Assignment V

1. Suppose a vector $v \in \mathbf{R}^{\mathbf{3}}$ has coordinates $(1,1,1)$ w.r.t the basis $(1,1,0),(1,0,1),(0,1,1)$, Find its coordinates with respect to the basis $(1,0,0),(1,1,0),(1,1,1)$. Find the matrix of basis translation between these two bases.
2. In all the questions below, V is a vector space over a field F of dimension n unless stated otherwise. Let U be a subspace of V of dimension k. Consider the cosets defined by U in V. (remember the work in all previous assignments!) Let $v_{1}+U$ and $v_{2}+U$ be cosets. We can define addition of cosets in a natural way as $\left(v_{1}+U\right)+\left(v_{2}+U\right)=\left(v_{1}+v_{2}\right)+U$. Since vectors form a group with respect to addition, we have already shown that this operation is well defined. Define scalar multiplication of cosets also in the natural way $\alpha(v+U)=(\alpha v)+U$, for $\alpha \in F$ and $v \in V$. Show that if $v^{\prime}=\alpha v$, then $v+U=v^{\prime}+U$, establishing that multiplication defined this way also is well defined. With these operations, show that the set of cosets form a vector space. This space is called the quotient space defined by U in the vector space V denoted by V / U.
3. In the previous question, Suppose $u_{1}, u_{2}, \ldots, u_{k}$ is a basis of U. Add vectors outside U to extend this set to a basis $u_{1}, u_{2}, \ldots, u_{k}, b_{1}, b_{2}, \ldots, b_{r}$ of V. (Clearly $r=n-k$ (why?); how do you do this extension systematically?). Show that in the quotient space $V / U, b_{1}+U, b_{2}+U, \ldots, b_{r}+U$ are linearly independent. Show that they form a basis of V / U. Hence conclude that $\operatorname{dim}(V / U)=$ $\operatorname{dim}(V)-\operatorname{dim}(U)$.
4. In $V=\mathbf{R}^{\mathbf{3}}$, consider the subspace U defined by the plane $x+y+z=0$. what is dimension of V / U ? Find a vector $v \in V$ such that $u+W$ is a basis of V / U. Repeat the same question with U being replaced by the line defined by the intersection of the planes $x+y+z=0$ and $z=0$.
5. Consider the linear map from $\mathbf{R}^{\mathbf{3}}$ to $\mathbf{R}^{\mathbf{2}}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{2}+x_{3}\right)$. Find the matrix of this linear transformation if the basis on either side is the standard basis. What is the matrix of the map if the basis in $\mathbf{R}^{\mathbf{2}}$ is changed to $(1,1),(1,-1)$? What is the matrix when the basis for $\mathbf{R}^{\mathbf{3}}$ is changed to $(1,1,0),(1,0,1),(0,1,1)$ and the basis of $\mathbf{R}^{\mathbf{2}}$ is the standard basis? What is the matrix of the map if the basis for $\mathbf{R}^{\mathbf{3}}$ is $(1,1,0),(1,0,1),(0,1,1)$ and basis for $\mathbf{R}^{\mathbf{2}}$ is $(1,1),(1,-1)$?
6. In the above question, find the equations to $\operatorname{img}(T)$ and $\operatorname{ker}(T)$ (assume standard basis on both sides). Find a basis for $\operatorname{ker}(T)$ and $\operatorname{Img}(T)$. Find a collection of vectors in $\mathbf{R}^{\mathbf{3}}$ whose images under T form a basis for $\operatorname{img}(T)$. What is $\operatorname{Rank}(T)$, Nullity (T) ?
7. Let T be a linear transformation from V to W over a field F. Let $\operatorname{Dim}(V)=n, U=N u l l \operatorname{space}(T)$. Let $\operatorname{Nullity}(T)=k$ and $\operatorname{rank}(T)=r$. Let $u_{1}, u_{2}, . ., u_{k}$ be a basis of U. Suppose we extend this set with vectors $b_{1}, b_{2}, \ldots, b_{r}$ to form a basis of V, is it always true that $T\left(b_{1}\right), T\left(b_{2}\right), \ldots, T\left(b_{r}\right)$ forms a basis of $\operatorname{Img}(T)$? Give a proof/counterexample.
8. In the above question, Define the map $f: V / U \longrightarrow \operatorname{Img}(T)$ as follows: $f(v+U)=T(v)$.
9. Show that f is well defined. That is, if $v+U=v^{\prime}+U$ then $f(v+U)=f\left(v^{\prime}+U\right)$.
10. Show that f is a linear map from V / U to W.
11. Show that f is injective; Hence conclude that f is an isomorphism between V / W and $\operatorname{Img}(T)$. (This observation is called the first homomorphism theorem for vector spaces.) Conclude that $\operatorname{Dim}(\operatorname{Img}(T))=\operatorname{Dim}(V / W)=n-k$ (the last equality following from the the third question). This gives another proof for the Rank Nullity Theorem.
