- 1. (Revision Question) Let V be an inner product space of dimension n over C. Let W be a subspace of dimension k. Let $b_1, b_2, ..., b_k$ be an orthonormal basis for W. Define the space $W^{\perp} = \{u \in V : (u, w) = 0 \text{ for all } w \in W\}$. Let v be any vector in V. Define the vectors $v_1 = (v, b_1)b_1 + (v, b_2)b_2 + (v, b_k)b_k$ and $v_2 = v - v_1$. Here, v_1 is called the component of v **along** the subspace W and v_2 is called the component of v **orthogonal/perpendicular** to W
 - 1. Show that $v_2 \in W^{\perp}$. Thus conclude that every vector $v \in V$ can be expressed as a sum $v = v_1 + v_2$ with $v_1 \in W$ and $v_2 \in W^{\perp}$.
 - 2. Show that $W \cap W^{\perp} = \{0\}$
 - 3. $dim(W^{\perp}) = n dim(W)$ (Assume $c_1, c_2, ..., c_l$ be a basis of W^{\perp} . Show that $c_1, c_2, ..., c_l, b_1, b_2, ..., b_k$ is a basis of V, thus proving that l + k = n as required).
 - 4. Show that v_1 and v_2 are uniquely defined. That is, if $v = v'_1 + v'_2$ for some $v'_1 \in W$ and $v'_2 \in W^{\perp}$, then $v'_1 = v_1$ and $v'_2 = v_2$ (It thus follows that the choice of the particular basis $b_1, b_2, ..., b_k$ for W in defining v_1 and v_2 is inconsequential.)
 - 5. Show that $||v_1||^2 + ||v_2||^2 = ||v||^2$.
 - 6. If we define orthogonal projection operator P_W on to W as: $P_W(v) = w$, where w is the unique vector in W whose existance was proved above, then show that P_W satisfies the properties 1. $P_W(P_W(v)) = P_W(v)$ for all $v \in V$ (compactly written $P_W^2 = P_W$) 2. P_W is a linear operator in V. 3. For all $u, v \in V$, $(u, P_W(v)) = (P_W(u), v)$
 - 7. Show that if $w \in W$, then $P_W(w) = w$.
 - 8. Show if $w' \in W$, and $w' \neq w$ then d(w, v) < d(w'v) (Approximation Theorem)
- 2. Recall that an operator T on an inner product space V over \mathbf{C} is a **unitary operator** if (Tu, Tv) = (u, v) for all $u, v \in V$. Let $\overline{b} = (b_1, b_2, ..., b_n)$ and $\overline{c} = (c_1, c_2, ..., c_n)$ be two different orthonormal basis for V. Let A_1 and A_2 be the matrices of T with respect to basis \overline{b} and \overline{c} respectively. Let B be the basis transformation matrix from \overline{b} to \overline{c} . (That is, $\overline{b} = \overline{c}B$).
 - 1. Show that the matrix of basis change from basis \overline{b} to \overline{c} is a unitary transformation.
 - 2. Show that $A_1A_1^* = I$ and $A_2A_2^* = I$. That is, A_1 and A_2 must be a **unitary matrices**. (Recall that an $n \times n$ matrix A is called a unitary matrix if $AA^* = I$).
 - 3. Show that if A is any unitary matrix; the operator determined by A with respect to basis b must be unitary. These two exercises show that unitary transformations correspond to unitary matrices and visa versa.
 - 4. Show that $T(b_1), T(b_2), ..., T(b_n)$ is an orthogonal basis of V.
 - 5. Prove that the $DFT_n = \frac{1}{\sqrt{n}} V_{\overline{\omega}}$ where $\overline{\omega} = (1, \omega_n, \omega_n^2, ..., \omega_n^{n-1})$, ω_n beging a primitve n^{th} root of unity (that is, $\omega_n = e^{\frac{2\pi j}{n}}$) is a unitary transformation.
 - 6. When n = 3, which are the vectors that result out of applying DFT_3 to the standard basis (e_1, e_2, e_3) ? That is, find $(DFT_3(e_1), DFT_3(e_2), DFT_3(e_3))$. Repeat with n = 4.
 - 7. If you think of DFT_n as a basis translation from the standard basis to a new basis (this is possible because DFT_n as defined in the previous question is a unitary transformation), what is the new basis (called the **Fourier basis**) to which DFT_n transforms cordinate system from the standard basis? (Hint: That is not exactly $(DFT_n(e_1), DFT_n(e_2), ..., DFT_n(e_n))$, but quite related to this because the transformation is unitary).
- 3. An operator H on an innner product space V over \mathbb{C} of dimension n is called a **Hermitian Operator** if (u, Hv) = (Hu, v) for all $u, v \in V$. Let $\overline{b} = (b_1, b_2, ..., b_n)$ and $\overline{c} = (c_1, c_2, ..., c_n)$ be two different orthonormal basis for V. Let A_1 and A_2 be the matrices of H with respect to basis \overline{b} and \overline{c} respectively. Let B be the basis transformation matrix from \overline{b} to \overline{c} . (That is, $\overline{b} = \overline{c}B$).

- 1. Show that $A_1^* = A_1$ and $A_2^* = A_2$. That is, A_1 and A_2 must be a **Hermitian matrices**. (Recall that an $n \times n$ matrix A is called a Hermitian matrix if $A^* = A$).
- 2. Show that if A is any Hermitian matrix; the operator determined by A with respect to basis b must be a Hermitian operator. These two exercises show that Hermitian transformations correspond to Hermitian matrices and visa versa.
- 3. Is DFT_n a Hermitian transformation? If not, what is the property satisfied by DFT_n ?
- 4. A linear operator P on an inner product space V over \mathbb{C} of dimension n is called an **Orthogonal Projection** (Operator) if it satisfies: 1. $P^2 = P$ (that is, P(P(v)) = P(v) for all $v \in V$) and 2. P is a Hermitian operator (that is, for all $u, v \in V$, (u, Pv) = (Pu, v).) Let U = Nullspace(P)and W = Img(P).
 - 1. Argue that $U = W^{\perp}$.
 - 2. (I P) is also an orthogonal projection operator (here I is the identify function) with Image W^{\perp} and Null space W. These exercises show that every orthogonal projection operator defines the perpendicular projection operator into its Image and conversely.
- 5. Find the matrix of the orthogonal projection operator on to the x y plance in \mathbb{R}^3 with respect to the standard basis.
- 6. Write down the vectors forming the basis (Fourier basis) to which DFT_2 transforms the standard basis in \mathbb{C}^2 .
- 7. Find the matrix of orthogonal projection operator on to the x y plance in \mathbb{R}^3 with respect to the Fourier basis defined by DFT_2 .
- 8. Let V be an inner product space of dimension n over C. Let : $P_1, P_2, ..., P_k$ be projection operators in V and let $\lambda_1, \lambda_2, ..., \lambda_k$ be real numbers. Show that $\lambda_1 P_1 + \lambda_2 P_2 + ... + \lambda_k P_k$ is a Hermitian operator. The **Spectral Theorem** asserts that the converse of this statement is also true. That is, every Hermitian operator on V can be expressed as a linear combination of Projection operators.