Assignment I

1. Suppose a, n are positive integers, $1 \leq a \leq n$. Let $d=G C D(a, n)$. Suppose b is a multiple of d. Show that:

- The equation $a x=b \bmod n$ is solvable.
- If x is one solution, $x+\frac{n}{d}$ is also a solution.
- The equation has exactly d solutions between 1 and n.
- For what values of a between 1 and 20 does the equation $a x=12 \bmod 20$ fail to have a solution?

2. Let \mathcal{S} be a set. Let $S_{1}, S_{2}, \ldots, S_{k}$ be non-empty subsets of \mathcal{S}. We say $S_{1}, . ., S_{k}$ forms a partition of the set \mathcal{S} if they are disjoint (that is, $S_{i} \cap S_{j}=\emptyset$ whenever $i \neq j$) and every element in \mathcal{S} belongs to some (actually exactly one - why?) S_{j} for some $1 \leq j \leq k$. Given a partition as above, define a relation R on the set S as follows: $R=\left\{(a, b) \in \mathcal{S}\right.$: there exists some S_{j} containing both a and $\left.b\right\}$. Thus, two elements are related if they belong to the same subset. Show that R is an equivalance relation. (An equivalance relation is one that is reflexive, symmetric and transitive - If you have forgotten the definitions, revise!).
3. Let R be an equivalance relation defined on a set \mathcal{S}. For each $a \in \mathcal{S}$, we denote by $R(a)$ the set of all elements to which a is related. That is $R(a)=\{y \in \mathcal{S}:(a, y) \in R\}$. Show that if a, b are distinct elements in \mathcal{S}, then either $R(a)=R(b)$ or $R(a) \cap R(b)=\emptyset$. This question and the one above shows that the notions of equivalance relation conincides with the notion of partition of a set.
4. Let n be any positive integer. On the set \mathbf{Z} of integers, define the relation $R=\{(a, b): a \equiv b$ $\bmod n\}$. Show that R is an equivalance relation. How does this relation partition the set \mathbf{Z} ?
5. Let $(G,+)$ be an Abelian group. Let S be a subgroup. Define the relation R as follows: $R=\{(a, b) \in$ $G: a-b \in S\}$. Show that R is an equivlance relation. When G is $(\mathbf{Z},+)$, and $S=4 \mathbf{Z}$ (that is S consists of all multiples of 4), describe the tuples in the relation R andthe partioning of \mathbf{Z} defined by this equivalance relation. Repeat the exercise with $G=\mathbf{Z}_{\mathbf{1 0}}$ and $S=\{0,5\}$.
6. Let S be a subgroup of an an Abelian group $(G,+)$. Let R be the relation: $R=\{(a, b) \in G$: $a-b \in S\}$. Prove that partion of G defined by R are precisely the cosets of G defined by S.
7. Let \leq be a partial order relation on a set A (Revise the definition of partial orders if you have forgotten!) $u \in A$ is an upper bound to $a \in A$ if $a \leq u$. Let S be a (non-empty) subset of A. We define $U B(S)=\{u: u$ is an upper bound to every element in $s\}$. Thus, upper bound of a set consists of those elements u in A such that for every $s \in S, s \leq u$.

- Define the lower bound of two elements and $L B(S)$ in similar manner.
- In the set of real numbers with the normal ordering (\mathbf{R}, \leq), consider the subset $S=\left\{a: a^{2}<2\right\}$. Find $L B(S)$ and $U B(S)$.
- In the set of vectors in the plane $\mathbf{R}^{\mathbf{2}}$, define the relation $(x, y) \preceq\left(x^{\prime}, y^{\prime}\right)$ if $x \leq x^{\prime}$ and $y \leq y^{\prime}$. Show that R is partial order. Consider the "square" $S=\{(x, y):|x| \leq 1,|y| \leq 1\}$. Find $U B(S)$ and $L B(S)$.
- Is it always true that $U B(S) \cap S=\emptyset$?

8. Let \leq be a partial order relation on a set A. Let S be a (non-empty) subset of $A . l \in S$ is a least element of S if $l \leq s$ for all $s \in S$. Show that S has a least element if and only if $L B(S) \cap S \neq \emptyset$. Show that a set S can have at most one least element. How many elements will be there in $L B(S) \cap S$? Define the notion of greatest element of S in a simlar way.
9. In the set of real numbers with the normal ordering (\mathbf{R}, \leq), consider the subset $S=\left\{a \in \mathbf{R}: a^{2} \leq\right.$ $2\}$. Does S have a least element? Suppose, instead of reals, we consider the set of rationals with the normal ordering (\mathbf{Q}, \leq). Let S be defined as $S=\left\{a \in \mathbf{Q}: a^{2} \leq 2\right\}$. Does S have a least element?
10. Let \leq be a partial order relation on a set A. Let S be a (non-empty) subset of $A u \in A$ is the greatest upper bound of S denoted $L U B(S)$ if u is the least element of $U B(S)$. Define $G L B(S)$ similarly.
11. A partial order (A, \leq) is a lattice if every non-empty finite subset S of A has $L U B(S)$ and $G L B(S)$. A is a complete lattice if every non-empty subset has $L U B(S)$ and $G L B(S)$.

- Show that in (\mathbf{Q}, \leq), the set $S=\left\{a \in \mathbf{Q}: a^{2}<2\right\}$ has no $L U B(S)$ or $G L B(S)$. However, show that (\mathbf{Q}, \leq) is a lattice.
- Show that in (\mathbf{R}, \leq), the set $S=\left\{a \in \mathbf{R}: a^{2}<2\right\}$ has $L U B(S)$ and $G L B(S)$. However show that (\mathbf{R}, \leq), though a lattice, is not a complete lattice. If we add two special elements $\pm \infty$ and fix the convention that $L U B(R)=+\infty$ and $G L B(R)=-\infty$, then we get what is known as the extended real numbers, which is indeed a complete lattice. The proof of the fact that this system is a complete lattice is beyond the scope of the course.

