N of natural numbers, one can construct a filter F consisting of precisely
the cofinite subsets of N, i.e., the sets with a finite complement. Any ultrafilter finer
than this must be free.

Let U be a free ultrafilter on N. ThenX
k∈A

2−k : A ∈ U
ff

is a non-measurable subset of [0, 1].
The existence of maximal ideals of a ring is proved in essentially the same way as

the existence of ultrafilters. In fact, the existence of ultrafilters is a special case of
the existence of maximal ideals: The set P(X) of subsets of X is a ring with addition
being symmetric difference and multiplication being intersection of subsets. If F is a
filter, then {X \A : A ∈ F} is an ideal, and similarly the set of complements of sets
in an ideal form a filter.

Finally we should mention that the axiom of choice has many unexpected conse-
quences, the most famous being the Banach–Tarski paradox: One can divide a sphere
into a finite number of pieces, move the pieces around, and assemble them into two
similar spheres.

Further reading
A bit of axiomatic set theory is really needed to give these results a firm footing.
A quite readable account can be found on the Wikepedia:
http://en.wikipedia.org/wiki/Axiomatic_set_theory
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