Chapter 4

Posets and Zorn’s lemma

Definition 4.1 (Poset). A partially ordered set or poset is a pair (X, <) where X is a
set and < is a relation on X satisfying:

1. Reflexivity: x < z, Vz € X.
2. Antisymmetry: ifx <yandy < x thenz =y, Y,y € X.
3. Transitivity: ifx < yandy < zthenz < z, Vx,y,z € X.

Write x < y for x < y and © # y. Alternatively in terms of <, Ax :x < x,x <y
and y < z implies ¢ < z.

Example 4.2. (N, <), (Q, <) and (R, <) are posets (in fact total orders).
Example 4.3. (N7, |) where (x|y means x divides y) is not a poset.
Example 4.4. S a set. X CP(S)with A< Bif AC B.

Definition 4.5 (Hasse diagram). A Hasse diagram for a poset is a drawing of the
points in the poset with an upwards line from x to y if y covers x (meaning r < y and
Az iz <z<uy)

Sometimes a Hasse diagram can be drawn for an infinite poset. For example (N, <)
but (Q, <) has an empty Hasse diagram.

Definition 4.6 (Chain). A chain in a poset X is a set A C X that is totally ordered
(Vr,y € A:have x < yory < x).

For example in (R, <) any subset, like (Q, <) is a chain. Note that a chain need
not be countable.

Definition 4.7 (Antichain). An antichain is a subset A C X in which no two distinct
elements are comparable. Y,y : © # y, neither x < y nory < .

Definition 4.8 (Upper bound). For S C X and x € X, say x is an upper bound for
Sify<axzVyesb.

Definition 4.9 (Least upper bound, supremum, AS). x is a least upper bound for
S C X if x is an upper bound for S and every upper bound y for S satisfies © < y.
Clearly unique if it exists. Write x = NS = sup S the supremum or join of S.

Definition 4.10 (Complete). A poset is complete if every set has a supremum.
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Observation 4.11. Every complete poset X has a greatest element, NX and a least
element N{.

Definition 4.12 (Monotone, order preserving). A function f : X — X, X a poset,
is monotone or order preserving if x < y implies f(x) < f(y).

Theorem 4.13 (Knaster-Tarski fixed point theorem). X a complete poset, f : X —
X order preserving. Then f has a fixed point.

Proof. Let E = {z € X : < f(x)}. Possibly E = (.

Claim. If x € E then f(z) € E. Proof. z < f(z) so f(x) < f(f(z)) as f order
preserving. So f(z) € E.

Lets = AE.

Claim. s € E. True if f(s) an upper bound for E (so s < f(s)). fx € E,z < s
so f(z) < f(s). Butz € Esox < f(x) < f(s). So f(s) is an upper bound for E.

So f(s) in E by first claim. So f(s) < s but second claim showed s < f(s) so
f(s) =s.

O

Corollary 4.14 (Schroder-Bernstein theorem). A, B have injections f : A — B and
g: B Athen A, B biject.

Proof. Want partitions A = P U Q and B = R U S such that f, bijects P with R and
gs bijects S with Q).
Then define obvious bijection i : A +— B by takingh = fon Pand h = g~ ! on

Q.

Set PCA:A\g(B\ f(P))=P,R=f(P),S=B\R,Q = g(S). Consider
(X =P(A),C). X complete. Define § : X — X. 0(P) = A\ g(B\ f(P)). Then 6
is order preserving so it has a fixed point by Knaster-Tarski.

d

Definition 4.15 (Chain-complete). A (non-empty) poset X is chain-complete if every
non-empty chain has a supremum.

Observation 4.16. Not all functions on chain-complete posets have fixed points. Any
function on an anti-chain is order preserving.

Observation 4.17. The non-empty condition is a little pedantic but necessary.

Definition 4.18 (Inflationary). f : X — X is inflationary if v < f(x) Vo € X.

Not necessarily related to order preserving.

Theorem 4.19 (Bourbaki-Witt theorem). X is a chain-complete poset, f : X — X
inflationary. Then f has a fixed point.

Proof. This proof is like battling Godzilla on a tightrope, it has to be carefully chore-
ographed. Although the theorem seems fairly plausible, it has many big consequences.
Fix g € X. Say A C X closed if

1. 20 A
2. x € Aimplies f(z) € A

3. C anon-empty chain in A implies AC' € A.
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Note that any intersection of closed sets is closed.

Let E =N AclosedA is closed. Therefore if A C E then A = E.

Assume FE is a chain. Let s = AE. Then s € E as E is closed. Therefore
f(s) € E. So f(s) <s.So f(s) = s as f inflationary. So done.

Claim. E is a chain.

Say z € Eisnormal if Vy € E : y < x then f(y) < x.

There are two properties of normality we want prove. All x € FE are normal.
Secondly, it should satisfy the condition we might naturally describe as “normal”: if =
normal then Vy € E eithery < zory > f(z).

Once we have done this, we are finished. Vz,y € E,y <z ory > f(x) > z. So
FE is a chain.

Claim. If 2 normal then Vy € F either y < z ory > f(x).

Proof of claim. Let A = {y € E: y < xzory > f(z)}. Will show A is closed.
Any closed subset of F is E so A closed implies A = F.

1. zp € A. zg <z (Vx € E).

2. Giveny € Aweneed f(y) € A. Sohavey < zory > f(z) and want f(y) < x
or f(y) > f(x).
If y < z then f(y) < x as x is normal.
If y = x then f(y) > f(z).
Ity > f(z) then f(y) >y > f(x).

So f(y) € A.

3. Given a (non-empty) chain C C A, want s = AA € A.

If all y € C have y < z then certainly s < z because s a supremum. Otherwise
somey € Chasy >zandnoty <z soy > f(x)asy € A. Sos >y > f(x).
Sos e A.

So A closed, so A closed subset of smallest possible closed set E so A = E.

Claim. Every z € E is normal.

Proof of claim. Let N = {z € E : x is normal }. We will show that N is closed so
N =F.

N is closed:

1. Noy € F'hasy < zg. So zq is normal, g € N.

2. Given x normal want f(x) normal. So must show y < f(x) implies f(y) <
f(z). By first claim y < f(z) implies y < z. Soy = zory < z. So
fly) = f(z)or f(y) <z < f(x) (because z is normal).

3. Given a (non-empty) chain C' C N need s = AC' € N. That is, we need that if
y < sthen f(y) < sVy e E.

For y < s cannot have y > x Vx € C (definition of supremum). So some = € C
has not y > z, so y < x by the first claim. So f(y) < x ( normal) so certainly

fly) <s.

So N closed so N = FE. So F is a chain.
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Observation 4.20. “Now forget the proof” - Dr Leader

Definition 4.21 (Maximal element of a poset). Given a poset X an element x is
maximal ifnoy € X hasy > x.

Corollary 4.22 (Every chain-complete poset has a maximal element). Every chain-
complete poset has a maximal element.

Observation 4.23. Very non-obvious theorem which trivially implies Bourbaki-Witt (x
maximal implies f(x) = x).

Proof. By contradiction. For each x € X have £ € X with £ > 2. Then the function
x +— Z is inflationary. So it has a fixed point. Contradiction.
d

Lemma 4.24 (One important chain-complete poset). Let X be any poset and let P
be the collection of all chains of X ordered by inclusion. Then P is chain complete.

Proof. Let {C; : i € I} be a chain in P. C; is a chain in X for all ¢ € I. Note that I
need not be countable. Further Vi, j € I C; C C; or C; C C;.
Now let C' = U;;C;. C is clearly a least upper bound for {C; }. We need to show
that it is a chain.
Letz,y € C. Sodi,j:xz € Csandy € C;. SoC; € Cjor C; C (. Soxz,y
related. So C' a chain.
d

Corollary 4.25 (Kuratowski’s lemma). Every poset X has a maximal chain.

Proof. The set of chains of X is a chain-complete poset.
d

Corollary 4.26 (Zorn’s lemma). Let X be a (non-empty) poset in which every chain
has an upper bound. Then X has a maximal element.

Proof. Let C' be a maximal chain in X. Let « be an upper bound for C. Then z is
maximal. If y > x then C'U {y} is a chain properly containing C. Contradiction.
O

Observation 4.27. Non-emptiness actually not needed as it follows from the condition
that every chain has an upper bound.

Corollary 4.28 (Every vector space V' has a basis). Every vector space V has a
basis.

Proof. Let X = {A C V : A is linearly independent } ordered by inclusion. We
seek the existence of maximal element A € X using Zorn’s lemma. Then we are done
because if A does not span V' it is not maximal.

1. 0 is linearly independent. So ) € X. So X # (.

2. Given a chain {4; : i € I} in X we seek an upper bound S. Let S = U;crA4;.
Then S O A; Vi so we just need S € X (that is, S linearly independent).

Suppose A\ x1+Asxo+- - -+ Az, = 0forsomexy, - ,x, € Aand Ay, -, A\,
not all zero. Have A,, € X such that A,, contains all the z; because X is a
chain. But this contradicts A,,, being linearly independent. So S € X. So every
chain has an upper bound.



