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Abstract

Semidefinite programming is a relatively new field of combinatorial optimization

and is becoming a vital tool for improving the performance of algorithm for many

combinatorial problems. Other application areas include operational research, con-

vex constrained optimization, control theory etc. Here we present some concepts

of linear algebra that are pre-requisites to an understand for semidefinite program-

ming. There is also proof for the Spectral Theorem for Hermitian operator over

finite dimension Euclidean Spaces and an introduction to positive semidefinite op-

erators. We then move to semidefinite programming, its formulation and how it is

equivalent to vector programming. The thesis concludes with a study of an appli-

cation of semidefinite programming for the design of an approximation algorithm

for the Max-Cut problem.
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Chapter 1

Introduction

This thesis collects the algebraic foundations necessary to an understanding of

semidefinite programming.

Semidefinite programming is a field of optimization. It is the generalization of

linear programming and quadratic programming and still easy to solve. In the

next two chapters we discuss some algebraic notions that form prerequisites to

an understanding of semidefinite programming. Next two chapters will have basic

linear algebra concepts related to real vector space like inner product, linear trans-

formations, operators, basis transformations, projections, orthogonal projections,

Spectral theorem, symmetric positive semidefinite matrices etc.

In chapter 3 we will discuss semidefinite programming, its formulation and its

equivalent vector programming formulations. In chapter 5 we study an application

of semidefinite programming works to solve the Max-cut Problem. A randomized

approximation algorithm for max-cut discovered by Goemans and Williamson [1]

is presented and analysed.

1.0.1 Literature Survey

There are number of books available related to linear algebra. In this thesis we

have referred to the Algebra by Michael Artin [7].

Semidefinite programming is not a new topic in optimization field but has been

recently studied for several combinatorial optimization problems. For literature
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review on semidefinite programming refer the work on Semidefinite Programming

by Lieven Vandenberghe and Stephen Boyd[13] as well as [3], [6] and [8].

Max-cut or maximum cut problem is a well known problem that has been exclu-

sively studied in theoretical computer science. It is one of the Karp’s NP-Complete

Problems[12]. As it is NP-Hard, so no polynomial time algorithm is known but we

can solve it in polynomial time for some special cases like planar graphs. Goemans

and Williamson have presented the approximation solution for Max-cut problem

[1]. The algorithm is discussed in chapter 6.



Chapter 2

Finite Dimensional Euclidean

Spaces

The following notions in the theory of real vector spaces Rn are pre-requisites

to an understanding of semi-definite programming. Here are brief definitions, for

detailed explanations one can refer to[7].

2.0.2 Real Vector Space

A vector space V over a field of real numbers is a set together with two laws of

composition[7]:

• addition: V × V −→ V , written v, w  v + w, for v and w in V ,

• scalar multiplication by elements of the field: R×V −→ V , written c, v  cv,

for c in R and v in V .

such that (V,+) is an albelian group with 0 ∈ V as the zero element and satisfies

scalar multiplication.

The vector space of n tuples over R denoted by Rn with the standard vector

addition and scalar multiplication will be the principal object to study in this

report.

Vector Subspace : Let V be vector space then W is a real vector subspace of V

if W is a subset of V and,

3
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• for every w1, w2 ∈ W w1 + w2 ∈ W

• for every c ∈ R cw1 ∈ W.

Ex. { xy
z

: x+ y + z = 0} is a subspace of R3

Linear Independence: An ordered set of vectors S = (v1, ..., vn) is (linearly)

independent if for any column vector X = (x1, x2, ..., xn)T , there is no linear

relation SX = 0 except for the trivial one in which X = 0, i.e., in which all the

coefficients xi are zero. A set that is not independent is dependent.[7]

Span: The set of all vectors that are linear combinations of S = (v1, ..., vn) forms

a subspace of V, called the subspace spanned by the set.[7] Let S be an ordered

set of vectors of V , and let W be a subspace of V . If S ⊂ W , then Span S ⊂ W .

Ex: The vectors
(

1
1
0

)
and

(
0
1
0

)
span the plane z = 0 in the x− y− z plane in R3.

Basis: A basis B of a vector space V is a set (v1, ..., vn) of vectors that are

independent and also spans V .

The ordered set of vectors (e1, e2, ..., en) where ei = [0...1...0]T with 1 appearing

at the ith position is the basis for Rn and is called the standard basis of Rn.

Every vector v ∈ V can be expressed as a linear combination of basis vector of V :

v = x1v1 + x2v2 + .....+ xnvn

Lemma 2.1. Any basis of vector space has the same number of elements(i.e same

cardinality).

Proof. See [7].

Dimensions: Let V be a vector space and and let the basis of V has n number

of elements. This cardinality of basis is called the dimension of the vector space

which is represented as dim(V ) = n

Lemma 2.2. If (v1, v2, ..., vn) is a basis of V then for every vector v ∈ V there

exists unique scalars (x1, x2, ..., xn) such that v = x1v1 + x2v2 + .....+ xnvn.

Proof. Let there exist some other unique scalars (y1, y2, ..., yn) such that

v = y1v1 + y2v2 + ...+ ynvn

This results into ,

v = x1v1 + x2v2 + .....+ xnvn = y1v1 + y2v2 + ...+ ynvn

i.e. xi − yi = 0 =⇒ xi = yi

Therefore for every vector v ∈ V there exists unique scalars (x1, x2, ..., xn).
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Coordinate Vector: A coordinate vector of any vector v ∈ V relative to basis

B is the sequence of coordinates i.e representation of v with respect to basis B.

[v]B =

( x1
x2
.
.
xn

)
i.e., if v = x1v1 + x2v2 + ..... + xnvn then [x1, x2, ..., xn]T is the coordinate vector

of v with respect to (v1, v2, ..., vn)

2.0.3 Inner Product

An inner product on V is a function that takes each ordered pair (u, v) of elements

of V to a number 〈u, v〉 ∈ R i.e 〈., .〉 : V × V −→ R and has following properties:

• Positivity: 〈v, v〉 ≥ 0 ∀v ∈ V

• Definiteness: 〈v, v〉 = 0 iff v = 0

• Additivity: 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

• Homogenity: 〈αu, v〉 = α〈u, v〉

• Symmetry: 〈u, v〉 = 〈v, u〉

The dot product of two n tuples u(u1, u2, ..., un) and v(v1, v2, ..., vn) defined by

〈u, v〉 = uTv =
∑n

i=1 uivi is called the standard inner product in Rn and will be of

the principal interest in this report.

Inner Product Space(V (R), 〈〉): A (real)vector space with an inner product

defined on it is called inner product space. For example, Rn with standard inner

product defined above is called Euclidean space (Rn, 〈〉).

The inner product induces the notions of length(norm) and distance(metric).

Norm(Length): Length or norm of a vector v in an inner product space is

denoted be ||v|| and is defined as ||v|| = +
√
〈v, v〉 or ||v||2 = 〈v, v〉. The norm

satisfies following axioms:

• ∀v ∈ V : ||v|| ≥ 0; ||v|| = 0 iff v = 0.

• ∀α ∈ R, ∀v ∈ V : ||αv|| = |α|||v||.

• ∀u, v ∈ V : ||u+ v|| ≤ ||u||+ ||v||. ...(Triangle Inequality)
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Metric(Distance): The distance between two vectors u, v ∈ V in an inner prod-

uct space is defined by d(u, v) = ||u− v||. It satisfies following axioms:

• ∀u, v ∈ V : d(u, v) ≥ 0; d(u, v) = 0 iff u = v.

• ∀u, v ∈ V : d(u, v) = d(v, u). ...(Symmetry)

• ∀u, v, w ∈ V : d(u,w) ≤ d(u, v) + d(v, w). ...(Triangle Inequality)

In the following, we assume the Euclidean Space (Rn, 〈〉) where 〈〉 refers to the

standard inner product.

Orthogonality(Perpendicularity): Two vectors vi and vj are orthogonal with

an inner product〈〉 if their inner product is zero, i.e., 〈vi, vj〉 = 0.

Lemma 2.3. Orthogonal Vectors are (linearly) independent.

Proof. Let u and v be orthogonal and (linearly) dependent. That means for some

scalars c1, c2 ∈ R we have:

c1u+ c2v = 0

Taking inner product with u on LHS, we get:

0 = 〈(c1u+ c2v), u〉 = 〈c1u, u〉+ 〈c2v, u〉 = c1〈u, u〉+ 0 = c1 = 0

Similarly taking inner product with v, we get:

0 = 〈(c1u+ c2v), v〉 = 〈c1u, v〉+ 〈c2v, v〉 = 0 + c2〈v, v〉 = c2 = 0

Therefore there is no relation c1u + c2v = 0 except for the trivial one in which

c1 and c2 is zero, which contradicts the assumption of orthogonal vectors being

linearly dependent.

Therefore orthogonal vectors are (linearly) independent.

Orthogonal Basis: An orthogonal basis B = (v1, ..., vn) of V is a basis whose

vectors are mutually orthogonal: 〈vi, vj〉 = 0 for all indices i and j with i 6= j.

Orthonormal Basis: An orthonormal basis B = (v1, ..., vn) of Rn is a basis of

orthogonal unit vectors (vectors of length one):

〈vi, vj〉 = 0 ∀i, j i 6= j

||vi|| = 1 i.e 〈vi, vj〉 = 1 ∀i.

The standard basis is easily seen to be orthonormal. Start from any basis of

Euclidean space we can obtain orthonormal basis with the help of Gram Schmidt

Procedure[7].
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In all the discussion that follows, we work with only orthonormal bases.

Lemma 2.4. Parseval’s Identity: If B = (v1, ..., vn) be orthonormal basis for

V and for v ∈ V we have v =
∑n

i=1 xivi then ||v||2 =
∑n

i=1 x
2
i .

Proof. For a vector v ∈ V , we have

v =
∑n

i=1 xivi

||v||2 = ||
∑n

i=1 xivi||2

= 〈
∑n

i=1 xivi,
∑n

j=1 xjvj〉

=
∑n

i=1 xi〈vi,
∑n

j=1 xjvj〉

=
∑n

i=1 xi
∑n

j=1 xj〈vi, vj〉

As 〈vi, vj〉 = 0 ∀i, j i 6= j and ||vi|| = 1 i.e 〈vi, vi〉 = 1 ∀i.

=
∑n

i=1 x
2
i

Lemma 2.5. If B = (v1, v2, ..., vn) is an orthonormal basis for V . Suppose v ∈ V
have coordinates (x1, x2, ..., xn)T with respect to B i.e., v =

∑n
i=1 xivi then xj =

〈v, vj〉

Proof. We know that v = x1v1 + x2v2 + .....+ xnvn.

Now 〈v, vj〉 = 〈x1v1, vj〉+ ..+ 〈xjvj, vj〉..+ 〈xnvn, vj〉
= x1〈v1, vj〉+ ..+ xj〈vj, vj〉..+ xn〈vn, vj〉
= xj

As for orthonormal basis 〈vi, vj〉 = 0 if i 6= j and 〈vi, vi〉 = 1.
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2.0.4 Linear Transformation and Operators

Linear Transformation: A linear transformation T : V −→ W from one vector

space V to another vector space W is a map that is compatible with addition and

scalar multiplication:

T (v1 + v2) = T (v1) + T (v2) and T (cv1) = cT (v1),

for all v1 and v2 in V and all c in R.

Matrix of Linear Transformation: We have linear transformation T : V −→
W , ordered bases Bv = (v1, ..., vn) of V and Bw = (w1, w2, ..., wm) of W . For each

j, 1 ≤ j ≤ n T (vi) can be expressed in terms of basis of W i.e.,

T (v1) = α11w1 + α21w2 + ....+ αm1wm

T (v2) = α12w1 + α22w2 + ....+ αm2wm
...

T (vn) = α1nw1 + α2nw2 + ....+ αmnwm

for some αij, 1 ≤ i ≤ m and 1 ≤ j ≤ n

In short T (vj) =
∑m

i=1 αijwi

The coordinate vector [T (vj)]Bw =

(
α1j
α2j
.
.

αnj

)
Let [x]Bv =

[
x1 x2 . . xn

]
be the coordinate vector for x ∈ V . Then,

T (x) = T (
∑n

j=1 xjvj)

T (x) =
∑n

j=1 xjT (vj)

T (x) =
∑n

j=1 xj(
∑m

i=1 αijwi)

T (x) =
∑n

j=1(
∑m

i=1 αijxj)wi

Now the coordinate vector of

[T (x)]Bw =


α11 α12 α13 . . . α1n

α21 α22 α23 . . . α2n

...
...

...
. . .

...

αn1 αn2 αn3 . . . αnn




x1

x2
...

xn


Let matrix (αij) = A. Therefore,

[T (x)]Bw = A[x]Bv

The matrix A is matrix of linear transformation with respect to ordered bases Bv

and Bw.
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Linear Operator: A linear transformation from a vector space V to itself is

called a linear operator.

Basis Transformation: Let B = (b1, b2, ..., bn) and C = (c1, c2, .., cn) be two

basis of vector space V . T : Rn −→ Rn is a basis transformation operator from B

to C if for each v ∈ V ; T transforms the coordinate vector of v wrt basis B to the

coordinate vector v wrt basis C.

Matrix of basis change: Let [b1, b2, ...., bn] and [c1, c2, ...cn] be bases of same vec-

tor space V . Any vector v with coordinate vector [x1, x2, ..., xn] and [y1, y2, ..., yn]

can be represented in terms of linear combination of its basis, so

v = x1b1 + x2b2 + .....+ xnbn = y1c1 + y2c2 + .....+ yncn

i.e,[
b1 b2 ..... bn

] ( x1
x2
.
.
xn

)
=
[
c1 c2 ..... cn

] ( y1
y2
.
.
yn

)

As every vector can be represented in terms of basis, therefore:

c1 = α11b1 + α21b2 + ....+ αn1bn

c2 = α12b1 + α22b2 + ....+ αn2bn
...

cn = α1nb1 + α2nb2 + ....+ αnnbn

for some αij, 1 ≤ i ≤ n and 1 ≤ j ≤ n

So,

[
c1 c2 ..... cn

]
=
[
b1 b2 ..... bn

]

α11 α12 α13 . . . α1n

α21 α22 α23 . . . α2n

...
...

...
. . .

...

αn1 αn2 αn3 . . . αnn


Let (αij) = Q and Qi =

[
α1i α2i .... αni

]T
i.e

Q =
[
Q1 Q2 ..... Qn

]

Therefore ,

( x1
x2
.
.
xn

)
= Q

( y1
y2
.
.
yn

)
or Q−1

( x1
x2
.
.
xn

)
=

( y1
y2
.
.
yn

)
Here the matrix Q is the matrix of basis change from B to C .

Lemma 2.6. The matrix of basis change Q is invertible.
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Proof. Just like Q is matrix of basis change from basis B to basis C, we have

Q−1 for basis change from C to B.To prove Q is invertible, let us consider Q be

singular.

If Q is singular then there is no Q−1 i.e Q is not invertible. Let Q′ be the matrix

of basis change from basis B to basis C.

Now take QQ′[v]B:

QQ′[v]B = Q[v]C = [v]B

Therefore QQ′ = I which means Q′ = Q−1 and hence Q is invertible.

Effect of Basis Transformation on operators: Any vector representation

wrt one basis can have their equivalent representation wrt another basis. Let

(b1, b2, ..., bn) and (c1, c2, ...cn) be two bases of vector space V . For any v ∈ V

having coordinates (x1, x2, ..., xn) and (y1, y2, ...yn) respectively in two bases, we

have:

v = x1b1 + x2b2 + .....+ xnbn = y1c1 + y2c2 + .....+ yncn

As we have seen in matrix of basis change, we get( x1
x2
.
.
xn

)
= Q

( y1
y2
.
.
yn

)
or Q−1

( x1
x2
.
.
xn

)
=

( y1
y2
.
.
yn

)
Now if we have any linear transformation T : V −→ W with matrix A and D

as matrix of linear transformation for basis (b1, b2, ..., bn) and (c1, c2, ..., cn) respec-

tively then we have:

A

( x1
x2
.
.
xn

)
= QD

( y1
y2
.
.
yn

)

A

( x1
x2
.
.
xn

)
= QDQ−1

( y1
y2
.
.
yn

)

A = QDQ−1

2.0.5 Hermitian and Unitary Operators

Orthogonal Matrix: A matrix Q such that QTQ = I (or QT = Q−1) is called an

orthogonal matrix. A matrix Q is orthogonal if and only if its columns Q1, ..., Qn

are orthonormal with respect to the standard inner product form, i.e., if and only

if QT
i Qi = 1 and QT

i Qj = 0 when i 6= j.
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Lemma 2.7. The basis transformation matrix between two orthonormal bases is

an orthogonal matrix.

Proof. Let B = (b1, b2, ..., bn) and C = (c1, c2, ..., cn) be two orthonormal bases.

Let
[
c1 c2 ..... cn

]
=
[
b1 b2 ..... bn

]
Q.

Let Q =
[
Q1 Q2 .....Qn

]
Qi ∈ Rn

Since ci =
[
b1 b2 ..... bn

]
Qi

cj =
[
b1 b2 ..... bn

]
Qj

We have:

〈ci, cj〉 = 〈
[
b1 b2 ..... bn

]
Qi,
[
b1 b2 ..... bn

]
Qj〉

〈ci, cj〉 = δij, where δij = 0∀i 6= j and δij = 1∀i = j. Therefore,

δij = 〈ci, cj〉 = 〈b1qi1 + b2qi2 + ....+ bnqin, b1qj1 + b2qj2 + ....bnqjn〉

= qi1qj1 + qi2qj2 + ....+ qinqjn

= QT
i Qj

= δij

=⇒ QTQ = I

Therefore from lemma 2.6 we get,

A = QDQT

Orthogonal Transformation( Unitary Transformation): A linear transfor-

mation T : V −→ W is called a orthogonal transformation if ∀v, w ∈ V

〈Tv, Tw〉 = 〈v, w〉

Lemma 2.8. Matrix of orthogonal transformation(unitary transformation) is or-

thogonal wrt to any orthonormal bases.
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Proof. Let B = (b1, b2, ...bn) be an orthonormal basis and let A be the matrix of

orthogonal transformation T wrt basis B. Let A =
[
A1 A2 ... An

]
.

Now, T (bi) =
[
b1 b2 ..... bn

]
Ai

and T (bj) =
[
b1 b2 ..... bn

]
Aj

Then

〈T (bi), T (bj)〉 = 〈b1ai1 + b2ai2 + ....+ bnain, b1aj1 + b2aj2 + ....bnajn〉

= ai1aj1 + ai2aj2 + ....+ ainajn

= ATi Aj

As orthogonal transformation preserves inner product, we have:

〈T (bi), T (bj)〉 = 〈bi, bj〉 = δij

=⇒ ATi Aj = δij

=⇒ ATA = I

Corollary: Let B = (b1, b2, ..., bn) and C = (c1, c2, ..., cn) be two orthonormal

bases of vector space V such that:[
c1 c2 ..... cn

]
=
[
b1 b2 ..... bn

]
Q

where Q is the orthogonal matrix of basis change from B to C. Let T : V −→ W

be uniform(orthogonal) transformation with matrix A and D as matrix of uniform

transformation for basis B and C respectively. Now using lemma 2.6 and 2.7 we

can say if A is orthogonal matrix in orthogonal basis transformation then QAQT

is also orthogonal.

Symmetric Operator(Hermitian Operator): A transformation T : V −→ V

is a symmetric operator if ∀u, v ∈ V 〈u, T (v)〉 = 〈T (u), v〉.

Lemma 2.9. Matrix of a symmetric operator with respect to any orthogonal basis

must be symmetric.
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Proof. Let B = (b1, b2, ...bn) be an orthonormal basis and let A be the matrix of

symmetric transformation T wrt basis B. Let A =
[
A1 A2 ... An

]
.

Now, T (bi) =
[
b1 b2 ..... bn

]
Ai

and T (bj) =
[
b1 b2 ..... bn

]
Aj

According to the symmetric operator definition:

〈bi, T (bj)〉 = 〈T (bi), bj〉

〈bi, T (bj)〉 = 〈bi, b1aj1 + b2aj2 + ....bnajn〉 = aji

Similarly,

〈T (bi), bj〉 = 〈b1ai1 + b2ai2 + ....+ bnain, bj〉 = aij

Therefore aij = aji which implies A = AT

Corollary: Let B = (b1, b2, ..., bn) and C = (c1, c2, ..., cn) be two orthonormal

bases of vector space V such that:[
c1 c2 ..... cn

]
=
[
b1 b2 ..... bn

]
Q

where Q is the orthogonal matrix of basis change from B to C. Let T : V −→ W be

symmetric(hermitian) transformation with matrix A andD as matrix of symmetric

operator for basis B and C respectively. Now using 2.8 we can say if A is symmetric

matrix then QAQT is also symmetric.

2.0.6 Subspaces and Direct Sum

Independent Subspaces: Let V be real vector space and let U and W be

subspaces of V .Two subspaces U and W are independent if

U ∩W = {0}.
Similarly if V1, V2, ..Vk are the subspaces of V , then they are independent if Vi∩Vj =

{0} ∀i 6= j

Direct Sum: Let U and W be subspaces of V . We say V is a direct sum of U and

W if V = U +W and U and W are linearly independent . We write V = U ⊕W .

Similarly, we say if V1, V2, .., Vk are the subspaces of V , where V = V1, V2, ..Vk and

they are independent then we can write, V = V1 ⊕ V2 ⊕ ...⊕ Vk
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Lemma 2.10. If V = U ⊕W , ∀v ∈ V there exist unique u ∈ U w ∈ W such that

v = u+ w.

Proof. Let v = u+ w be not unique, there exist u′ and w′ such that v = u′ + w′.

Now

v = u+ w = u′ + w′

=⇒ u− u′ = w′ − w = 0

As U ∩W = 0

=⇒ u = u′, w = w′

Therefore, there exist unique u ∈ U w ∈ W such that v = u+ w.

Orthogonal Subspaces: Two subspaces U and W of V are orthogonal if ∀u ∈
U,w ∈ W 〈u,w〉 = 0. Note that orthogonal subspaces are necessarily independent.

Orthogonal Complements: Let W be subspace of V with dim(W ) = k, where

k is 0 ≤ k ≤ n. We define orthogonal complement as:

W⊥ = {w′ ∈ V |〈w′, w〉 = 0 ∀w ∈ W}

Lemma 2.11. dim(W⊥) = dim(V )− dim(W ) = n− k

Proof. Let [b1, b2, ..., bk] and [c1, c2, ..., cm] be orthogonal bases for W and W⊥. To

prove the lemma we need to prove that (b1, b2, ..., bk, c1, c2, ..., cm) spans V i.e., it

is the basis of V which in turn will be proved if we can prove that for any v ∈ V
we can represent it a:

v = α1b1 + ....+ αkbk + β1c1 + ...+ βmcm

Consider v′ = v − 〈v, b1〉b1 − ...− 〈v, bk〉 − 〈v, c1〉c1 − ...− 〈v, cm〉.
ETPT: v′ = 0 Suppose v′ 6= 0

〈v′, bi〉 = 〈v, bi〉 − 〈〈v, bi〉bi, bi〉

= 〈v, bi〉 − 〈v, bi〉〈bi, bi〉
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= 0

which results v′ ⊥ bi ∀ 1 ≤ i ≤ k i.e., v′ ∈ W⊥.

Similarly 〈v′, cj〉 = 0. That means v′ = 0.

Therefore v = αb1 + ....+ αbk + βc1 + ...+ βcm for v ∈ V
Also (b1, b2, ..., bk, c1, c2, ..., cm) is a basis of V ( It spans V ). This results into

dim(V ) = dim(W ) + dim(W⊥)

The dim(V ) = n and dim(W ) = k, therefore

dim(W⊥) = dim(V )− dim(W ) = n− k

Corollary: If V is a vector space with W as a subspace of V and W⊥ be the

orthogonal complement then from previous lemma 2.10 we can say V = W ⊕W⊥.

2.0.7 Projections

Projection: Let V be a finite dimensional vector space and P : V −→ V be a

linear operator on it. P is a projection if:

P 2 = P

In the following U is the range i.e image Img(P ) and W is the kernel Ker(P ) of

P .

Theorem 2.12. (Rank-Nullity Theorem) Let V and V ′ be vector spaces and let

T : V −→ V ′ be a linear transformation. Assuming the dimension of V is finite

then,

dim(V ) = dim(Ker(T )) + dim(Img(T ))

Its proof can be found in [7](Dimension Formula).

Lemma 2.13. If P is a projection then U ∩W = {0}

Proof. Let v ∈ U ∩W .

As v ∈ U ; ∃u ∈ V such that
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Pu = v

P (Pu) = P 2u = Pu = v

Also v ∈ W too, so by definition Pv = 0. Hence,

P (Pu) = Pv = 0

This is contradiction, therefore U ∩W = 0 i.e V is a direct sum of U and W .

Corollary: By Rank-Nullity Theorem we have,

dim(V ) = dim(U) + dim(W )

i.e V = U ⊕W −→direct sum

Lemma 2.14. If P is a projection operator then V = Ker(P )⊕ Img(P )

Proof by lemma 2.12 and Rank-Nullity Theorem.

Lemma 2.15. u ∈ Img(P ) for a projection operator P if and only if Pu = u

Proof. u ∈ Img(P ) then v ∈ V such that,

P (v) = u

P (P (v)) = Pu

Also, P (P (v)) = P 2v = Pv = u

Therefore Pu = u.

Using Lemma 2.12 and 2.14 ∃u,w such that v = u + w where u ∈ Img(P ) and

w ∈ Ker(P )

Moreover y 6= 0 otherwise u = v ∈ Img(P ) then P (v) = P (u+ w) = u

P (u+ w) = P (u) + P (w)

= u+ 0

= u 6= v

Pv = v ⇐⇒ v ∈ Img(R)
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Lemma 2.16. (I − P ) is also a projection operator.

Proof. Taking the square of I − P , we get:

(I − P )2 = I − 2P + P 2 = I − P

Now to prove Img(P ) = Ker(I − P ), we have,

(I − P )u = 0⇐⇒ u = Pu⇐⇒ u ∈ Img(P ) ....(Lemma 3 and 4)

Now to prove Img(I − P ) = Ker(P ) we have,

v ∈ Img(I − P ) iff (I − P )v = v

i.e Pv = 0⇐⇒ v ∈ Ker(P )

Img(I − P ) = Ker(P )

Orthogonal Projection Let V be finite-dimensional vector space and P : V −→
V be a linear operator on it. P is an orthogonal projection if:

• P is a projection.

• 〈u, Pw〉 = 〈Pu,w〉 ∀u,w ∈ V

Lemma 2.17. If P is an orthogonal projection then Img(P ) ⊥ Ker(P )

Proof. Suppose u ∈ Img(P ) and w ∈ Ker(P )

For P to be orthogonal projection we need to prove:

〈u,w〉 = 〈Pu,w〉 = 〈u, Pw〉 = 0

We know that any vector v can be represented as :

v =
∑n

i=1 αibi

Also, 〈v, bj〉 = αj

This makes the representation of vector v as,
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v =
∑n

i=1〈v, bi〉bi

Now V has orthonormal basis B = (b1, b2, ..., bn) and V = U ⊕W = Img(P ) ⊕
Ker(P ). We can assume that basis for subspace U is b1, b2, ..., bk and for W is

bk+1, ..., bn .

Therefore, u =
∑k

i=1〈v, bi〉bi Similarly w =
∑n

i=k+1〈v, bj〉bj

〈Pu,w〉 = 〈u,w〉 = 〈
∑k

i=1〈u, bi〉bi,
∑n

i=k+1〈v, bj〉bj〉 = 0

Similarly,

〈u, Pw〉 = 〈
∑k

i=1〈v, bi〉bi, 0〉 = 0

〈u,w〉 = 〈Pu,w〉 = 〈u, Pw〉 = 0

Corollary: Let P be a projection operator on V . Let A be matrix of P wrt any

orthonormal basis B. Then A satisfies following:

• A2 = A

• If P is orthogonal then AT = A

Lemma 2.18. Let P be a projection on V . Let U be the Img(P ) and W be the

Ker(P ) such that U = W⊥. For every v ∈ V , v = u + w : u ∈ U, v ∈ W . Define

Pv = u then P is orthogonal projection with Img(P ) = U and Ker(P ) = W .

Proof. Let v1 = u1 + w1 and v2 = u2 + w2

we have to prove that 〈Pv1, v2〉 = 〈v1, Pv2〉
〈Pv1, v2〉 = 〈P (u1 + w1), u2 + w2〉 = 〈u1, u2 + w2〉

= 〈u1, u2〉+ 〈u1, w2〉 = 〈u1, u2〉+ 0 = 〈u1, u2〉
〈v1, Pv2〉 = 〈u1 + w1, P (u2 + w2)〉 = 〈u1 + w1, u2〉

= 〈u1, u2〉+ 〈u2 + w1〉 = 〈u1, u2〉+ 0 = 〈u1, u2〉
From above two lines we get 〈Pv1, v2〉 = 〈v1, Pv2〉, therefore P is hermitian oper-

ator which satisfies definition of orthogonal projection.
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Direction: A unit vector d ∈ V is called a direction.

Projection onto a direction:The projection onto direction d is defined as:

Pd(v) = 〈v, d〉d

Lemma 2.19. Let d be any direction and v be any vector in V as shown in figure

2.1 then:

v − 〈v, d〉d ⊥ d

Figure 2.1: Projection

Proof. Take the inner product of v − 〈v, d〉d and d

〈v − 〈v, d〉d, d〉 = 〈v, d〉 − 〈v, d〉〈d, d〉
=〈v, d〉 − 〈v, d〉
=0

There inner product is zero which proves they are perpendicular.

That means v = 〈v, d〉d+ (v − 〈v, d〉d)

Projection of v i.e Pd(v) = 〈v, d〉.d

Lemma 2.20. Let d be the direction in V . Let B = (b1, b2, ..., bn) be the basis of

V . We can represent d as:d = x1b1 + x2b2 + ...+ xnbn, where
[
x1 x2 ... xn

]T
is

the coordinate vector of d.

Matrix of projection wrt basis B can be represented as:


x1
...

xn

[x1 x2 ... xn

]
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Proof. Let B = (b1, b2, ..., bn) be the orthonormal basis of V . Let d = x1b1+x2b2+

...+ xnbn be a direction. Let v =
∑n

i=1 αibi

Now

Pd(v) = 〈
∑n

i=1 αibi,
∑n

j=1 xjbj〉.(x1b1 + x2b2 + ...+ xnbn)

Let Ad be the matrix of projection in the direction d then from above line we get:

Ad =


x1
...

xn

[x1 x2 ... xn

]

Lemma 2.21. Pd is an orthogonal projection.

Proof. From lemma 2.18 and 2.19 we can say Pd is orthogonal projection as

v = 〈v, d〉d+ (v − 〈v, d〉d)

where 〈v, d〉d ∈ Img(P ) and (v − 〈v, d〉d) ∈ Ker(P ).

Note that, matrix Ad satisfies following properties:

• A2
d = Ad

• Ad = ATd

Projection onto a subspace: Let U be the subspace of V . For any v ∈ V , let

v = u + u⊥ be the unique expression for v such that u ∈ U and u⊥ ∈ U⊥. We

define:

PU(v) = u

as projection onto a subspace U .

PU is a projection because, PU(v + v′) = PU(v) + PU(v′) and PU(αv) = αPU(v)

P 2
U = PU = P T

U If b1, b2, .., bk be an orthonormal basis of U and bk+1, ..., bn be an

orthonormal extension of U to V then,

PU(v) =
∑k

i=1〈v, bi〉.bi



Chapter 3

Hermitian Operators in Euclidean

Spaces

In the following we study Hermitian operators over a finite dimensional real vector

space V having orthonormal basis B = (b1, b2, ..., bn)

3.0.8 Eigenvalues and Eigenvectors

Eigenvalues of a operator: Let T : V −→ V be a operator, then λ ∈ R is a

real eigenvalue of T if there exist v 6= 0, v ∈ V such that:

T (v) = λv

Eigenvector of a operator: Let T : V −→ V be a operator, then v 6= 0, v ∈ V
is an eigenvector if there exist a scalar(eigenvalue) λ ∈ R such that:

T (v) = λv

Lemma 3.1. Let T : V −→ V be a operator. λ is an eigenvalue of T iff λ is a

root of the characteristic equation det(T − xI) = 0

Proof. For λ to be eigenvalue there exist v 6= 0 such that:

Tv = λv

=⇒ (T − λI)v = 0

21
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where v 6= 0 which implies T − λI is singular i.e., det(T − λI) = 0

Therefore λ is a root of the characteristic equation det(T − xI) = 0

As det(T − xI) is a polynomial of degree n, we have:

Corollary: T : V −→ V has at most n distinct eigenvalues.

This is because det(T−xI) is a real polynomial with degree n and a real polynomial

with degree n has at most n roots over R. (Refer[7].)

Eigenvalues and eigenvectors of a matrix: A square matrix A has an eigen-

value λ with the corresponding non-zero eigenvector x ∈ Rn if Ax = λx.

Let λ1, ..., λk be eigenvalues of matrix A with multiplicities d1, ..., dk. We have

relation
∑
dki=1 = n

Lemma 3.2. Eigenvalues of a matrix does not depend on basis.

Proof. Let A be a matrix. After basis change we get matrix QAQ−1, where Q is

a matrix of basis change from basis B to basis C. Now,

det(QAQ−1 − xI) = det(QAQ−1 − xQQ−1)

= det(Q(A− xI)Q−1)

= det(Q)det(A− xI)det(Q−1)

= det(A− xI)

As det(Q−1) = 1
det(Q)

. Therefore characteristic equation doesn’t change with basis

change.

Corollary: The eigenvalue of a matrix is essentially the eigenvalue of the operator

represented by the matrix in the standard basis.

Change in eigenvectors with basis change: For any two orthonormal bases

B = (b1, b2, ..., bn) and C = (c1, c2, ..., cn) of vector space V we have relation.[
c1 c2 ..... cn

]
=
[
b1 b2 ..... bn

]
Q

where Q is the matrix of basis change from B to C.

Let T be a linear transformation having matrix A and D wrt basis B and C.
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Let v1, v2, ..., vk are eigenvectors of matrix A and v′1, v
′
2, ..., v

′
k be eigenvectors of

matrix D. As the eigenvectors are orthogonal we can easily make them orthonor-

mal vectors(Gram Schmidt Procedure) which are orthonormal bases for V . Let

x1, x2, ..., xk ∈ Rn and y1, y2, ..., yk ∈ Rn be coordinate vectors of eigenvectors of

A and D respectively, then we have :

v = x1v1 + x2v2 + .....+ xnvn = y1v
′
1 + y2v

′
2 + .....+ ynv

′
n

i.e,[
v1 v2 ..... vn

] ( x1
x2
.
.
xn

)
=
[
v′1 v′2 ..... v′n

] ( y1
y2
.
.
yn

)
Using the matrix of basis change from B to C, we get( x1

x2
.
.
xn

)
= Q

( y1
y2
.
.
yn

)
or

( y1
y2
.
.
yn

)
= Q−1

( x1
x2
.
.
xn

)
Lemma 3.3. Eigenvalues of real symmetric matrix must be real.

Proof. See [7].

Lemma 3.4. The eigenvectors corresponding to distinct eigenvalues of a hermitian

operator(matrix) are orthogonal to each other.

Proof. For a symmetric(hermitian) operator T : V −→ V we have 〈T (u), v〉 =

〈u, T (v)〉 for any vector u, v ∈ Rn.

Suppose u and v are eigenvectors of T with corresponding eigenvalues λ1 and λ2,

we have:

λ1〈u, v〉 = 〈λ1u, v〉

= 〈T (u), v〉

= 〈u, T (v)〉

= 〈u, λ2v〉

= λ2〈u, v〉

Which results into λ1 − λ2〈u, v〉 = 0.

Since the eigenvalues are distinct, λ1 − λ2 6= 0, therefore 〈u, v〉 = 0

i.e u ⊥ v

This is true for any two eigenvectors corresponding to distinct eigenvalues of sym-

metric matrix.
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Eigenspace: Let T : V −→ V be a linear operator. Let λ1, λ2, ..., λk be the

eigenvalues of T where k ≤ n. Then we define the eigenspace of λi as the set:

Eλi = {v ∈ V |Tv = λiv}

Lemma 3.5. The set Eλi = {v ∈ V |Tv = λiv} is a subspace of V .

Proof. This follows as ∀u, v ∈ Eλi and c ∈ R we have:

T (u+ v) = λi(u+ v) and

T (cu) = cλu.

This shows that Eλi is a subspace of V

Now we have a subspace E of V , so we also have an orthogonal complement E⊥λi
which can be defined as: E⊥λi = {u ∈ V |〈u, v〉 = 0 ∀v ∈ Eλi}
Using Lemma 2.10 we can say that dim(Eλ) + dim(E⊥λ ) = n.

Suppose di be dim(Eλi) then dim(E⊥λi) = n− di (from lemma 2.10).

Lemma 3.6. Eigenspaces corresponds to distinct eigenvalues.

Proof. Let T : V −→ V be a linear operator and λ1, ..., λk be distinct eigenvalues

of operator and Eλi is corresponding eigenspace associated to λi. Let Eλi may

have two eigenvalues λi and λj.

Now for any vector v ∈ Eλi we have:

T (v) = λiv = λjv

=⇒ (λi − λj)v = 0

=⇒ v = 0.

as eigenvalues are distinct. Therefore any eigenspace can have only one eigenvalue.

Now we turn to Hermitian operators. The following is a fundamental property of

Hermitian operators:

Theorem 3.7. Let T : V −→ V be Hermitian operator.Let Eλi be the eigenspace

corresponding to λi and E⊥λi be the orthogonal component. λi and E⊥λi are T in-

variant. i.e.,

∀u ∈ Eλi Tu ∈ Eλi
∀w ∈ E⊥λi Tw ∈ E

⊥
λi
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Proof. Let u ∈ Eλi then we need to prove Tu ∈ Eλi
ETPT: T (Tu) = λ(Tu)

Now, T (Tu) = T (λu) = λ2u.

Similarly λ(Tu) = λ(λu) = λ2u

Therefore T (Tu) = λ(Tu) which means Tu ∈ Eλi

Let w ∈ E⊥λi then we need to prove Tw ∈ E⊥λi
w ∈ E⊥λi that means 〈u,w〉 = 0 ∀u ∈ Eλi
ETPT: 〈u, Tw〉 = 0 ∀u ∈ Eλi
Now, 〈u, Tw〉 = 〈Tu,w〉 = λ〈u,w〉 = 0 i.e., 〈u, Tw〉 = 0

That means Tw ∈ E⊥λi

Lemma 3.8. Eigenspaces of a linear operator T : V −→ V intersects only at the

origin (i.e., independent subspaces)

Proof. Let T : V −→ V be a Hermitian operator with distinct eigenvalues λ1, λ2, ..., λk,

where k ≤ n and corresponding subspaces Eλ1 , Eλ2 , ..., Eλk .

ETPT: Eλi ∩ Eλj = {0} for i 6= j. Let u ∈ Eλi ∩ Eλj . Then,

Tu = λiu as u ∈ Eλi
Tu = λju as u ∈ Eλj
=⇒ u = 0 as λi 6= λj

Therefore Eλi∩Eλj = {0} for i 6= j which means they are linearly independent.

The following is a central decomposition theorem:

Theorem 3.9. Let V be a real vector space, let T : V −→ V be Hermitian operator

with distinct eigenvalues λ1, λ2, ..., λk, where k ≤ n then:

1. V = Eλ1 ⊕ Eλ2 ⊕ ....⊕ Eλk .

2. Each Eλi is T invariant.

3. ∀u ∈ Eλi ,∀v ∈ Eλj 〈u, v〉 = 0 if i 6= j

Proof. Let T : V −→ V be a Hermitian operator with distinct eigenvalues λ1, λ2, ..., λk,

where k ≤ n. We have already proved in theorem 3.7 that (Eλi) and (E⊥λi) are

invariant and V = Eλi ⊕ E⊥λi .
Now TE⊥λi

is Hermitian as Eλ⊥i is a subspace of V which is invariant. Moreover TE⊥λi
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has eigenvalues λ1, ..λi−1, λi+1, ..λk with the same eigenspaces Eλ1 , ..Eλi−1
, Eλi+1

, ..Eλk .

Now these eigenspaces are independent(Lemma 3.7) Therefore, by induction on

dim(Eλi), we have:

Eλ⊥i = Eλ1 ⊕ ..⊕ Eλi−1
⊕ Eλi+1

⊕ ..⊕ Eλk

and using lemma 2.10 we have:

V = Eλi ⊕ E⊥λi

Therefore,

V = Eλ1 ⊕ Eλ2 ⊕ ...⊕ Eλk

We have already seen in theorem 3.7 that Eλi is invariant which can be proved for

each eigenspace..

Where as in lemma 3.4 we have already proved that eigenvectors corresponding

to distinct eigenvalues are orthogonal to each other. Therefore, when we say

∀u ∈ Eλi ,∀v ∈ Eλj we mean the eigenvectors corresponding to λi and λj which

are orthogonal to each other. So 〈u, v〉 = 0 if i 6= j.

Lemma 3.10. Let T : V −→ V be a Hermitian operator. Let P be a projection

on V and Pλi be projection onto subspace Eλi, then:

Pλ1 + Pλ2 + ...+ Pλn = I

Proof. T is a Hermitian operator. Let λ1, λ2, ..., λk be distinct eigenvalues of T

and Eλi be the respective eigenspace. Using theorem 3.9 we can say:

V = Eλ1 ⊕ Eλ2 ⊕ ...⊕ Eλk

Let Eλi have the dim(Eλi) = di and let bi1, ..., b
i
di

be the orthonormal basis of

subspace Eλi

Let Pλi be projection onto subspace Eλi be:

Pλi(v) =
∑di

j=1〈v, bij〉bij Now,

Pλi(v) =
∑di

j=1〈v, bij〉bij
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Taking the sum of all projections onto subspace we have:

(Pλ1 + Pλ2 + ...+ Pλk)v =
∑k

l=1

∑di
j=1〈v, bij〉bij

As we have V = Eλ1 ⊕Eλ2 ⊕ ...⊕Eλk , we can say that orthonormal basis of V is

B = (b1, b2, ..., bn) = (b11, .., b
1
d1
, .....bk1, .., b

k
dk

) = (B1, B2, ..., Bk)

Also we have v =
∑n

i=1 αibi

〈v, bj〉 = αj

so, v =
∑n

i=1〈v, bi〉bi
Combining above facts we get:

(Pλ1 + Pλ2 + ...+ Pλk)v = v1 + v2 + ...+ vk

where vi is a vector wrt basis Bi. Now v = v1 + v2 + ..., vk

(Pλ1 + Pλ2 + ...+ Pλk)v = v

(Pλ1 + Pλ2 + ...+ Pλk) = I

3.0.9 Spectral Theorem

Theorem 3.11. Spectral Theorem(Projection Version) Let T : V −→ V be a

Hermitian operator and λ1, λ2, ..., λk be eigenvalues of the operator and Pλi be the

projection onto subspace Eλi. Then,

T = λ1Pλ1 + λ2Pλ2 + ...+ λkPλk

Proof. We have already proven in lemma 3.9
∑k

i=1 Pλi = I Now take v = v1+...+vk

with vi ∈ Eλi apply T , we get:

T (v) = T (v1) + ...+ T (vk)

= λ1v1 + λ2v2 + ...+ λkvk

Now,
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∑k
i=1 λiPiv =

∑k
i=1 λiPi(v1 + v2 + ...+ vk)

= λ1v1 + λ2v2 + ...+ λkvk

= T (v)

Therefore,

T = λ1Pλ1 + λ2Pλ2 + ...+ λkPλk

Theorem 3.12. Spectral Theorem(Matrix Version) Every n×n symmetric matrix

can be decomposed as:

A = QDQT ,

where A is a n × n symmetric matrix, D is a diagonal matrix whose entries are

eigenvalues of matrix A and Q is orthogonal matrix associated with eigenvectors

of A.[6]

or:

According to spectral theorem for any n×n symmetric matrix A, [6]there exist ex-

actly n, possibly not distinct eigenvalues λ1, ...λn and their associated eigenvectors

u1, ...uk where k ≤ n is number of non-zero eigenvalues and xi is the coordinate

vector of ui such that

A =
∑k

i=1 λixix
T
i = QDQT .

Proof. Let λ1 ≤ λ2 ≤ ... ≤ λn be (not necessarily distinct) eigenvalues of sym-

metric matrix A. Given any Hermitian operator(matrix) we can choose coordinate

vectors x1, x2, ...xk ∈ Rn where k ≤ n such that they are associated to eigenvectors

of A which are orthonormal. Let
[
x1 x2 ..... xk

]
=
[
e1 e2 ..... ek

]
Q

where e1, e2, .., ek is the standard basis. Clearly

Q =
[
Q1 Q2 ..... Qk

]
=
[
x1 x2 ..... xk

]
. Moreover, since eigenvectors are

orthonormal i.e., xi
′s are orthonormal we have,

QT = Q−1

Let v ∈ Rn such that,
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v = α1x1 + α2x2 + ...+ αkxk

Av = A(α1x1 + α2x2 + ...+ αkxk)

As Axi = λixi, we have:

Av = α1λ1x1 + α2λ2x2 + ...+ αkλkxk

Also v =
∑k

i=1 αixi =⇒ αi = 〈v, xi〉. Therefore we have:

Av =
∑k

i=1 λi〈v, xi〉xi

Av =
∑k

i=1 λixi〈v, xi〉

Av =
∑k

i=1 λixi〈xi, v〉

Av =
∑k

i=1 λixix
T
i v

A =
∑k

i=1 λixix
T
i

We have
∑k

i=1 λixix
T
i which can written as:

∑k
i=1 λixix

T
i =

[
x1 x2 ..... xk

]

λ1

. . .
. . .

λk


[
x1 x2 ..... xk

]T

Without the loss of generality, we can have n eigenvalues(need not to be distinct)

λ1 ≤ λ2 ≤ ... ≤ λn such that we can write above equation as:

∑n
i=1 λixix

T
i =

[
x1 x2 ..... xn

]

λ1

. . .
. . .

λn


[
x1 x2 ..... xn

]T
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As


λ1

. . .
. . .

λn

 =


λ1

. . .

λk

0


where k ≤ n (k denotes the rank of matrix.)

= QDQT

= A

where A is a n × n symmetric matrix, D is a diagonal matrix whose entries are

eigenvalues of matrix A and Q is orthogonal matrix associated with eigenvectors

of A

3.0.10 Positive Semidefinite Matrices

A n× n symmetric matrix A is a positive semidefinite matrix iff

yTAy ≥ 0

∀y ∈ Rn

We use the notation A � 0 to indicate a symmetric positive semidefinite ma-

trix(psd). Given n× n symmetric matrix A, the following lines are equivalent:

1. A symmetric matrix A is positive semidefinite.

2. All eigen values of A are non-negative.

3. ∃V ∈ Rk×n k ≤ n such that A = V TV .

4. A =
∑k

i=1 λiviv
T
i , for vi ∈ Rn. vi ⊥ vj = 0 if i 6= j and ∀i ||vi|| = 1.

Proof. Following is the proof for above statements[8],

1⇒ 2.

If A � 0 then all eigen values of A are non-negative.

Any vector v is eigen vector of A if it satisfies Av = λv , where λ is eigen value

corresponding to v. Symmetric matrices have real-valued eigen values. Now we

have equation :



Hermitian Operators in Euclidean Spaces 31

Av = λv

Multiplying both sides vT we get,

vTAv = vTλv = λvTv

By definition of positive semidefinite vTAv ≥ 0. Therefore, R.H.S of the equation

λvTv ≥ 0, also vTv ≥ 0. Thus λ ≥ 0

2⇒ 3.

If all eigen values ofA are non-negative then ∃V ∈ Rk×n k ≤ n such thatA = V TV .

It is already been proved in spectral theorem that for a symmetric matrix A there

exist (not necessarily distinct) eigenvalues λ1, λ2, ..., λn and have corresponding

eigenvectors u1, u2, ...., un .

Let Λ be the diagonal matrix that contains eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn of A.

Λ =


λ1

. . .
. . .

λn

 =


λ1

. . .

λk

0

 where k is number of non zero eigen-

values and k ≤ n

Let U be the orthogonal matrix associated with the eigenvectors
[
u1 u2 .... un

]
of A. From theorem 3.12 we have

A = UΛUT

i.e A =
[
u1 u2 .... un

]

λ1

. . .
. . .

λn




uT1

uT2
...

uTn



If k < n then we can write it as: A =
[
u1 u2 .... uk

]

λ1

. . .

λk

0




uT1

uT2
...

uTk


Since Λ has all diagonal values and we can decompose it into Λ

1
2 (Λ

1
2 )T . Using

point (2) Λ
1
2 must have all entries real Thus,

A = UΛ
1
2 (Λ

1
2 )TUT
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where Λ
1
2
ij = +

√
Λij

A = (UΛ
1
2 )(UΛ

1
2 )T

Let V T = (UΛ
1
2 ). Therefore we get the equation,

A = V TV

3⇒ 1.

If ∃V ∈ Rk×n k ≤ n such that A = V TV then A � 0.

y ∈ Rn, yTAy = yTV TV y = (V y)T (V y) = 〈V y, V y〉 ≥ 0.

1⇒ 4.

If a symmetric matrix A is psd then we have A =
∑k

i=1 λiviv
T
i , for vi ∈ Rn.

vi ⊥ vj = 0 if i 6= j and ∀i ||vi|| = 1

Using spectral theorem we can say any symmetric matrix A can be represented as:

A = QDQT =
∑k

i=1 λixix
T
i

where x1, x2, ..., xk are orthogonal eigenvectors of A.

4⇒ 1.

Similarly according to Spectral theorem for any n×n symmetric matrix A, [6]there

exist exactly n, possibly not distinct eigenvalues λ1, ...λn and their associated

eigenvectors u1, ...uk where k ≤ n are non-zero eigenvalues and xi is the coordinate

vector of ui such that

A =
∑k

i=1 λixix
T
i .
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Semidefinite Programming

Semidefinite programming is a relatively new field of optimization and is becom-

ing a tool for improving the performance guarantees of many problem. Some of

its application areas are operational research, convex constrained optimization,

combinatorial optimization, control theory etc. All linear programs as well as

strict quadratic programs can be represented as SDPs. One of the best example

of application of semidefinite programming is in MAXCUT problem done by Goe-

mans and Williamson [1]. They provided a .87856-approximation algorithm for

the problem. There are other interesting applications of SDP in various fields.

4.1 Semidefinite Programming

4.1.1 SDP Formulation

Let Sn denote the set of symmetric n×n matrices. Let X ∈ Sn and C is a constant

matrix for objective function. C(X) is a linear function of X which is defined as

Frobenius inner product and denoted as:

C(X) = Tr(CX) = C •X =
∑

i,j cijxij where C = (cij) and X = (xij)

A semidefinite program Z with the objective function C(X) and m linear equa-

tions that X must satisfy, can be formulated[2] [3] as :

33
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Minimize or Maximize
∑

i,j cijxij ..(Z)

subject to
∑

i,j aijkxij = bk k = 1.....,m

xij = xji ∀i, j ....Symmetry Constraint

X = (xij) � 0 ....PSD Constraint

The variable xij denotes the element of matrix X ∈ Rn×n Let us see an example,

we have n = 3, m = 3,

A1 =


1 3 2

3 4 0

2 0 7

 A2 =


0 1 0

1 2 4

0 4 3


A3 =


2 0 1

0 3 2

1 2 7

 C =


2 3 7

3 8 0

7 0 5


b1 = 17, b2 = 15, b3 = 11

X will be 3× 3 symmetric matrix

X =


x11 x12 x13

x21 x22 x23

x31 x32 x33


∑

i,j cijxij = 2x11 + 3x12 + 7x13 + 3x21 + 8x22 + 0x23 + 7x31 + 0x32 + 5x33

= 2x11 + 6x12 + 14x13 + 8x22 + 0x23 + 5x33

SDP: minimize 2x11 + 6x12 + 14x13 + 8x22 + 0x23 + 5x33

subject to

x11 + 6x12 + 4x13 + 4x22 + 0x23 + 7x33 = 17

0x11 + 2x12 + 0x13 + 4x22 + 8x23 + 3x33 = 15

2x11 + 0x12 + 2x13 + 3x22 + 4x23 + 7x33 = 11

xij = xji

X =


x11 x12 x13

x21 x22 x23

x31 x32 x33

 � 0
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4.2 SDP as Vector Programming

SDP is often experienced in the form of vector programs. Given a SDP, the

equivalent vector program will have the variables which are vectors vi ∈ Rn, where

dim(n) is number of vectors.

In a vector program there is an objective function and constraints that are linear

in the inner product of these vectors. Typically we require that the vectors are

unit vectors. A vector program V is formulated as:

Minimize or Maximize
∑

i,j cij(vi.vj) ..(V )

subject to
∑

i,j aijk(vi.vj) = bk ∀k
vi ∈ Rn

Lemma 4.1. The SDP (Z) and above given vector program(V ) are equivalent[3].

Proof. Semidefinite programming and vector programming are considered to be

equivalent because from one form we get another one. This can be done by taking

the solution of semidefinite programming X ∈ Rn×n, X � 0 and computing X =

V TV for some column vector V in polynomial time( Cholesky Decomposition[10]).

X = V TV can be solved in polynomial time with some small error that can be

ignored. Taking vi, i
th column of V is the solution for vector programs.

Therefore, xij = vi.vj = vTi vj

Similarly for given vi ∈ Rn we can construct V and thenX=V TV , which is solution

for SDP.

Here is the vector program for the above example:

minimize 2v1.v1 + 6v1.v2 + 14v1.v3 + 8v2.v2 + 0v2.v3 + 5v3.v3

subject to

v1.v1 + 6v1.v2 + 4v1.v3 + 4v2.v2 + 0v2.v3 + 7v3.v3 = 17

0v1.v1 + 2v1.v2 + 0v1.v3 + 4v2.v2 + 8v2.v3 + 3v3.v3 = 15

2v1.v1 + 0v1.v2 + 2v1.v3 + 3v2.v2 + 4v2.v3 + 7v3.v3 = 11

vi ∈ Rn
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Max-cut Problem

Given an undirected graph G(V,E) having non negative weight on all edges

(i, j) ∈ E, the maxcut problem can be defined as ”finding a partition of ver-

tices into two disjoint subsets (S, S̄) such that sum of the weights of the edges

that crosses the cut is maximized.”

IP formulation:

∀i ∈ V xi =

1, if i ∈ S

0, otherwise

zij =

1, if edge (i,j) crosses the cut

0, otherwise

max
∑

(i,j)∈E wijzij

subject to zij ≤ xi + xj ∀(i, j) ∈ E
zij ≤ 2− (xi + xj) ∀(i, j) ∈ E

xi ∈ {0, 1} ∀i ∈ V
zij ∈ {0, 1} ∀(i, j) ∈ E

But this formulation doesn’t provides any better solution. If we find LP optimal

solution the integrality gap is still 1/2. So we need to reformulate it.

36
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Quadratic Programming Formulation:

The present formulation also represents the max-cut problem.

∀i ∈ V yi =

−1, if i ∈ S

1, otherwise

max 1
2

∑
(i,j)∈E wij(1− yiyj)

subject to yi.yi = 1 ∀i ∈ V
yi ∈ −1, 1 ∀i ∈ V

The above formulation represents the maxcut, but it’s NP Complete. We consider

further relaxation and try to apply vector programming relaxation.

Vector Programming Formulation:

Vector programming relaxations can be made by relaxing some of the constraints

and extending the objective function to the larger space i.e ,

max 1
2

∑
(i,j)∈E wij(1− vi.vj)

subject to vi.vi = 1 ∀i ∈ V
vi ∈ Rn ∀i ∈ V

The above obtained formulation gives all possible solution of previous OPT of

max-cut, therefore making it more general or extended version of max-cut. We

can say that the optimal solution obtained Z∗ ≥ OPT [4] because if we set vec-

tors vi to (yi, 0, ....., 0), we can get the quadratic program from the above vector

program which is due to vector program being a generalization of the quadratic

program.

As the vector program is equivalent to SDP we can solve the problem. Goemans

and Williamson[1] have presented the solution for this with the expected value of

atleast 0.878 times of OPT. Here we are trying to reformulate it and try to solve

it using SDP and then present the Goemans and Williamson algorithm.
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5.0.1 Solving The Formulation

The quadratic formulation of problem statement can be reformulated as:

Z = 1
2

∑
(i,j)∈E wij(1− yiyj)

= 1
4
(
∑

i

∑
j wij −

∑
i

∑
j wijyiyj)

= 1
4
(
∑

i

∑
j wijy

2
i −

∑
i

∑
j wijyiyj)

= 1
4
(
∑

i(
∑

j(wij))y
2
i −

∑
i

∑
j wijyiyj)

= 1
4
(yTDiag(We)y − yTWy)

Let L = Diag(We)−W

Z = 1
4
(yTLy)

Also,

yTLy = trace(yTLy) = trace(yT (Ly)) = trace(LyyT ) = trace(LX)

where X = yyT

Therefore the formulation Z is:

max 1
4
trace(LX)

subject to Xii = 1

rank(X) = 1

X � 0

The above formulation is equivalent to previous one(Z = 1
4
(yTLy)). As matrix

X is rank one constrained and using spectral theorem(Theorem 3.11) we can say

that for any such matrix X having rank 1 we have one and only one decompostion

i.e X = yyT as rank 1 matrix has only one eigenvalue. Therefore we can say
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Z = 1
4
trace(LX)←→ 1

4
(yTLy)

The above formulation has rank-1 constraint and can be termed as rank con-

strained form. By relaxing this rank constraint i.e removing it we obtain convex

problem infact the SDP. This SDP is the relaxation of the original problem, that

is, it is a new problem obtained by removing constraint. The SDP Z∗ is:

max 1
4
trace(LX)

subject to Xii = 1

X � 0

Using any semidefinite algorithm, one can obtain for ε > 0, a solution of value

greater than Z∗−ε in time polynomial in the input size and log1/ε. There are var-

ious algorithms to solve semidefinite programming like ellipsoid algorithm, interior

point algorithm and other polynomial time algorithms for convex programming.

5.0.2 Goemans-Williamson Algorithm

Goemans and Williamson in their paper gave rounding procedure for finding an

approximate solution to the max-cut problem. Following is the random hyperplane

rounding algorithm[5]:

• Solve the model Z. Let X∗ be the optimal solution.

• Compute the Cholesky Decomposition for X∗ i.e X∗ = V TV where vi, i =

1...n is normalized column of V.

• Rounding procedure:

Set S = ∅

– Uniformly generate a random vector r on the unit n-sphere.

– For i = 1...n, if vTi .r ≥ 0 then i ∈ S else i ∈ S̄.

– Find the weight after obtaining the cut.

The random vector r = (r1, r2, .., rn), each component is picked from N(0, 1),

the Normal Distribution with mean 0 and variance 1. The random unit vector
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Figure 5.1: Random Hyperplane Rounding[5]

is equivalent to the random hyperplane with normal r containing the origin. As

vi.vi = 1, therefore all the vectors lie in unit sphere. The random hyperplane splits

the sphere into two half S and S̄. This approximation algorithm has guaranteed

performance of 0.878; however the solution obtained by this algorithm is better

than 0.878 in many cases.

5.0.3 Analysis of the Algorithm

The GW Algorithm gives performance of 0.878. Practically it gives better than

this. Let us analyze the algorithm.

The expected value of the max-cut depends on the fact that any two vector should

have opposite sign. Let v1, v2, .., vn be the vectors, so the expected value of cut

depends on the probability that two vectors are separated by the random hyper-

plane,i.e.:

E[W ]=
∑

(i,j)∈E wij.P r[(vi.r ≥ 0 and vj.r < 0) or (vj.r ≥ 0 and vi.r < 0)]

Also we have,

Pr[(vi.r ≥ 0 and vj.r < 0) or (vj.r ≥ 0 and vi.r < 0)] = Pr[sgn(vi.r) 6= sgn(vj.r)]

By combining above two equations we get,

E[W ]=
∑

(i,j)∈E wij.P r[sgn(vi.r) 6= sgn(vj.r)],
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Now let us find the probability.

Lemma 5.1. Pr[sgn(vi.r) 6= sgn(vj.r)]=
1
π
arccos(vi.vj) ≥ 0.8781

2
(1− vi.vj)

Proof. Assuming certain facts,

Fact 1: As r is uniform random vector over the unit sphere, the projection of r

onto a plane is uniformly distributed on a unit circle.

Fact 2: The projection of r onto two vectors are independent and normally dis-

tributed.

To compute the probability consider a plane containing vectors vi, vj having angle

θ between them. The random vector r has two components i.e r = r′ + r⊥. r′ is

the component of r that lies on the plane where as r⊥ is orthogonal to the plane.

Therefore vi.r = vi.(r
′ + r⊥) = vi.r

′ as vi.r⊥ = 0.

Similarly vj.r = vj.r
′.

Figure 5.2: Figure for proof[5]

From the figure 2 we get if r lies in the arc AOC or arc BOD then sgn(vi.r) 6=
sgn(vj.r). We can also find that the angle in both the arc is θ. As a result,

Pr[sgn(vi.r) 6= sgn(vj.r)]=
2θ
2π

where θ = arccos(vi.vj)

Therefore,
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Pr[sgn(vi.r) 6= sgn(vj.r)]=
arccos(vi.vj)

π

E[W ]= 1
π

∑
(i,j)∈E wijarccos(vi.vj)

Also,

min−1≤x≤1
1
π
arccos(vi.vj)
1
2
(1−vi.vj)

≥ 0.878

=> 1
π
arccos(vi.vj) ≥ 0.8781

2
(1− vi.vj)

i.e Pr[sgn(vi.r) 6= sgn(vj.r)] ≥ 0.8781
2
(1− vi.vj)

Lemma 5.2. E[W ] ≥ 0.8781
2

∑
(i,j)∈E wij(1− vi.vj)

Proof. We expected value is:

E[W ] =
∑

(i,j)∈E wij.P r[sgn(vi.r) 6= sgn(vj.r)]

= 1
π

∑
(i,j)∈E wijarccos(vi.vj)

≥ 0.8781
2

∑
(i,j)∈E wij(1− vi.vj)

= 0.878ZSDP

≥ 0.878ZOPT
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Conclusion

With the given prerequisites in the thesis for semidefinite programming, one can

understand the semidefinite programming. We have only given one example of

semidefinite programming used in combinatorial problem(Max-cut). Other combi-

natorial problems like MAX-2SAT[1], k-colorability[4] etc. have also been studied

using semidefinite programming, providing better result than previous solutions.

Not many combinatorial problems have been studied till now but the field is still

in its growing phase for combinatorial problems.

One can have chances of finding better solutions for existing combinatorial prob-

lems using semidefinite programming. Also one can study to find out whether there

is any possiblity of having better complexity for existing solutions of semidefinite

programming or any other approach to solve problems in semidefinite program-

ming.

There lies lot of possibility in semidefinite programming for finding better approx-

imation algorithms for combinatorial problems. Hence it is important tool which

can be used in combinatorial optimizations.
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