
Assignment I

1. Suppose a, n are positive integers, 1 ≤ a ≤ n. Let d = GCD(a, n). Suppose b is a multiple of d.
Show that:

• The equation ax = b mod n is solvable.

• If x is one solution, x+ n
d

is also a solution.

• The equation has exactly d solutions between 1 and n.

• For what values of a between 1 and 20 does the equation ax = 12 mod 20 fail to have a
solution?

2. Let S be a set. Let S1, S2, .., Sk be non-empty subsets of S . We say S1, .., Sk forms a partition of

the set S if they are disjoint (that is, Si ∩ Sj = ∅ whenever i 6= j) and every element in S belongs
to some (actually exactly one - why?) Sj for some 1 ≤ j ≤ k. Given a partition as above, define a

relation R on the set S as follows: R = {(a, b) ∈ S : there exists some Sj containing both a and b}.
Thus, two elements are related if they belong to the same subset. Show that R is an equivalance relation.
(An equivalance relation is one that is reflexive, symmetric and transitive - If you have forgotten the
definitions, revise!).

3. Let R be an equivalance relation defined on a set S . For each a ∈ S , we denote by R(a) the set of all

elements to which a is related. That is R(a) = {y ∈ S : (a, y) ∈ R}. Show that if a, b are distinct
elements in S , then either R(a) = R(b) or R(a)∩R(b) = ∅. This question and the one above shows
that the notions of equivalance relation conincides with the notion of partition of a set.

4. Let n be any positive integer. On the set Z of integers, define the relation R = {(a, b) : a ≡ b
mod n}. Show that R is an equivalance relation. How does this relation partition the set Z?

5. Let (G,+) be an Abelian group. Let S be a subgroup. Define the relation R as follows: R = {(a, b) ∈
G : a− b ∈ S}. Show that R is an equivlance relation. When G is (Z,+), and S = 4Z (that is S
consists of all multiples of 4), describe the tuples in the relation R andthe partioning of Z defined by
this equivalance relation. Repeat the exercise with G = Z10 and S = {0, 5}.

6. Let S be a subgroup of an an Abelian group (G,+). Let R be the relation: R = {(a, b) ∈ G :
a− b ∈ S}. Prove that partion of G defined by R are precisely the cosets of G defined by S.

7. Let≤ be a partial order relation on a set A (Revise the definition of partial orders if you have forgotten!)
u ∈ A is an upper bound to a ∈ A if a ≤ u. Let S be a (non-empty) subset of A. We define
UB(S) = {u : u is an upper bound to every element in s}. Thus, upper bound of a set consists of
those elements u in A such that for every s ∈ S, s ≤ u.

• Define the lower bound of two elements and LB(S) in similar manner.

• In the set of real numbers with the normal ordering (R,≤), consider the subset S = {a : a2 < 2}.
Find LB(S) and UB(S).

• In the set of vectors in the plane R2, define the relation (x, y) � (x′, y′) if x ≤ x′ and y ≤ y′.
Show that R is partial order. Consider the “square” S = {(x, y) : |x| ≤ 1, |y| ≤ 1}. Find
UB(S) and LB(S).

• Is it always true that UB(S) ∩ S = ∅?
8. Let ≤ be a partial order relation on a set A. Let S be a (non-empty) subset of A. l ∈ S is a least

element of S if l ≤ s for all s ∈ S. Show that S has a least element if and only if LB(S) ∩ S 6= ∅.
Show that a set S can have at most one least element. How many elements will be there in LB(S)∩S?
Define the notion of greatest element of S in a simlar way.

9. In the set of real numbers with the normal ordering (R,≤), consider the subset S = {a ∈ R : a2 ≤
2}. Does S have a least element? Suppose, instead of reals, we consider the set of rationals with the

normal ordering (Q,≤). Let S be defined as S = {a ∈ Q : a2 ≤ 2}. Does S have a least element?



10. Let ≤ be a partial order relation on a set A. Let S be a (non-empty) subset of A u ∈ A is the greatest

upper bound of S denoted LUB(S) if u is the least element of UB(S). Define GLB(S) similarly.

11. A partial order (A,≤) is a lattice if every non-empty finite subset S of A has LUB(S) and GLB(S).
A is a complete lattice if every non-empty subset has LUB(S) and GLB(S).

• Show that in (Q,≤), the set S = {a ∈ Q : a2 < 2} has no LUB(S) or GLB(S). However,
show that (Q,≤) is a lattice.

• Show that in (R,≤), the set S = {a ∈ R : a2 < 2} has LUB(S) and GLB(S). However
show that (R,≤), though a lattice, is not a complete lattice. If we add two special elements ±∞
and fix the convention that LUB(R) = +∞ and GLB(R) = −∞, then we get what is known
as the extended real numbers, which is indeed a complete lattice. The proof of the fact that this
system is a complete lattice is beyond the scope of the course.
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