Assignment II

- 1. Let n be a positive integer. For each d dividing n, let $A_n(d)$ denote the set of all numbers between 1 and n whose GCD with n is d.
 - 1. For n = 24 and values d = 1, 2, 3, 4, 6, 12 Find $A_n(d)$.
 - 2. Show that $\sum_{d|n} A_n(d) = \sum_{d|n} A_n(\frac{n}{d}) = n$.
 - 3. Let $1 \leq i \leq n$. Show that $i \in A_n(d)$ if and only if $GCD(\frac{i}{d}, \frac{n}{d}) = 1$. Hence conclude that the number of elements in $A_n(d)$ equals the number of integers between 1 and $\frac{n}{d}$ that are relatively prime to $\frac{n}{d}$. That is $|A_n(d)| = \phi(\frac{n}{d})$.
 - 4. Combining all the above, show that Show that $\sum_{d|n} \phi(d) = \sum_{d|n} \phi(\frac{n}{d}) = n$
- 2. Let (H, +) and (K, +) be two Abelian groups. We define the product $G = H \times K$ of the two groups as follows. Elements of G are elements in the cartitian product of H and K. That is, $G = \{(a, b) | a \in$ $H, b \in K\}$. We define + in G in the following (natural) way: (a, b) + (a' + b') = (a + a', b + b'). (Note here that a + a is the result of adding a with a' in H and b + b' is the result of adding b with b' in K.) Show that G defined this way is a group. What is the inverse of (a + a', b + b')? What is the identify element in G?
- 3. Find the product group of $(\mathbf{Z}_3, +)$ and $(\mathbf{Z}_4, +)$. What is the sum of (2, 3) and (1, 1) in the product group? What is the inverse of the sum?
- 4. Consider the multiplicative groups $\mathbf{Z_3}^*$ and $\mathbf{Z_4}^*$. Find the product of (2,3) and (2,2) in this group. What is the inverse of (2,2) in this group?
- 5. Let H be a cyclic group of order m with generator a. Let K be a cyclic group of order n with generator b. Let G be their product group.
 - 1. show that the element (a, b) has order LCM(m, n)
 - 2. Let *i* be a number between 1 and *m* and *j* be a number between 1 and *n*. Find a general formula for the order of the element (a^i, b^j) .
 - 3. Find the order of the element (3, 5) in the group $Z_{13} \times Z_{15}$
 - 4. Show that G is a cyclic group if and only if m and n are relative prime.
- 6. Let S be a subgroup of a group G. Let $a, b, x, y \in G$. Consider the cosets a + S and b + S.
 - 1. Suppose $x \in a + S$ and $y \in b + S$, then show that $(x + y) \in (a + b) + S$. (Hint: Remember that we proved in the class that $x \in a + S$ if and only if $x a \in S$.)
 - 2. Hence conclude that if a + S = x + S and b + S = y + S, then (a + b) + S = (x + y) + S.
 - 3. Consider the line (subgroup) x + y = 0 in the plane \mathbb{R}^2 . Let us denote by S, the points in this line. Plot the cosets (1, 1) + S, (0, 2) + S, (2, 2) + S and (4, 0) + S. Plot the cosets (3, 3) + S. Will the coset (4, 2) + S coincide with this line? (Use the previous result).
 - 4. In **Z**, consider the subgroup S = 4**Z**. Show that the cosets (1+2) + S and (5+6) + S are the same.
- 7. Let S be a subgroup of a group G. We will use the observations of the previous question to define addition of cosets. Let $a, b \in G$. Define the sum of cosets a + S and b + S as the coset (a + b) + S. Note that by the previous question, we have seen that if a + S = x + S and b + S = y + S, then (a + b) + S = (x + y) + S. Thus, the sum is "well defined" in the sense that it is independent of the choice of the element used to define a coset. (Understand what is meant by this well definedness properly!). Show that with this definition, the set of cosets of S form a group. When $G = \mathbf{Z}$ and $S = 4\mathbf{Z}$, what is the inverse of the element 1 + S? When $G = \mathbf{R}^2$ and S consists of all points in the line x + y = 0, what is the inverse of the coset defined by x + y = 2?