Assignment VI

1. Consider the vector space \mathbf{R}^{3}. Consider the space W defined by the equation $x+y+z=0$. Recall that W^{*} consists of all linear functions l from $\mathbf{R}^{\mathbf{3}}$ to \mathbf{R} such that $l(w)=0$ for all $w \in W$. Find a basis of W^{*}.
2. Find the dual basis in $\mathbf{R}^{\mathbf{3}}$ corresponding to the basis $[1,0,0]^{T},[1,1,0]^{T},[1,1,1]^{T}$.
3. Find a basis of Eigen vectors for the operator T on $\mathbf{R}^{\mathbf{2}}$ defined by $T\left(e_{1}\right)=e_{1}-e_{2}$ and $T\left(e_{2}\right)=e_{2}-e_{1}$. Find the matrix of T with respect to this basis.
4. Show that a linear operator T is not a bijective map if and only if 0 is an Eigen value.
5. Suppose T is a linear operator on a vector space V of dimension n over a field F. Suppose b_{1} and b_{2} are Eigen vectors of T with Eigen values λ_{1} and λ_{2}, with $\lambda_{1} \neq \lambda_{2}$. Show that b_{1} and b_{2} are linearly independent. Extend this argument to show that if $b_{1}, b_{2}, . ., b_{n}$ are Eigen vectors of T corresponding to distinct Eigen values $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then $b_{1}, b_{2}, . ., b_{n}$ are linearly independent. From this, conclude that if T has n distinct Eigen values, then T is diagonalizable.
6. An n bit binary linear code C is a linear subspace of $\mathbf{F}_{2}^{\mathbf{n}}$. If $\operatorname{dim}(C)=k$, then we say C is a (n, k) linear code. A $k \times n$ matrix whose rows are linearly independent and spans C is called a generator matrix for C. A generator matrix for the complement space of C (denoted by C^{0}, consists of all vectors v in F_{2}^{n} satisfying $v^{T} x=0$ for all $x \in C$) is called a parity check matrix for C. Prove that the parity check matrix for C must be an $(n-k) \times n$ matrix. For the code $C=\{0110,1111,0000,1001\}$ in F_{2}^{4}, find a generator matrix and a parity check matrix. Note that C^{0} itself is a linear code and is called the dual code of C.
7. Suppose U and W are subspaces of a vector space V such that $U \cap W=\{0\}$. Define $U \oplus W=$ $\{u+w: u \in U, w \in W\}$. Show that $U+W$ is a subspace of V with $\operatorname{dim}(U \oplus W)=$ $\operatorname{dim}(U)+\operatorname{dim}(W)$. (Show that if $u_{1}, u_{2}, \ldots, u_{l}$ and $w_{1}, w_{2}, \ldots, w_{k}$ are bases for U and W then $u_{1}, u_{2}, \ldots, u_{l}, w_{1}, w_{2}, \ldots, w_{k}$ is a basis for $\left.U \oplus W\right)$. In general, show that if $U_{1}, U_{2}, . ., U_{k}$ are subspaces of V such that $U_{i} \cap U_{k}=\emptyset$, the $U_{1} \oplus U_{2} \oplus \ldots \oplus U_{k}$ is a subspace of V with dimension $\operatorname{dim}\left(U_{1}\right)+$ $\operatorname{dim}\left(U_{2}\right)+\ldots+\operatorname{dim}\left(U_{k}\right)$.
8. Suppose T is a linear operator on an n dimensional vector space V. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct Eigen values of V. Define $E_{\lambda_{i}}=\left\{v \in V: T v=\lambda_{i} v\right\}$. $E_{\lambda_{i}}$ is called the Eigen space associated with the Eigen value λ_{i}. $\operatorname{dim}\left(E_{\lambda_{i}}\right)$ is called the geometric multiplicity of the Eigen value λ_{i}. Show that for each $\lambda_{i}, E_{\lambda_{i}}$ is a subspace of V. If $i \neq j$, then show that $E_{\lambda_{i}} \cap E_{\lambda_{j}}=\emptyset$.
9. Find the Eigen spaces associated with all the Eigen vectors of the matrix $\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$

Suppose T is a linear operator on a vector space V. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the Eigen values of T and let $E_{\lambda_{1}}, E_{\lambda_{2}}, \ldots, E_{\lambda_{k}}$ be the Eigen spaces associated with these Eigen values. Suppose $\operatorname{dim}\left(E_{\lambda_{1}}\right)+$ $\operatorname{dim}\left(E_{\lambda_{2}}\right)+\ldots+\operatorname{dim}\left(E_{\lambda_{k}}\right)=\operatorname{dim}(V)$. Then show that T is diagonalizable. In particular, if $b_{1}^{1}, b_{2}^{1}, \ldots$ forms a basis of $E_{\lambda_{1}}, b_{1}^{2}, b_{2}^{2}, \ldots$ forms a basis for $E_{\lambda_{2}}$ etc, then show that all these basis vectors together constitute a digonalizing basis for V.
10. Find a basis that diagonalizes the matrix in $\mathbf{R}^{\mathbf{2}},\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$

