- 1. Suppose a, n are positive integers, $1 \le a \le n$. Let d = GCD(a, n). Suppose b is a multiple of d. Show that:
 - The equation $ax = b \mod n$ is solvable.
 - If x is one solution, $x + \frac{n}{d}$ is also a solution.
 - The equation has exactly d solutions between 1 and n.
 - For what values of a between 1 and 20 does the equation $ax = 12 \mod 20$ fail to have a solution?
- 2. Let S be a set. Let $S_1, S_2, ..., S_k$ be non-empty subsets of S. We say $S_1, ..., S_k$ forms a partition of the set S if they are disjoint (that is, $S_i \cap S_j = \emptyset$ whenever $i \neq j$) and every element in S belongs to some (actually exactly one - why?) S_j for some $1 \leq j \leq k$. Given a partition as above, define a relation R on the set S as follows: $R = \{(a, b) \in S :$ there exists some S_j containing both a and $b\}$. Thus, two elements are related if they belong to the same subset. Show that R is an equivalance relation. (An equivalance relation is one that is reflexive, symmetric and transitive - If you have forgotten the definitions, revise!).
- 3. Let R be an equivalance relation defined on a set S. For each $a \in S$, we denote by R(a) the set of all elements to which a is related. That is $R(a) = \{y \in S : (a, y) \in R\}$. Show that if a, b are distinct elements in S, then either R(a) = R(b) or $R(a) \cap R(b) = \emptyset$. This question and the one above shows that the notions of equivalance relation conincides with the notion of partition of a set.
- 4. Let *n* be any positive integer. On the set **Z** of integers, define the relation $R = \{(a, b) : a \equiv b \mod n\}$. Show that *R* is an equivalance relation. How does this relation partition the set **Z**?
- 5. Let (G, +) be an Abelian group. Let S be a subgroup. Define the relation R as follows: $R = \{(a, b) \in G : a b \in S\}$. Show that R is an equivalence relation. When G is $(\mathbf{Z}, +)$, and $S = 4\mathbf{Z}$ (that is S consists of all multiples of 4), describe the tuples in the relation R and the participation of \mathbf{Z} defined by this equivalence relation. Repeat the exercise with $G = \mathbf{Z}_{10}$ and $S = \{0, 5\}$.
- 6. Let S be a subgroup of an an Abelian group (G, +). Let R be the relation: $R = \{(a, b) \in G : a b \in S\}$. Prove that partial of G defined by R are precisely the **cosets** of G defined by S.
- 7. Let \leq be a partial order relation on a set A (Revise the definition of partial orders if you have forgotten!) $u \in A$ is an upper bound to $a \in A$ if $a \leq u$. Let S be a (non-empty) subset of A. We define $UB(S) = \{u : u \text{ is an upper bound to every element in } s\}$. Thus, upper bound of a set consists of those elements u in A such that for every $s \in S$, $s \leq u$.
 - Define the lower bound of two elements and LB(S) in similar manner.
 - In the set of real numbers with the normal ordering (\mathbf{R}, \leq) , consider the subset $S = \{a : a^2 < 2\}$. Find LB(S) and UB(S).
 - In the set of vectors in the plane \mathbb{R}^2 , define the relation $(x, y) \preceq (x', y')$ if $x \leq x'$ and $y \leq y'$. Show that R is partial order. Consider the "square" $S = \{(x, y) : |x| \leq 1, |y| \leq 1\}$. Find UB(S) and LB(S).
 - Is it always true that $UB(S) \cap S = \emptyset$?
- 8. Let \leq be a partial order relation on a set A. Let S be a (non-empty) subset of A. $l \in S$ is a least element of S if $l \leq s$ for all $s \in S$. Show that S has a least element if and only if $LB(S) \cap S \neq \emptyset$. Show that a set S can have at most one least element. How many elements will be there in $LB(S) \cap S$? Define the notion of greatest element of S in a similar way.
- 9. In the set of real numbers with the normal ordering (\mathbf{R}, \leq) , consider the subset $S = \{a \in \mathbf{R} : a^2 \leq 2\}$. Does S have a least element? Suppose, instead of reals, we consider the set of rationals with the normal ordering (\mathbf{Q}, \leq) . Let S be defined as $S = \{a \in \mathbf{Q} : a^2 \leq 2\}$. Does S have a least element?

- 10. Let \leq be a partial order relation on a set A. Let S be a (non-empty) subset of $A \ u \in A$ is the greatest upper bound of S denoted LUB(S) if u is the least element of UB(S). Define GLB(S) similarly.
- 11. A partial order (A, \leq) is a lattice if every non-empty **finite** subset S of A has LUB(S) and GLB(S). A is a complete lattice if every non-empty subset has LUB(S) and GLB(S).
 - Show that in (\mathbf{Q}, \leq) , the set $S = \{a \in \mathbf{Q} : a^2 < 2\}$ has no LUB(S) or GLB(S). However, show that (\mathbf{Q}, \leq) is a lattice.
 - Show that in (\mathbf{R}, \leq) , the set $S = \{a \in \mathbf{R} : a^2 < 2\}$ has LUB(S) and GLB(S). However show that (\mathbf{R}, \leq) , though a lattice, is not a complete lattice. If we add two special elements $\pm \infty$ and fix the convention that $LUB(R) = +\infty$ and $GLB(R) = -\infty$, then we get what is known as the *extended real numbers*, which is indeed a complete lattice. The proof of the fact that this system is a complete lattice is beyond the scope of the course.