1. (Revision Question) Let V be an inner product space of dimension n over C. Let W be a subspace of dimension k. Let $b_{1}, b_{2}, \ldots, b_{k}$ be an orthonormal basis for W. Define the space $W^{\perp}=\{u \in$ $V:(u, w)=0$ for all $w \in W\}$. Let v be any vector in V. Define the vectors $v_{1}=\left(v, b_{1}\right) b_{1}+$ $\left(v, b_{2}\right) b_{2}+\left(v, b_{k}\right) b_{k}$ and $v_{2}=v-v_{1}$. Here, v_{1} is called the component of v along the subspace W and v_{2} is called the component of v orthogonal/perpendicular to W
2. Show that $v_{2} \in W^{\perp}$. Thus conclude that every vector $v \in V$ can be expressed as a sum $v=v_{1}+v_{2}$ with $v_{1} \in W$ and $v_{2} \in W^{\perp}$.
3. Show that $W \cap W^{\perp}=\{0\}$
4. $\operatorname{dim}\left(W^{\perp}\right)=n-\operatorname{dim}(W)$ (Assume $c_{1}, c_{2}, . ., c_{l}$ be a basis of W^{\perp}. Show that $c_{1}, c_{2}, . ., c_{l}, b_{1}, b_{2}, . ., b_{k}$ is a basis of V, thus proving that $l+k=n$ as required).
5. Show that v_{1} and v_{2} are uniquely defined. That is, if $v=v_{1}^{\prime}+v_{2}^{\prime}$ for some $v_{1}^{\prime} \in W$ and $v_{2}^{\prime} \in W^{\perp}$, then $v_{1}^{\prime}=v_{1}$ and $v_{2}^{\prime}=v_{2}$ (It thus follows that the choice of the particular basis $b_{1}, b_{2}, . ., b_{k}$ for W in defining v_{1} and v_{2} is inconsequential.)
6. Show that $\left\|v_{1}\right\|^{2}+\left\|v_{2}\right\|^{2}=\|v\|^{2}$.
7. If we define orthogonal projection operator P_{W} on to W as: $P_{W}(v)=w$, where w is the unique vector in W whose existance was proved above, then show that P_{W} satisfies the properties 1 . $P_{W}\left(P_{W}(v)\right)=P_{W}(v)$ for all $v \in V$ (compactly written $\left.P_{W}^{2}=P_{W}\right)$ 2. P_{W} is a linear operator in V. 3. For all $u, v \in V,\left(u, P_{W}(v)\right)=\left(P_{W}(u), v\right)$
8. Show that if $w \in W$, then $P_{W}(w)=w$.
9. Show if $w^{\prime} \in W$, and $w^{\prime} \neq w$ then $d(w, v)<d\left(w^{\prime} v\right)$ (Approximation Theorem)
10. Recall that an operator T on an innner product space V over \mathbf{C} is a unitary operator if $(T u, T v)=$ (u, v) for all $u, v \in V$. Let $\bar{b}=\left(b_{1}, b_{2}, . ., b_{n}\right)$ and $\bar{c}=\left(c_{1}, c_{2}, . ., c_{n}\right)$ be two different orthonormal basis for V. Let A_{1} and A_{2} be the matrices of T with respect to basis \bar{b} and \bar{c} respectively. Let B be the basis transformation matrix from \bar{b} to \bar{c}. (That is, $\bar{b}=\bar{c} B$).
11. Show that the matrix of basis change from basis \bar{b} to \bar{c} is a unitary transformation.
12. Show that $A_{1} A_{1}^{*}=I$ and $A_{2} A_{2}^{*}=I$. That is, A_{1} and A_{2} must be a unitary matrices. (Recall that an $n \times n$ matrix A is called a unitary matrix if $A A^{*}=I$).
13. Show that if A is any unitary matrix; the operator determined by A with respect to basis \bar{b} must be unitary. These two exercises show that unitary transformations correspond to unitary matrices and visa versa.
14. Show that $T\left(b_{1}\right), T\left(b_{2}\right), . ., T\left(b_{n}\right)$ is an orthogonal basis of V.
15. Prove that the $D F T_{n}=\frac{1}{\sqrt{n}} V_{\bar{\omega}}$ where $\bar{\omega}=\left(1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}\right)$, ω_{n} beging a primitve $n^{\text {th }}$ root of unity (that is, $\omega_{n}=e^{\frac{2 \pi j}{n}}$) is a unitary transformation.
16. When $n=3$, which are the vectors that result out of applying $D F T_{3}$ to the standard basis $\left(e_{1}, e_{2}, e_{3}\right)$? That is, find $\left(D F T_{3}\left(e_{1}\right), D F T_{3}\left(e_{2}\right), D F T_{3}\left(e_{3}\right)\right)$. Repeat with $n=4$.
17. If you think of $D F T_{n}$ as a basis translation from the standard basis to a new basis (this is possible because $D F T_{n}$ as defined in the previous question is a unitary transformation), what is the new basis (called the Fourier basis) to which $D F T_{n}$ transforms cordinate system from the standard basis? (Hint: That is not exactly $\left(D F T_{n}\left(e_{1}\right), D F T_{n}\left(e_{2}\right), \ldots, D F T_{n}\left(e_{n}\right)\right)$, but quite related to this because the transformation is unitary).
18. An operator H on an innner product space V over \mathbf{C} of dimension n is called a Hermitian Operator if $(u, H v)=(H u, v)$ for all $u, v \in V$. Let $\bar{b}=\left(b_{1}, b_{2}, . ., b_{n}\right)$ and $\bar{c}=\left(c_{1}, c_{2}, . ., c_{n}\right)$ be two different orthonormal basis for V. Let A_{1} and A_{2} be the matrices of H with respect to basis \bar{b} and \bar{c} respectively. Let B be the basis transformation matrix from \bar{b} to \bar{c}. (That is, $\bar{b}=\bar{c} B$).
19. Show that $A_{1}^{*}=A_{1}$ and $A_{2}^{*}=A_{2}$. That is, A_{1} and A_{2} must be a Hermitian matrices. (Recall that an $n \times n$ matrix A is called a Hermitian matrix if $A^{*}=A$).
20. Show that if A is any Hermitian matrix; the operator determined by A with respect to basis \bar{b} must be a Hermitian operator. These two exercises show that Hermitian transformations correspond to Hermitian matrices and visa versa.
21. Is $D F T_{n}$ a Hermitian transformation? If not, what is the property satisfied by $D F T_{n}$?
22. A linear operator P on an inner product space V over \mathbf{C} of dimension n is called an Orthogonal Projection (Operator) if it satisfies: 1. $P^{2}=P$ (that is, $P(P(v))=P(v)$ for all $v \in V$) and 2 . P is a Hermitian operator (that is, for all $u, v \in V,(u, P v)=(P u, v)$.) Let $U=N u l l s p a c e(P)$ and $W=\operatorname{Img}(P)$.
23. Argue that $U=W^{\perp}$.
24. $(I-P)$ is also an orthogonal projection operator (here I is the identify function) with Image W^{\perp} and Null space W. These exercises show that every orthogonal projection operator defines the perpendicular projection operator into its Image and conversely.
25. Find the matrix of the orthogonal projection operator on to the $x-y$ plance in $\mathbf{R}^{\mathbf{3}}$ with respect to the standard basis.
26. Write down the vectors forming the basis (Fourier basis) to which $D F T_{2}$ transforms the standard basis in \mathbf{C}^{2}.
27. Find the matrix of orthogonal projection operator on to the $x-y$ plance in $\mathbf{R}^{\mathbf{3}}$ with respect to the Fourier basis defined by $D F T_{2}$.
28. Let V be an inner product space of dimension n over \mathbf{C}. Let : $P_{1}, P_{2}, \ldots, P_{k}$ be projection operators in V and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be real numbers. Show that $\lambda_{1} P_{1}+\lambda_{2} P_{2}+\ldots+\lambda_{k} P_{k}$ is a Hermitian operator. The Spectral Theorem asserts that the converse of this statement is also true. That is, every Hermitian operator on V can be expressed as a linear combination of Projection operators.
