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1 Definitions

The goal of this section is to provide a brief refresher in the basic terms and
concepts of linear algebra, listed here roughly in the order in which they would
be covered in an introductory course. Hopefully, you will also find it useful as
a reference.

Matrix Product The matrix product of an m × n matrix A and an n × p
matrix B is the m×p matrix AB whose (i, j)th element is the dot product
of the ith row of A with the jth column of B:

— A1 —
— A2 —

...
— Am —


︸ ︷︷ ︸

m×n


| | | |

(BT)1 (BT)2 . . . (BT)n

| | | |


︸ ︷︷ ︸

n×p

=


A1 · (BT)1 A1 · (BT)2 . . . A1 · (BT)n
A2 · (BT)1 A2 · (BT)2 . . . A2 · (BT)n

...
. . .

...
Am · (BT)1 Am · (BT)2 . . . Am · (BT)n


︸ ︷︷ ︸

m×p

.

Here, Ai is the ith row of A and (BT )j is the jth column of B (i.e., the
jth row of the transpose of B). More compactly,

(AB)ij =

n∑
k=1

AikBkj .

A special case of matrix multiplication is the matrix-vector product. The
product of an m × n matrix A with an n-element column vector x is the
m-element column vector Ax whose ith entry is the dot product of the ith

row of A with x.
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Vector Space A vector space is any set V for which two operations are defined:

• Vector Addition: Any two vectors v1 and v2 in V can be added to
produce a third vector v1 + v2 which is also in V.

• Scalar Multiplication: Any vector v in V can be multiplied (”scaled”)
by a real number1 c ∈ R to produce a second vector cv which is also
in V.

and which satisfies the following axioms:

1. Vector addition is commutative: v1 + v2 = v2 + v1.

2. Vector addition is associative: (v1 + v2) + v3 = v1 + (v2 + v3).

3. There exists an additive identity element 0 in V such that, for any
v ∈ V , v + 0 = v.

4. There exists for each v ∈ V an additive inverse −v such that v +
(−v) = 0.

5. Scalar multiplication is associative: c(dv) = (cd)v for c, d ∈ R and
v ∈ V .

6. Scalar multiplication distributes over vector and scalar addition: for
c, d ∈ R and v1, v2 ∈ V , c(v1+v2) = cv1+cv2 and (c+d)v1 = cv1+cv2.

7. Scalar multiplication is defined such that 1v = v for all v ∈ V .

Any element of such a set is called a vector ; this is the rigorous definition
of the term.

Function Space A function space is a set of functions that satisfy the above
axioms and hence form a vector space. That is, each vector in the space
is a function, and vector addition is typically defined in the obvious way:
for any functions f and g in the space, their sum (f + g) is defined as
(f + g)(x) ≡ f(x) + g(x). Common function spaces are Pn, the space of
nth-degree polynomials, and Cn, the space of n-times continuously differ-
entiable functions.

Inner Product An inner product 〈· , ·〉 on a real vector space V is a map that
takes any two elements of V to a real number. Additionally, it satisfies
the following axioms:

1. It is symmetric: for any v1, v2 ∈ V , 〈v1, v2〉 = 〈v2, v1〉.
2. It is bilinear : for any v1, v2, v3 ∈ V and a, b ∈ R, 〈av1 + bv2, v3〉 =
a〈v1, v3〉+ b〈v2, v3〉 and 〈v1, av2 + bv3〉 = a〈v1, v2〉+ b〈v1, v3〉.

3. It is positive definite: for any v ∈ V , 〈v, v〉 ≥ 0, where the equality
holds only for the case v = 0.

1More general definitions of a vector space are possible by allowing scalar multiplication
to be defined with respect to any arbitrary field, but the most common vector spaces take
scalars to be real or complex numbers.

2



These axioms can be generalized slightly to include complex vector spaces.
An inner product on such a space satisfies the following axioms:

1. It is conjugate symmetric: for any v1, v2 ∈ V , 〈v1, v2〉 = 〈v2, v1〉,
where the overbar denotes the complex conjugate of the expression
below it.

2. It is sesquilinear (linear in the first argument and conjugate-linear
in the second): for any v1, v2, v3 ∈ V and a, b ∈ C, 〈av1 + bv2, v3〉 =
a〈v1, v3〉+ b〈v2, v3〉 and 〈v1, av2 + bv3〉 = a〈v1, v2〉+ b〈v1, v3〉.

3. It is positive definite, as defined above.

The most common inner product on Rn is the dot product, defined as

〈u, v〉 ≡
n∑

i=1

uivi for u, v ∈ Rn.

Similarly, a common inner product on Cn is defined as

〈u, v〉 ≡
n∑

i=1

uivi for u, v ∈ Cn

Note, however, that in physics it is often the first vector in the angled
brackets whose complex conjugate is used, and the second axiom above is
modified accordingly. In function spaces, the most common inner products
are integrals. For example, the L2 norm on the space Cn[a, b] of n-times
continuously differentiable functions on the interval [a, b] is defined as

〈f, g〉 =

∫ b

a

f(x)g(x) dx

for all f, g ∈ Cn[a, b].

Linear Combination A linear combination of k vectors, v1, v2, . . . , vk, is the
vector sum

S = c1v1 + c2v2 + · · ·+ ckvk (1)

for some set of scalars {ci}.

Linear Independence A set of vectors is linearly independent if no vector in
it can be written as a linear combination of the others. Equivalently, the
vectors v1, v2, . . . , vn are linearly independent if the only solution to

c1v1 + c2v2 + · · ·+ cnvn = 0

is c1 = c2 = · · · = cn = 0.

For example, the vectors (1, 1) and (1,−1) are linearly independent, since
there is no way to write (1, 1) as a scalar multiple of (1,−1). The vectors
(1, 1), (1,−1), and (1, 0) are not linearly independent, however, since any
one can be written as a linear combination of the other two, as in (1,−1) =
2 ∗ (1, 0)− (1, 1).
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Span The span of a set of vectors {v1, v2, . . . , vk}, denoted span(v1, v2, . . . , vk)
is the set of all possible linear combinations of the vectors. Intuitively,
the span of a collection of vectors is the set of all points that are ”reach-
able” by some linear combination of the vectors. For example, the vectors
v1 = (1, 0, 0), v2 = (0,−2, 0), and v3 = (0, 5, 5) span R3, since any three-
component vector can be written as a sum of these three vectors using
the proper coefficients. In contrast, the vectors v1, v2, and v4 = (1, 1, 0)
span only the x-y plane and not all of R3, since none of these vectors has
a component along the z direction.

Basis and Dimension A basis of a vector space is any set of vectors which
are linearly independent and which span the space. The vectors v1, v2,
and v3 in the previous example form a basis for R3, while the vectors v1,
v2, and v4 do not form a basis of either R3 (they do not span the space) or
R2 (they are not linearly independent). There are infinitely many bases
for any given space (except for the trivial space, consisting only of the
number 0), and all of them contain the same number of basis vectors.
This number is called the dimension of the space.

Range/Image/Column Space The range of a matrix, also known as its im-
age or column space, is the space spanned by its columns. Equivalently, it
is the set of all possible linear combinations of the columns of the matrix.
For example, if one views an m × n matrix as a linear transformation
operating on Rn, then the range of the matrix is the subspace of Rm into
which it maps Rn.

Rank The rank of a matrix is the dimension of its column space (or that of
its row space, since it turns out that these dimensions are equal). Equiv-
alently, it is the number of linearly independent columns (or rows) in the
matrix.

Kernel/Null Space The kernel or null space of an m× n matrix A, denoted
ker(A), is the set of all vectors that the matrix maps to the zero vector.
In symbols,

ker(A) = {x ∈ Rn|Ax = 0}.

The following terms relate only to square matrices. They are arranged roughly
in order of conceptual importance.

Eigenvalues and Eigenvectors An eigenvector of a matrix A is a vector v
which satisfies the equation

Av = λv

for some complex number λ, which is called the corresponding eigenvalue.
Note that λ might have a nonzero imaginary part even if A is real. (See
below for more information about eigenvalues and eigenvectors.)
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Invertible An invertible matrix is any matrix A for which there exists a matrix
B such that AB = BA = I, where I is the identity matrix of the same
dimension as A and B. The matrix B is said to be the inverse of A,
and is usually denoted A−1: AA−1 = A−1A = I. A matrix which is
not invertible is called singular. Invertible and singular matrices can be
distinguished by their determinants:

det(A) = 0 ⇐⇒ A is singular

det(A) 6= 0 ⇐⇒ A is invertible

Diagonalizable A diagonalizable matrix A is any matrix for which there exists
an invertible matrix S such that S−1AS = D, whereD is a diagonal matrix
(i.e. all of its off-diagonal elements are zero). A square matrix which is
not diagonalizable is called defective.

Orthogonal (Unitary) An orthogonal matrix is any square matrix A with
real elements that satisfies AT = A−1, so ATA = AAT = I. Equivalently,
a real, square matrix is orthogonal if its columns are orthonormal with
respect to the dot product. A unitary matrix is the complex equivalent;
a complex, square matrix is unitary if it satisfies A† = A−1 (where A† ≡
AT ), so A†A = AA† = I.

Symmetric (Hermitian) A symmetric matrix is any real matrix that satis-
fies AT = A. Similarly, a Hermitian matrix is any complex matrix that
satisfies A† = A.

Normal A normal matrix is any matrix for which ATA = AAT (or A†A =
AA† for complex matrices). For example, all symmetric and orthogonal
matrices are normal.

Positive and Negative Definite and Semidefinite A positive definite ma-
trix is any symmetric or Hermitian matrix A for which the quantity
vTAv ≥ 0 for all v, with the equality holding only for the case v = 0.
If the inequality holds but there is at least one nonzero vector v for which
vTAv = 0, then the matrix is called positive semidefinite. Likewise, a neg-
ative definite matrix is any symmetric or Hermitian matrix A for which
vTAv ≤ 0 for all v, with the equality holding only for v = 0. If vTAv ≤ 0
for all v but vTAv = 0 for at least one nonzero v, the matrix A is called
negative semidefinite.

2 Important Concepts

This section contains brief explanations of the two most important equations
of linear algebra: Ax = b and Av = λv. If you haven’t had a full introductory
course in linear algebra, you might not have seen these interpretations before.
Hopefully, you’ll find them intuitive and helpful!
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2.1 The Meaning of Ax = b

One of the most common applications of linear algebra is to solve the simple
matrix equation Ax = b. In this equation, A is a given m×n matrix, b is a given
vector in Rm, and the problem is to solve for the unknown vector x in Rn. This
equation arises wherever one must solve m linear equations for n unknowns.

Notice that the matrix-vector product Ax on the left-hand side is nothing
other than a linear combination of the columns of A with coefficients given by
the elements of x:

A11 A12 . . . A1n

A21 A22 . . . A2n

...
. . .

...
Am1 Am2 . . . Amn




x1
x2
...
xn

 =


A11x1 +A12x2 + · · ·+A1nxn
A21x1 +A22x2 + · · ·+A2nxn

...
Am1x1 +Am2x2 + · · ·+Amnxn



= x1


A11

A21

...
Am1

+ x2


A12

A22

...
Am2

+ · · ·+ xn


A1n

A2n

...
Amn

 .

That is, the question of whether or not Ax = b has a solution is essentially the
question of whether or not the vector b lies in the space spanned by the columns
of A (remember, this is called the range of A). There are three possibilities:

1. b /∈ rng(A)→ there is no x for which Ax = b

2. b ∈ rng(A) and the columns of A are linearly independent → there is one
and only one x that solves Ax = b

3. b ∈ rng(A) and the columns of A are not linearly independent → there
are infinitely many vectors x that solve Ax = b.

In case (1), no matter how the columns of A are weighted, they cannot sum
to give the vector b. In case (2), the fact that b lies within the range of A
guarantees that there is at least one solution (problem 3.3 asks you to show
that it is unique). Finally, in case (3), not only does b lie in the range of A,
guaranteeing that a solution exists, but at least one of the columns of A can be
written as a linear combination of the others. As a result, there are infinitely
many linear combinations of them which sum to give b.

The conceptual power of this interpretation is that it lends a geometric
significance to the algebraic equation Ax = b. You can picture the n columns of
A as vectors in Rm. Together, they span some space, which could be all of Rm

or only some proper subspace. In the former case, the vectors can be combined,
with an appropriate choice of scalar coefficients, to produce any vector in Rm.
In the latter case, in contrast, there are some vectors in Rm that lie outside of
the span of the columns of A. If the vector b in Ax = b happens to be one
of those vectors, then no possible linear combination of the columns of A can
reach it, and the equation Ax = b has no solution.
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2.2 The Eigenvalue Equation, Av = λv

Another ubiquitous and fundamentally important equation in linear algebra is
the relation Av = λv, where A is an n×n matrix (notice that it must be square
in order for the left- and right-hand sides to have the same dimension), v is an
n-element vector, and λ is a constant. The task is to solve for all eigenvectors
v and corresponding eigenvalues λ that satisfy this relation.

Rearranging the eigenvalue equation gives

(A− λI)v = 0, (2)

where I is the n × n identity matrix. The only way for this equation to have
a nontrivial solution is for the matrix (A − λI) to be singular, in which case
its determinant is zero. This fact provides a useful method for finding the
eigenvalues of small matrices. For example, to find the eigenvalues of

A =

(
1 3
3 1

)
,

first construct the matrix (A−λI) and then require that its determinant vanish:

det(A− λI) = det

(
1− λ 3

3 1− λ

)
= (1− λ)2 − 9 = 0

→ (λ+ 2)(λ− 4) = 0

The eigenvalues of A are therefore λ1 = −2 and λ2 = 4. To find the eigenvectors,
substitute these numbers into (2). For example,(

1− λ1 3
3 1− λ1

)
v1 = 0(

3 3
3 3

)(
v
(1)
1

v
(2)
1

)
=

(
0
0

)
→ v

(2)
1 = −v(1)1 → v1 = v

(1)
1

(
1
−1

)
where v

(1)
1 is an arbitrary scalar (note that A(cv1) = λ1(cv1), so eigenvectors

are only unique up to a multiplicative constant).
But what does it mean for a vector to be an eigenvector of a matrix? Is there

a geometric interpretation of this relationship similar to that given for Ax = b in
the previous section? It turns out that there is. It is helpful to think of square
matrices as operators on vector spaces, since any linear transformation on Rn (or
Cn) can be represented by an n× n matrix. Examples of such transformations
include rotations, reflections, shear deformations, and inversion through the
origin. The eigenvectors of such a matrix, then, are special directions in that
space that are unchanged by the transformation that the matrix encodes. A
vector that points in one of these directions is scaled by a constant factor (the
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eigenvalue, λ) upon multiplication by the matrix, but it points along the same
axis as it did before the matrix operated on it.

This geometric interpretation is especially useful when zero is an eigenvalue
of a matrix. In that case, there is at least one vector (there can be more) that,
when multiplied by the matrix, maps to the zero vector. Let A be such a matrix,
and let v0 be an eigenvector of A whose eigenvalue is zero. Then, Av0 = 0v0 = 0.
Likewise, any scalar multiple cv0 also maps to zero: Acv0 = cAv0 = c0 = 0. As
a result, an entire axis through Rn (here A is taken to be n× n and real, as an
example) collapses to the zero vector under the transformation represented by
A, so the range of A is a lower-dimensional subspace of Rn.

To see why this is so, consider a 3 × 3 real matrix A with one eigenvector
v0 whose eigenvalue is zero. In this case there is a line in R3—consisting of all
multiples of v0—that collapses to zero under multiplication by A. Choose as a
basis of R3 the vector v0 and any two additional linearly independent vectors,
v1 and v2. Then, since this set forms a basis for the whole space, any vector z
in R3 can be written as a linear combination of these three:

z = c0v0 + c1v1 + c2v2

The range of A is then the set {Az}, where z is varied over all of R3. That is,

rngA = {Az | z ∈ R3}
= {c0Av0 + c1Av1 + c2Av2 | c0, c1, c2 ∈ R}
= {c1Av1 + c2Av2 | c1, c2 ∈ R}

The vectors Av1 and Av2 evidently form a basis of the range of A, which must
therefore be two-dimensional. Likewise, had there been another linearly inde-
pendent vector that A mapped to the zero vector, we could have chosen that
one as v1. In that case, only v2 would span the range of A, which would then
be only one-dimensional.

More generally, if there are at most k linearly independent vectors v1, v2, . . . vk
that an (n×n) matrix A maps to the zero vector, then we can choose as a basis
of Rn these k vectors and n−k additional linearly independent vectors. Writing
every vector in Rn as a linear combination of these n vectors, we see that, under
multiplication by A, only n − k degrees of freedom survive, so the resulting
space, which is the range of A, is only (n− k)-dimensional.

This result relates directly back to the geometric interpretation of Ax =
b described in (2.1). When a matrix has at least one eigenvector with zero
eigenvalue, its range is a lower-dimensional subspace of its domain. As a result,
any vector b that lies outside of this subspace lies outside the range of A, so in
such a case there is no vector x that solves Ax = b. This is why a matrix is
singular if one of its eigenvalues is zero; if it were invertible (i.e. not singular),
there would always exist such an x (equal to A−1b) for every b in the domain of
A. Alternatively, we could observe that, since there are many vectors (indeed,
an entire subspace!) that get mapped to the zero vector, the mapping defined
by A is necessarily many-to-one, so the whole concept of an inverse operation
does not make sense in this case.
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3 Exercises

3.1 Which of the following sets are vector spaces?

(a) C3, the set of all ordered triples of complex numbers, with scalar
multiplication defined over the complex numbers

(b) C3, with scalar multiplication defined over the real numbers

(c) R3, the set of all ordered triples of real numbers, with scalar multi-
plication defined over the complex numbers

(d) The subset of R2 enclosed by the unit circle, with scalar multiplica-
tion defined over the real numbers

(e) The line y = 4x (i.e. the subset of R2 comprised by the points on
this line), with scalar multiplication over R

(f) The line y = 4x+ 2, with scalar multiplication over R
(g) The subset of R3 bounded above by the plane z = 10, with scalar

multiplication over R
(h) The functions f(x) = x3, g(x) = cos(

√
x), and h(x) = 1, where

x ∈ [0, 1], and all linear combinations of these functions with real
coefficients, with function addition and scalar multiplication defined
as usual

(i) The set of all solutions f(x) of the differential equation f ′ + f = 0

3.2 Give an example of a basis for each of the following vector spaces. What
is the dimension of each?

(a) C4, the space of all ordered quadruples of complex numbers, with
scalar multiplication defined over the complex numbers

(b) P3, the space of all polynomials of degree less than or equal to three
that have real coefficients

(c) M2×2, the space of all 2× 2 matrices with real elements

(d) The set of all solutions f(x) of the differential equation f ′′+ω2f = 0

3.3 Let x be a solution to Ax = b, and let the columns of A be linearly
independent. Prove that x is the only solution.

Hint: Just multiplying by A−1 won’t do—you still need to prove that the
inverse exists and is unique! A better way is to prove this statement by
contradiction: assume that x is not a unique solution and proceed until
you contradict one of the given facts.

3.4 Find the eigenvalues and eigenvectors of the following matrices.

(a)  1 2 1
1 −1 1
2 0 1


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(b) (
cos θ − sin θ
sin θ cos θ

)
3.5 Prove the following statements about eigenvalues and eigenvectors:

(a) If λ is a complex eigenvalue of a real matrix A and v is the correspond-
ing eigenvector, then λ is also an eigenvalue of A with eigenvector
v.

(b) If λ is an eigenvalue of A, then it is also an eigenvalue of P−1AP for
any invertible matrix P .

(c) The eigenvalues of a real symmetric matrix are real.

(Hint: (AB)T = BTAT )

(d) Eigenvectors of a symmetric matrix that belong to distinct eigenval-
ues are orthogonal.

3.6 Consider the vectors

v1 =

 1
−1

2

 , v2 =

 3
0
1

 , and v3 =

 1
2
−3

 .

Are these vectors linearly independent? What is the dimension of the
space they span? Use two methods to answer these questions:

(a) Recall that if these vectors are linearly independent, then none can
be written as a linear combination of the others. As a direct result,
the only solution to the equation

c1v1 + c2v2 + c3v3 = 0 (3)

is the trivial solution, c1 = c2 = c3 = 0. Write (3) in matrix form
and solve it using substitution, row reduction, or MATLAB (make
sure you are at least familiar with the other methods before you use
MATLAB, though). Is the trivial solution the only solution?

(b) Notice that the matrix that you constructed in (3.6a) is square. Find
its eigenvalues. What do they tell you about the vectors v1, v2, and
v3? (Hint: What is the null space of this matrix?)

3.7 This crash course doesn’t include a description of how to row-reduce a
matrix, but it’s a handy skill to have! Read up on it from another source,
then put the following system of equations into matrix form and solve for
x, y, and z.

3x− y + 2z = −3

6x− 2y + z = −3

−2y − 5z = −1
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4 Appendix: Venn Diagram of Matrix Types

1. The following statements about a matrix A are equivalent:

(a) A is invertible.

(b) The equation Ax = b always has a unique solution.

(c) Zero is not an eigenvalue of A.

(d) detA 6= 0

(e) A is square and has full rank.

2. PSD: Positive Semidefinite
PD: Positive Definite
NSD: Negative Semidefinite
ND: Negative Definite
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