Assignment III

1. Let G, H be (Abelian) groups. A function $f: G \longrightarrow H$ is a group homomorphism if f satisfies for all $a, b \in G, f(a+b)=f(a)+f(b)$. (The difference between a homomorphism and isomorphism is that the condition of bijectivity is dropped. Thus, a homomorphism preserves the group operation, but can be "lossy"). Define $\operatorname{ker}(f)=\{a \in G: f(a)=0\}$. (The kernel, also called null space, is the set of elements in G whose map is 0$)$. Define $\operatorname{Img}(f)=\{f(a): a \in G\}$. $(\operatorname{Img}(f)$ could be a proper subset of H when f is not surjective.) In each of the following maps, find $\operatorname{ker}(f)$ and $\operatorname{img}(f)$.
a) $f\left((x, y)=x+y\right.$ from $\left(\mathbf{R}^{2},+\right)$ to $(\mathbf{R},+)$. b) $f(x)=x \bmod n$ from \mathbf{Z} to $\mathbf{Z}_{\mathbf{n}}$.
c) $f(x)=x \bmod 5$ from $\mathbf{Z}_{\mathbf{1 0}}$ to $\mathbf{Z}_{\mathbf{5}}$.
2. If f is a homomorphism from a (Abelian) group G to a group H, show that $\operatorname{ker}(f)$ is a subgroup of G and $\operatorname{Img}(f)$ is a subgroup of H. (Comment: Thus, $|\operatorname{ker}(f)|$ must divide $|G|$ and $|\operatorname{Img}(f)|$ must divide $|H|$ when G, H are finite).
3. If m, n are positive integers with $m<n$, Show that the map $f(x)=x \bmod m$ from $\mathbf{Z}_{\mathbf{n}}$ to $\mathbf{Z}_{\mathbf{m}}$ is a group homomorphism if and only if m divides n. (Hint: Suppose $n=q m+r$, use the fact that $f\left(\sum_{1}^{n} 1\right)=f(0)=0$ and the fact that $f(m)=0$ by definition $)$.
4. Let f be a homomorphism from a (Abelian) group G to a (Abelian) group H. Let $S=\operatorname{ker}(f)$.
5. Show that $f(a)=f(b)$ if and only if $a-b \in S$.
6. let $a \in G$. Consider the coset $a+S$. Show that for any $x \in G$, show that $f(x)=f(a)$ if and only if $x \in a+S$. (Why does this follow from the previous question immedietely?). Thus, each coset of S in G gets mapped exactly to the same point in $\operatorname{Img}(f)$ and conversely points that gets mapped to the same point in the image must belong to the same coset.
7. For the $f\left((x, y)=x+y\right.$ from $\left(\mathbf{R}^{2},+\right)$ to $(\mathbf{R},+)$, find the equation to set of points (x, y) in $\left(\mathbf{R}^{2},+\right)$ whose image is the same as $f(1,2)$.
8. For $f(x)=x \bmod 5$ from $\mathbf{Z}_{\mathbf{1 0}}$ to $\mathbf{Z}_{\mathbf{5}}$, find S and all the cosets of S. Identify the image point to which each coset is mapped to.

The observations in the previous question shows that we can one to one map points in $\operatorname{Img}(f)$ with cosets of S in G. The next question develops this correspondance formally.
5. In the last Question of Assignment II, it was asked to prove that if S is any subgroup of an Abelian group G, we can define addition of cosets by the rule $(a+S)+(b+S)=(a+b)+S$. The question asked you to show that with this definition of addtion, the set of cosets of G with respect to S forms a group. This group is called the quotient group of G defined by S, denoted by G / S. Note that each element in G / S is a coset of the form $a+S$. Also note that S is the identity element in G / S and $(-a)+S$ is the inverse of the coset $a+S$ in G / S. Let f be a homomorphism from a group G to a group H. Let $S=\operatorname{ker}(f)$

1. Define the map $\Phi: G / S \longrightarrow \operatorname{Img}(f)$ as follows: $\Phi(a+S)=f(a)$. (The map simply associates the coset $a+S$ in G / H to the element $f(a)$ in $\operatorname{Img} g(f))$.
2. Show that $\Phi((a+S)+(b+S))=\Phi(a+S)+\Phi(b+S)=f(a)+f(b)$.
3. Show that the map is injective $(f(a+S)=0$ if and only if $a+S=S)$. Note that since Φ is surjective by definition. Hence, Φ is bijective and hence an isomorphism in view of the previous question. This observation is called the first homomorphism theorem of groups.
4. Consider the homomorphism $f(x)=x \bmod 4$ from \mathbf{Z} to \mathbf{Z}_{4}. In this case $S=4 \mathbf{Z}$ (The general equation to S is called the "complimentary function,".) Find the "general solution" for $f(x)=3$.
[Note: In view of the homomorphism theorem, when f is a homomorphism from a group G to a group H, given $b \in \operatorname{Img}(f)$, in order to solve $f(x)=b$, we must find any one solution x_{0} (commonly called a "particular solution") and find the coset $x_{0}+S$ defined by this particular solution. For this it suffices to add the general equation for S ("complimentary function") to the "particular solution" x_{0}. This method is commonly used to solve differential equations.]
