Assignment VII

1. Consider the vector space \mathbf{C}^{4}. Show that the basis defined by $b_{1}=[1,1,1,1]^{T}, b_{2}=[1,-1,1,-1]^{T}$, $b_{3}=[1, i,-1,-i]^{T}, b_{4}=[1,-i, 1, i]^{T}$ is an orthogonal (but not orthonormal) basis. Find the matrix of translation from the standard basis to this basis. Find the inverse of the translation matrix.
2. Show that if an $n \times n$ Hermitian matrix has a negative Eigen value, then it cannot be positive definite.
3. On the following basis of \mathbf{R}^{4}, do Gram Schmidt orthogonalization (assuming the standard inner product). $[1,1,1,1],[1,1,1,0],[1,1,0,0],[1,0,0,0]$. Find the matrix of translation from this basis to the standard basis.
4. Consider the symmetric positive definite 2×2 real matrix $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ Find the matrix B such that the above matrix can be written as $B^{T} B$.
5. Let T be a linear transformation on an inner product space V over \mathbf{C}. We define T to be a Hermitian operator if $(u, T v)=(T u, v)$ for all u, v in V. Let $b_{1}, b_{2}, . ., b_{n}$ be an orthonormal basis of V. Prove that the matrix of T is a Hermitian matrix with respect to this basis. (Recall that an $n \times n$ complex matrix A is Hermitian if $A^{*}=A$.) Conversely, prove that if the matrix of an operator with respect to any orthonormal basis is Hermitian, then the operator is also Hermitian.
6. Let T be a linear transformation on an inner product space V over \mathbf{C}. We define T to be a Unitary operator if $(T u, T v)=(u, v)$ for all u, v in V. Let $b_{1}, b_{2}, . ., b_{n}$ be an orthonormal basis of V. Prove that the matrix of T is a Unitary matrix with respect to this basis. (Recall that an $n \times n$ complex matrix A is Unitary if $A^{*} A=I$.) Conversely, prove that if the matrix of an operator with respect to any orthonormal basis is Unitary, then the operator is also Unitary. Show that if T is a Unitary operator, the $\|T(v)\|=\|v\|$ for all $v \in V$.
7. An operator T on an inner product space V of dimension n over \mathbf{C} is said to be orthogonally diagonalizable if there exists an orthonormal basis $b_{1}, b_{2}, . ., b_{n}$ such that $b_{1}, b_{2}, . ., b_{n}$ are Eigen vectors of T. (Let the corresponding Eigen values be $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, not all necessarily distinct.) Let T be orthogonally diagonalizable and let A be the matrix of T with respect to the standard basis. Show that there is a unitary matrix U such that $A=U D U^{*}$ where U is a unitary $n \times n$ matrix and D a digonal matrix. What can you conclude about the entries of the diagonal matrix D ?
