
Chapter 4

Posets and Zorn’s lemma

Definition 4.1 (Poset). A partially ordered set or poset is a pair (X,≤) where X is a
set and ≤ is a relation on X satisfying:

1. Reflexivity: x ≤ x, ∀x ∈ X .

2. Antisymmetry: if x ≤ y and y ≤ x then x = y, ∀x, y ∈ X .

3. Transitivity: if x ≤ y and y ≤ z then x ≤ z, ∀x, y, z ∈ X .

Write x < y for x ≤ y and x �= y. Alternatively in terms of <, � ∃x : x < x, x < y
and y < z implies x < z.

Example 4.2. (N,≤), (Q,≤) and (R,≤) are posets (in fact total orders).

Example 4.3. (N+, |) where (x|y means x divides y) is not a poset.

Example 4.4. S a set. X ⊆ P(S) with A ≤ B if A ⊆ B.

Definition 4.5 (Hasse diagram). A Hasse diagram for a poset is a drawing of the
points in the poset with an upwards line from x to y if y covers x (meaning x < y and
� ∃z : x < z < y).

Sometimes a Hasse diagram can be drawn for an infinite poset. For example (N,≤)
but (Q,≤) has an empty Hasse diagram.

Definition 4.6 (Chain). A chain in a poset X is a set A ⊆ X that is totally ordered
(∀x, y ∈ A : have x ≤ y or y ≤ x).

For example in (R,≤) any subset, like (Q,≤) is a chain. Note that a chain need
not be countable.

Definition 4.7 (Antichain). An antichain is a subset A ⊆ X in which no two distinct
elements are comparable. ∀x, y : x �= y, neither x ≤ y nor y ≤ x.

Definition 4.8 (Upper bound). For S ⊆ X and x ∈ X , say x is an upper bound for
S if y ≤ x ∀y ∈ S.

Definition 4.9 (Least upper bound, supremum, ∧S). x is a least upper bound for
S ⊆ X if x is an upper bound for S and every upper bound y for S satisfies x ≤ y.

Clearly unique if it exists. Write x = ∧S = supS the supremum or join of S.

Definition 4.10 (Complete). A poset is complete if every set has a supremum.
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Observation 4.11. Every complete poset X has a greatest element, ∧X and a least
element ∧∅.

Definition 4.12 (Monotone, order preserving). A function f : X �→ X , X a poset,
is monotone or order preserving if x ≤ y implies f(x) ≤ f(y).

Theorem 4.13 (Knaster-Tarski fixed point theorem). X a complete poset, f : X �→
X order preserving. Then f has a fixed point.

Proof. Let E = {x ∈ X : x ≤ f(x)}. Possibly E = ∅.
Claim. If x ∈ E then f(x) ∈ E. Proof. x ≤ f(x) so f(x) ≤ f(f(x)) as f order

preserving. So f(x) ∈ E.
Let s = ∧E.
Claim. s ∈ E. True if f(s) an upper bound for E (so s ≤ f(s)). If x ∈ E, x ≤ s

so f(x) ≤ f(s). But x ∈ E so x ≤ f(x) ≤ f(s). So f(s) is an upper bound for E.
So f(s) in E by first claim. So f(s) ≤ s but second claim showed s ≤ f(s) so

f(s) = s.

Corollary 4.14 (Schröder-Bernstein theorem). A,B have injections f : A �→ B and
g : B �→ A then A,B biject.

Proof. Want partitions A = P ∪ Q and B = R ∪ S such that fp bijects P with R and
gs bijects S with Q.

Then define obvious bijection h : A �→ B by taking h = f on P and h = g−1 on
Q.

Set P ⊆ A : A \ g(B \ f(P )) = P , R = f(P ), S = B \ R, Q = g(S). Consider
(X = P(A),⊆). X complete. Define θ : X �→ X . θ(P ) = A \ g(B \ f(P )). Then θ
is order preserving so it has a fixed point by Knaster-Tarski.

Definition 4.15 (Chain-complete). A (non-empty) poset X is chain-complete if every
non-empty chain has a supremum.

Observation 4.16. Not all functions on chain-complete posets have fixed points. Any
function on an anti-chain is order preserving.

Observation 4.17. The non-empty condition is a little pedantic but necessary.

Definition 4.18 (Inflationary). f : X �→ X is inflationary if x ≤ f(x) ∀x ∈ X .
Not necessarily related to order preserving.

Theorem 4.19 (Bourbaki-Witt theorem). X is a chain-complete poset, f : X �→ X
inflationary. Then f has a fixed point.

Proof. This proof is like battling Godzilla on a tightrope, it has to be carefully chore-
ographed. Although the theorem seems fairly plausible, it has many big consequences.

Fix x0 ∈ X . Say A ⊆ X closed if

1. x0 ∈ A

2. x ∈ A implies f(x) ∈ A

3. C a non-empty chain in A implies ∧C ∈ A.
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Note that any intersection of closed sets is closed.
Let E = ∩

AclosedA is closed. Therefore if A ⊆ E then A = E.
Assume E is a chain. Let s = ∧E. Then s ∈ E as E is closed. Therefore

f(s) ∈ E. So f(s) ≤ s. So f(s) = s as f inflationary. So done.
Claim. E is a chain.
Say x ∈ E is normal if ∀y ∈ E : y < x then f(y) ≤ x.
There are two properties of normality we want prove. All x ∈ E are normal.

Secondly, it should satisfy the condition we might naturally describe as “normal”: if x
normal then ∀y ∈ E either y ≤ x or y ≥ f(x).

Once we have done this, we are finished. ∀x, y ∈ E, y ≤ x or y ≥ f(x) ≥ x. So
E is a chain.

Claim. If x normal then ∀y ∈ E either y ≤ x or y ≥ f(x).
Proof of claim. Let A = {y ∈ E : y ≤ x or y ≥ f(x)}. Will show A is closed.

Any closed subset of E is E so A closed implies A = E.

1. x0 ∈ A. x0 ≤ x (∀x ∈ E).

2. Given y ∈ A we need f(y) ∈ A. So have y ≤ x or y ≥ f(x) and want f(y) ≤ x
or f(y) ≥ f(x).

If y < x then f(y) ≤ x as x is normal.
If y = x then f(y) ≥ f(x).
If y ≥ f(x) then f(y) ≥ y ≥ f(x).

So f(y) ∈ A.

3. Given a (non-empty) chain C ⊆ A, want s = ∧A ∈ A.

If all y ∈ C have y ≤ x then certainly s ≤ x because s a supremum. Otherwise
some y ∈ C has y ≥ x and not y ≤ x so y ≥ f(x) as y ∈ A. So s ≥ y ≥ f(x).
So s ∈ A.

So A closed, so A closed subset of smallest possible closed set E so A = E.
Claim. Every x ∈ E is normal.
Proof of claim. Let N = {x ∈ E : x is normal }. We will show that N is closed so

N = E.
N is closed:

1. No y ∈ E has y < x0. So x0 is normal, x0 ∈ N .

2. Given x normal want f(x) normal. So must show y < f(x) implies f(y) ≤
f(x). By first claim y < f(x) implies y ≤ x. So y = x or y < x. So
f(y) = f(x) or f(y) ≤ x ≤ f(x) (because x is normal).

3. Given a (non-empty) chain C ⊆ N need s = ∧C ∈ N . That is, we need that if
y < s then f(y) ≤ s ∀y ∈ E.

For y < s cannot have y ≥ x ∀x ∈ C (definition of supremum). So some x ∈ C
has not y ≥ x, so y < x by the first claim. So f(y) ≤ x (x normal) so certainly
f(y) ≤ s.

So N closed so N = E. So E is a chain.
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Observation 4.20. “Now forget the proof” - Dr Leader

Definition 4.21 (Maximal element of a poset). Given a poset X an element x is
maximal if no y ∈ X has y > x.

Corollary 4.22 (Every chain-complete poset has a maximal element). Every chain-
complete poset has a maximal element.

Observation 4.23. Very non-obvious theorem which trivially implies Bourbaki-Witt (x
maximal implies f(x) = x).

Proof. By contradiction. For each x ∈ X have x̄ ∈ X with x̄ > x. Then the function
x �→ x̄ is inflationary. So it has a fixed point. Contradiction.

Lemma 4.24 (One important chain-complete poset). Let X be any poset and let P
be the collection of all chains of X ordered by inclusion. Then P is chain complete.

Proof. Let {Ci : i ∈ I} be a chain in P . Ci is a chain in X for all i ∈ I . Note that I
need not be countable. Further ∀i, j ∈ I Ci ⊆ Cj or Cj ⊆ Ci.

Now let C = ∪i∈ICi. C is clearly a least upper bound for {Ci}. We need to show
that it is a chain.

Let x, y ∈ C. So ∃i, j : x ∈ Ci and y ∈ Cj . So Ci ⊆ Cj or Cj ⊆ Ci. So x, y
related. So C a chain.

Corollary 4.25 (Kuratowski’s lemma). Every poset X has a maximal chain.

Proof. The set of chains of X is a chain-complete poset.

Corollary 4.26 (Zorn’s lemma). Let X be a (non-empty) poset in which every chain
has an upper bound. Then X has a maximal element.

Proof. Let C be a maximal chain in X . Let x be an upper bound for C. Then x is
maximal. If y > x then C ∪ {y} is a chain properly containing C. Contradiction.

Observation 4.27. Non-emptiness actually not needed as it follows from the condition
that every chain has an upper bound.

Corollary 4.28 (Every vector space V has a basis). Every vector space V has a
basis.

Proof. Let X = {A ⊆ V : A is linearly independent } ordered by inclusion. We
seek the existence of maximal element A ∈ X using Zorn’s lemma. Then we are done
because if A does not span V it is not maximal.

1. ∅ is linearly independent. So ∅ ∈ X . So X �= ∅.

2. Given a chain {Ai : i ∈ I} in X we seek an upper bound S. Let S = ∪i∈IAi.
Then S ⊇ Ai ∀i so we just need S ∈ X (that is, S linearly independent).

Suppose λ1x1+λ2x2+· · ·+λnxn = 0 for some x1, · · · , xn ∈ A and λ1, · · · ,λn

not all zero. Have Am ∈ X such that Am contains all the xi because X is a
chain. But this contradicts Am being linearly independent. So S ∈ X . So every
chain has an upper bound.


