Assignment II

1. Let n be a positive integer. For each d dividing n, let $A_{n}(d)$ denote the set of all numbers between 1 and n whose GCD with n is d.
2. For $n=24$ and values $d=1,2,3,4,6,12$ Find $A_{n}(d)$.
3. Show that $\sum_{d \mid n} A_{n}(d)=\sum_{d \mid n} A_{n}\left(\frac{n}{d}\right)=n$.
4. Let $1 \leq i \leq n$. Show that $i \in A_{n}(d)$ if and only if $G C D\left(\frac{i}{d}, \frac{n}{d}\right)=1$. Hence conclude that the number of elements in $A_{n}(d)$ equals the number of integers between 1 and $\frac{n}{d}$ that are relatively prime to $\frac{n}{d}$. That is $\left|A_{n}(d)\right|=\phi\left(\frac{n}{d}\right)$.
5. Combining all the above, show that Show that $\sum_{d \mid n} \phi(d)=\sum_{d \mid n} \phi\left(\frac{n}{d}\right)=n$
6. Let $(H,+)$ and $(K,+)$ be two Abelian groups. We define the product $G=H \times K$ of the two groups as follows. Elements of G are elements in the cartitian product of H and K. That is, $G=\{(a, b) \mid a \in$ $H, b \in K\}$. We define + in G in the following (natural) way: $(a, b)+\left(a^{\prime}+b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$. (Note here that $a+a$ is the result of adding a with a^{\prime} in H and $b+b^{\prime}$ is the result of adding b with b^{\prime} in K.) Show that G defined this way is a group. What is the inverse of $\left(a+a^{\prime}, b+b^{\prime}\right)$? What is the identify element in G ?
7. Find the product group of $\left(\mathbf{Z}_{\mathbf{3}},+\right)$ and $\left(\mathbf{Z}_{\mathbf{4}},+\right)$. What is the sum of $(2,3)$ and $(1,1)$ in the product group? What is the inverse of the sum?
8. Consider the multiplicative groups $\mathbf{Z}_{\mathbf{3}}{ }^{*}$ and $\mathbf{Z}_{\mathbf{4}}{ }^{*}$. Find the product of $(2,3)$ and $(2,2)$ in this group. What is the inverse of $(2,2)$ in this group?
9. Let H be a cyclic group of order m with generator a. Let K be a cyclic group of order n with generator b. Let G be their product group.
10. show that the element (a, b) has order $\operatorname{LCM}(m, n)$
11. Let i be a number between 1 and m and j be a number between 1 and n. Find a general formula for the order of the element $\left(a^{i}, b^{j}\right)$.
12. Find the order of the element $(3,5)$ in the group $Z_{13} \times Z_{15}$
13. Show that G is a cyclic group if and only if m and n are relative prime.
14. Let S be a subgroup of a group G. Let $a, b, x, y \in G$. Consider the cosets $a+S$ and $b+S$.
15. Suppose $x \in a+S$ and $y \in b+S$, then show that $(x+y) \in(a+b)+S$. (Hint: Remember that we proved in the class that $x \in a+S$ if and only if $x-a \in S$.)
16. Hence conclude that if $a+S=x+S$ and $b+S=y+S$, then $(a+b)+S=(x+y)+S$.
17. Consider the line (subgroup) $x+y=0$ in the plane \mathbf{R}^{2}. Let us denote by S, the points in this line. Plot the cosets $(1,1)+S,(0,2)+S,(2,2)+S$ and $(4,0)+S$. Plot the cosets $(3,3)+S$. Will the coset $(4,2)+S$ coincide with this line? (Use the previous result).
18. In \mathbf{Z}, consider the subgroup $S=4 \mathbf{Z}$. Show that the cosets $(1+2)+S$ and $(5+6)+S$ are the same.
19. Let S be a subgroup of a group G. We will use the observations of the previous question to define addition of cosets. Let $a, b \in G$. Define the sum of cosets $a+S$ and $b+S$ as the coset $(a+b)+S$. Note that by the previous question, we have seen that if $a+S=x+S$ and $b+S=y+S$, then $(a+b)+S=(x+y)+S$. Thus, the sum is "well defined" in the sense that it is independent of the choice of the element used to define a coset. (Understand what is meant by this well definedness properly!). Show that with this definition, the set of cosets of S form a group. When $G=\mathbf{Z}$ and $S=4 \mathbf{Z}$, what is the inverse of the element $1+S$? When $G=\mathbf{R}^{2}$ and S consists of all points in the line $x+y=0$, what is the inverse of the coset defined by $x+y=2$?
