
Assignment IV

1. Find all the elements in Z561 satifying x2 = 1 mod n using the Chinese remainder theorem. (use
Euclid’s algorithm for modular inversion).

2. When n = 561, suppose a = 35 is the element in Z∗
561 chosen randomly by the Miller Rabin test, will

the test return prime or composite?

3. Let p, q be odd prime numbers. Let n = pq, m = (p − 1)(q − 1) and e ∈ Z∗
m. Let d be the

multiplicative inverse of e in Z∗
m.

1. For any x, y ∈ Z∗
n show that xe 6= ye mod n unless x = y.

2. For all x ∈ Z∗
n, show that (xe)d = xed = x mod n.

(Note: What we have set up is the RSA cryptosystem. Part I established the injectivity of the encryption
function (so that two different messages doesn’t get mapped to the same cyphertext) and Part II how
the original message can be recovered from the cyphertext).

4. Let p be an odd prime. Let g be a generator of Z∗
p and d ∈ Z∗

p. Given any (message) x, the El-

Gamal encryption scheme picks a random r ∈ Z∗
p and sends the pair (α = gr mod p, β = x(gd)r

mod p). (It is assumed that the sender knows p, g and gd, but only the receiver knowns d.) At the

receving show that the message x can be recovered from α and β by computing (αd)−1β mod p.

5. Let (R,+, .) be a (commutative) ring with unity. S ⊆ R is called an Ideal in R if S is a subring of
R and S has the property that if a ∈ R and s ∈ S, then as ∈ S. That is, if you multiply any ring
element with an element in S, the resultant element is in S.

1. If a, b ∈ Z, Show that S = {ax+ by : x, y ∈ Z} is an ideal.

2. Let S be any ideal in Z, show that there exists an element d in S such that S = dZ.

3. Find all the ideals in the ring Z10.

6. Let G, H be (commutative) rings (with unity). A function f : G −→ H is a ring homomorphism if

f satisfies for all a, b ∈ G, f(a + b) = f(a) + f(b), f(ab) = f(a)f(b) and f(1) = 1. Define
ker(f) = {a ∈ G : f(a) = 0} and Img(f) = {f(a) : a ∈ G}. In each of the following maps,
first verify that f is a ring homomorphism and find ker(f) and img(f).
a) f(x) = x mod n from Z to Zn. b) f(x) = x mod 5 from Z10 to Z5.

7. This question develops the notion of quotient ring. Suppose S is an ideal in a ring R. Since S is
an additive subgroup of R, we can define addition of cosets in the way developed in last question of
Assignment II. Thus, we define (a + S) + (b + S) = (a + b) + S. We now extend the system to
accomodate multiplication as well with the rule (a + S)(b + S) = ab + S. Show that with this
definition of multiplication of cosets, the set of cosets form a ring. (Critically observe where in the
proof you are using the assumption that S is an ideal and not just a sub-ring). This ring is called the
quotient ring of R defined by S, denoted by R/S. Which coset is the multiplicative identity in the
ring?

8. The last Question of Assignment IV developed the homomorphism theorem for groups. We now extend

this to rings. Let f be a homomorphism from a ring G to a ring H . Let S = ker(f).

1. Show that ker(f) is an ideal in G and Img(f) is a subring of H .

2. Define the map Φ : G/S −→ Img(f) as follows: Φ(a+S) = f(a). (The map simply associates
the coset a+ S in G/H to the element f(a) in Img(f)).

3. Show that Φ((a+S)+(b+S)) = Φ(a+S)+Φ(b+S) = f(a)+f(b), Φ((a+S)(b+S)) =
Φ(a + S)Φ(b + S) and Φ(1 + S) = 1. Since bijectivity of the map Φ was proved already in
Assignment IV, Φ defines an isomorphism between G/S and img(f). This observation is known
as the homomorphism theorem for rings.


