Chapter 4

Posets and Zorn's lemma

Definition 4.1 (Poset). A partially ordered set or poset is a pair (X, \leq) where X is a set and \leq is a relation on X satisfying:

- 1. Reflexivity: $x \leq x, \forall x \in X$.
- 2. Antisymmetry: if $x \leq y$ and $y \leq x$ then x = y, $\forall x, y \in X$.
- *3. Transitivity: if* $x \leq y$ *and* $y \leq z$ *then* $x \leq z$, $\forall x, y, z \in X$.

Write x < y *for* $x \le y$ *and* $x \ne y$. *Alternatively in terms of* <*,* $\not\exists x : x < x$ *,* x < y *and* y < z *implies* x < z.

Example 4.2. (\mathbb{N}, \leq) , (\mathbb{Q}, \leq) and (\mathbb{R}, \leq) are posets (in fact total orders).

Example 4.3. $(\mathbb{N}^+, |)$ where (x|y means x divides y) is not a poset.

Example 4.4. S a set. $X \subseteq \mathbb{P}(S)$ with $A \leq B$ if $A \subseteq B$.

Definition 4.5 (Hasse diagram). A Hasse diagram for a poset is a drawing of the points in the poset with an upwards line from x to y if y covers x (meaning x < y and $\exists z : x < z < y$).

Sometimes a Hasse diagram can be drawn for an infinite poset. For example (\mathbb{N}, \leq) but (\mathbb{Q}, \leq) has an empty Hasse diagram.

Definition 4.6 (Chain). A chain in a poset X is a set $A \subseteq X$ that is totally ordered $(\forall x, y \in A : have x \leq y \text{ or } y \leq x).$

For example in (\mathbb{R}, \leq) any subset, like (\mathbb{Q}, \leq) is a chain. Note that a chain need not be countable.

Definition 4.7 (Antichain). An antichain is a subset $A \subseteq X$ in which no two distinct elements are comparable. $\forall x, y : x \neq y$, neither $x \leq y$ nor $y \leq x$.

Definition 4.8 (Upper bound). For $S \subseteq X$ and $x \in X$, say x is an upper bound for S if $y \leq x \forall y \in S$.

Definition 4.9 (Least upper bound, supremum, $\land S$). x is a least upper bound for $S \subseteq X$ if x is an upper bound for S and every upper bound y for S satisfies $x \leq y$.

Clearly unique if it exists. Write $x = \wedge S = \sup S$ the supremum or join of S.

Definition 4.10 (Complete). A poset is complete if every set has a supremum.

Observation 4.11. Every complete poset X has a greatest element, $\wedge X$ and a least element $\wedge \emptyset$.

Definition 4.12 (Monotone, order preserving). A function $f : X \mapsto X$, X a poset, is monotone or order preserving if $x \le y$ implies $f(x) \le f(y)$.

Theorem 4.13 (Knaster-Tarski fixed point theorem). X a complete poset, $f : X \mapsto X$ order preserving. Then f has a fixed point.

Proof. Let $E = \{x \in X : x \le f(x)\}$. Possibly $E = \emptyset$.

Claim. If $x \in E$ then $f(x) \in E$. Proof. $x \leq f(x)$ so $f(x) \leq f(f(x))$ as f order preserving. So $f(x) \in E$.

Let $s = \wedge E$.

Claim. $s \in E$. True if f(s) an upper bound for E (so $s \leq f(s)$). If $x \in E$, $x \leq s$ so $f(x) \leq f(s)$. But $x \in E$ so $x \leq f(x) \leq f(s)$. So f(s) is an upper bound for E.

So f(s) in E by first claim. So $f(s) \leq s$ but second claim showed $s \leq f(s)$ so f(s) = s.

Corollary 4.14 (Schröder-Bernstein theorem). *A*, *B have injections* $f : A \mapsto B$ *and* $g : B \mapsto A$ *then* A, B *biject.*

Proof. Want partitions $A = P \cup Q$ and $B = R \cup S$ such that f_p bijects P with R and g_s bijects S with Q.

Then define obvious bijection $h : A \mapsto B$ by taking h = f on P and $h = g^{-1}$ on Q.

Set $P \subseteq A : A \setminus g(B \setminus f(P)) = P$, R = f(P), $S = B \setminus R$, Q = g(S). Consider $(X = \mathbb{P}(A), \subseteq)$. X complete. Define $\theta : X \mapsto X$. $\theta(P) = A \setminus g(B \setminus f(P))$. Then θ is order preserving so it has a fixed point by Knaster-Tarski.

Definition 4.15 (Chain-complete). A (non-empty) poset X is chain-complete if every non-empty chain has a supremum.

Observation 4.16. Not all functions on chain-complete posets have fixed points. Any function on an anti-chain is order preserving.

Observation 4.17. The non-empty condition is a little pedantic but necessary.

Definition 4.18 (Inflationary). $f : X \mapsto X$ is inflationary if $x \le f(x) \ \forall x \in X$. Not necessarily related to order preserving.

Theorem 4.19 (Bourbaki-Witt theorem). X is a chain-complete poset, $f : X \mapsto X$ inflationary. Then f has a fixed point.

Proof. This proof is like battling Godzilla on a tightrope, it has to be carefully choreographed. Although the theorem seems fairly plausible, it has many big consequences. Fix $x_0 \in X$. Say $A \subseteq X$ closed if

1. $x_0 \in A$

- 2. $x \in A$ implies $f(x) \in A$
- 3. *C* a non-empty chain in *A* implies $\land C \in A$.

Note that any intersection of closed sets is closed.

Let $E = \bigcap_{A \in A} A$ is closed. Therefore if $A \subseteq E$ then A = E.

Assume E is a chain. Let $s = \wedge E$. Then $s \in E$ as E is closed. Therefore $f(s) \in E$. So $f(s) \leq s$. So f(s) = s as f inflationary. So done.

Claim. E is a chain.

Say $x \in E$ is normal if $\forall y \in E : y < x$ then $f(y) \leq x$.

There are two properties of normality we want prove. All $x \in E$ are normal. Secondly, it should satisfy the condition we might naturally describe as "normal": if x normal then $\forall y \in E$ either $y \leq x$ or $y \geq f(x)$.

Once we have done this, we are finished. $\forall x, y \in E, y \leq x \text{ or } y \geq f(x) \geq x$. So E is a chain.

Claim. If x normal then $\forall y \in E$ either $y \leq x$ or $y \geq f(x)$.

Proof of claim. Let $A = \{y \in E : y \le x \text{ or } y \ge f(x)\}$. Will show A is closed. Any closed subset of E is E so A closed implies A = E.

- 1. $x_0 \in A$. $x_0 \leq x \ (\forall x \in E)$.
- 2. Given y ∈ A we need f(y) ∈ A. So have y ≤ x or y ≥ f(x) and want f(y) ≤ x or f(y) ≥ f(x).
 If y < x then f(y) ≤ x as x is normal.

If y < x then $f(y) \leq x$ as x is normal. If y = x then $f(y) \geq f(x)$. If $y \geq f(x)$ then $f(y) \geq y \geq f(x)$.

So $f(y) \in A$.

3. Given a (non-empty) chain $C \subseteq A$, want $s = \land A \in A$.

If all $y \in C$ have $y \leq x$ then certainly $s \leq x$ because s a supremum. Otherwise some $y \in C$ has $y \geq x$ and not $y \leq x$ so $y \geq f(x)$ as $y \in A$. So $s \geq y \geq f(x)$. So $s \in A$.

So A closed, so A closed subset of smallest possible closed set E so A = E. Claim. Every $x \in E$ is normal.

Proof of claim. Let $N = \{x \in E : x \text{ is normal }\}$. We will show that N is closed so N = E.

N is closed:

- 1. No $y \in E$ has $y < x_0$. So x_0 is normal, $x_0 \in N$.
- 2. Given x normal want f(x) normal. So must show y < f(x) implies $f(y) \le f(x)$. By first claim y < f(x) implies $y \le x$. So y = x or y < x. So f(y) = f(x) or $f(y) \le x \le f(x)$ (because x is normal).
- 3. Given a (non-empty) chain $C \subseteq N$ need $s = \wedge C \in N$. That is, we need that if y < s then $f(y) \leq s \ \forall y \in E$.

For y < s cannot have $y \ge x \ \forall x \in C$ (definition of supremum). So some $x \in C$ has not $y \ge x$, so y < x by the first claim. So $f(y) \le x$ (x normal) so certainly $f(y) \le s$.

So N closed so N = E. So E is a chain.

Observation 4.20. "Now forget the proof" - Dr Leader

Definition 4.21 (Maximal element of a poset). Given a poset X an element x is maximal if no $y \in X$ has y > x.

Corollary 4.22 (Every chain-complete poset has a maximal element). *Every chain-complete poset has a maximal element.*

Observation 4.23. Very non-obvious theorem which trivially implies Bourbaki-Witt (x maximal implies f(x) = x).

Proof. By contradiction. For each $x \in X$ have $\overline{x} \in X$ with $\overline{x} > x$. Then the function $x \mapsto \overline{x}$ is inflationary. So it has a fixed point. Contradiction.

Lemma 4.24 (One important chain-complete poset). *Let X be any poset and let P be the collection of all chains of X ordered by inclusion. Then P is chain complete.*

Proof. Let $\{C_i : i \in I\}$ be a chain in *P*. C_i is a chain in *X* for all $i \in I$. Note that *I* need not be countable. Further $\forall i, j \in I \ C_i \subseteq C_j$ or $C_j \subseteq C_i$.

Now let $C = \bigcup_{i \in I} C_i$. C is clearly a least upper bound for $\{C_i\}$. We need to show that it is a chain.

Let $x, y \in C$. So $\exists i, j : x \in C_i$ and $y \in C_j$. So $C_i \subseteq C_j$ or $C_j \subseteq C_i$. So x, y related. So C a chain.

Corollary 4.25 (Kuratowski's lemma). Every poset X has a maximal chain.

Proof. The set of chains of X is a chain-complete poset.

Corollary 4.26 (Zorn's lemma). Let X be a (non-empty) poset in which every chain has an upper bound. Then X has a maximal element.

Proof. Let C be a maximal chain in X. Let x be an upper bound for C. Then x is maximal. If y > x then $C \cup \{y\}$ is a chain properly containing C. Contradiction.

Observation 4.27. *Non-emptiness actually not needed as it follows from the condition that every chain has an upper bound.*

Corollary 4.28 (Every vector space V has a basis). Every vector space V has a basis.

Proof. Let $X = \{A \subseteq V : A \text{ is linearly independent }\}$ ordered by inclusion. We seek the existence of maximal element $A \in X$ using Zorn's lemma. Then we are done because if A does not span V it is not maximal.

- 1. \emptyset is linearly independent. So $\emptyset \in X$. So $X \neq \emptyset$.
- 2. Given a chain $\{A_i : i \in I\}$ in X we seek an upper bound S. Let $S = \bigcup_{i \in I} A_i$. Then $S \supseteq A_i \forall i$ so we just need $S \in X$ (that is, S linearly independent).

Suppose $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n = 0$ for some $x_1, \cdots, x_n \in A$ and $\lambda_1, \cdots, \lambda_n$ not all zero. Have $A_m \in X$ such that A_m contains all the x_i because X is a chain. But this contradicts A_m being linearly independent. So $S \in X$. So every chain has an upper bound.