
Chapter 17

Lattice Basis Reduction

This is a chapter from version 1.1 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.isg.rhul.ac.uk/̃ sdg/crypto-book/ The
copyright for this chapter is held by Steven Galbraith.

This book is now completed and an edited version of it will be published by Cambridge
University Press in early 2012. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.
All feedback on the book is very welcome and will be acknowledged.

The goal of lattice basis reduction is to transform a given lattice basis into a “nice”
lattice basis consisting of vectors that are short and close to orthogonal. To achieve
this one needs both a suitable mathematical definition of “nice basis” and an efficient
algorithm to compute a basis satisfying this definition.

Reduction of lattice bases of rank 2 in R2 was given by Lagrange1 and Gauss. The
algorithm is closely related to Euclid’s algorithm and we briefly present it in Section 17.1.
The main goal of this section is to present the lattice basis reduction algorithm of
Lenstra, Lenstra and Lovász, known as the LLL or L3 algorithm.2 This is a very im-
portant algorithm for practical applications. Some basic references for the LLL algorithm
are Section 14.3 of Smart [571], Section 2.6 of Cohen [135] and Chapter 17 of Trappe
and Washington [608]. More detailed treatments are given in von zur Gathen and Ger-
hard [237], Grötschel, Lovász and Schrijver [268], Section 1.2 of Lovász [394], and Nguyen
and Vallée [463]. I also highly recommend the original paper [372].

The LLL algorithm generalises the Lagrange-Gauss algorithm and exploits the Gram-
Schmidt orthogonalisation. Note that the Gram-Schmidt process is not useful, in general,
for lattices since the coefficients µi,j do not usually lie in Z and so the resulting vectors are
not usually elements of the lattice. The LLL algorithm uses the Gram-Schmidt vectors to
determine the quality of the lattice basis, but ensures that the linear combinations used
to update the lattice vectors are all over Z.

1The algorithm was first written down by Lagrange and later by Gauss, but is usually called the
“Gauss algorithm”. We refer to [454] or Chapter 2 of [463] for the original references.

2Chapter 1 of [463] gives an excellent survey of the historical development of the algorithm.

365

366 CHAPTER 17. LATTICE BASIS REDUCTION

17.1 Lattice Basis Reduction in Two Dimensions

Let b1, b2 ∈ R2 be linear independent vectors and denote by L the lattice for which they
are a basis. The goal is to output a basis for the lattice such that the lengths of the basis
vectors are as short as possible (in this case, successive minima). Lagrange and Gauss
gave the following criteria for a basis to be reduced and then developed Algorithm 23 to
compute such a basis.

Definition 17.1.1. An ordered basis b1, b2 for R
2 is Lagrange-Gauss reduced if �b1� ≤

�b2� ≤ �b2 + qb1� for all q ∈ Z.

The following theorem shows that the vectors in a Lagrange-Gauss reduced basis are
as short as possible. This result holds for any norm, though the algorithm presented
below is only for the Euclidean norm.

Theorem 17.1.2. Let λ1,λ2 be the successive minima of L. If L has an ordered basis
{b1, b2} that is Lagrange-Gauss reduced then �bi� = λi for i = 1, 2.

Proof: By definition we have

�b2 + qb1� ≥ �b2� ≥ �b1�

for all q ∈ Z.
Let v = l1b1 + l2b2 be any non-zero point in L. If l2 = 0 then �v� ≥ �b1�. If l2 �= 0

then write l1 = ql2 + r with q, r ∈ Z such that 0 ≤ r < |l2|. Then v = rb1 + l2(b2 + qb1)
and, by the triangle inequality

�v� ≥ |l2| �b2 + qb1� − r�b1�
= (|l2|− r)�b2 + qb1�+ r(�b2 + qb1� − �b1�)
≥ �b2 + qb1� ≥ �b2� ≥ �b1�.

This completes the proof. �

Definition 17.1.3. Let b1, . . . , bn be a list of vectors in Rn. We write3 Bi = �bi�2 =
�bi, bi�.

A crucial ingredient for the Lagrange-Gauss algorithm is that

�b2 − µb1�2 = B2 − 2µ�b1, b2�+ µ2B1 (17.1)

is minimised at µ = �b1, b2�/B1 (to see this, note that the graph as a function of µ is a
parabola and that the minimum can be found by differentiating with respect to µ). Since
we are working in a lattice we therefore replace b2 by b2 − ⌊µ⌉b1 where ⌊µ⌉ is the nearest
integer to µ. Hence lines 3 and 9 of Algorithm 23 reduce the size of b2 as much as possible
using b1. In the one-dimensional case the formula b2 − ⌊µ⌉b1 is the familiar operation
ri+1 = ri−1 − ⌊ri−1/ri⌉ri from Euclid’s algorithm.

Lemma 17.1.4. An ordered basis {b1, b2} is Lagrange-Gauss reduced if and only if

�b1� ≤ �b2� ≤ �b2 ± b1�.

Proof: The forward implication is trivial. For the converse, suppose �b2� ≤ �b2 ± b1�.
We use the fact that the graph of F (µ) = �b2 + µb1�2 is a parabola. It follows that the

17.1. LATTICE BASIS REDUCTION IN TWO DIMENSIONS 367

Algorithm 23 Lagrange-Gauss lattice basis reduction

Input: Basis b1, b2 ∈ Z2 for a lattice L
Output: Basis (b1, b2) for L such that �bi� = λi

1: B1 = �b1�2
2: µ = �b1, b2�/B1

3: b2 = b2 − ⌊µ⌉b1
4: B2 = �b2�2
5: while B2 < B1 do

6: Swap b1 and b2
7: B1 = B2

8: µ = �b1, b2�/B1

9: b2 = b2 − ⌊µ⌉b1
10: B2 = �b2�2
11: end while

12: return (b1, b2)

miniumum of F (µ) is taken for −1 < µ < 1. Hence �b2� ≤ �b2 + qb1� for q ∈ Z such that
|q| > 1. �

Algorithm 23 gives the Lagrange-Gauss algorithm for lattices in Z2. Note that the
computation of µ is as an exact value in Q. All other arithmetic is exact integer arithmetic.

Lemma 17.1.5. Algorithm 23 terminates and outputs a Lagrange-Gauss reduced basis
for the lattice L.

Exercise 17.1.6. Prove Lemma 17.1.5.

Example 17.1.7. We run the Lagrange-Gauss algorithm on b1 = (1, 5) and b2 = (6, 21).
In the first step, µ = 111/26 ≈ 4.27 and so we update b2 = b2 − 4b1 = (2, 1). We then
swap b1 and b2 so that the values in the loop are now b1 = (2, 1) and b2 = (1, 5). This
time, µ = 7/5 = 1.4 and so we set b2 = b2−b1 = (−1, 4). Since �b2� > �b1� the algorithm
halts and outputs {(2, 1), (−1, 4)}.
Exercise 17.1.8. Run the Lagrange-Gauss reduction algorithm on the basis {(3, 8), (5, 14)}.
Lemma 17.1.9. Let b1, b2 be the initial vectors in an iteration of the Lagrange-Gauss
algorithm and suppose b′1 = b2 −mb1 and b′2 = b1 are the vectors that will be considered
in the next step of the algorithm. Then �b′1�2 < �b1�2/3, except perhaps for the last two
iterations.

Proof: Note that m = ⌊µ⌉ = ⌊�b1, b2�/�b1, b1�⌉ = �b1, b2�/�b1, b1� + ǫ where |ǫ| ≤ 1/2.
Hence,

�b1, b′1� = �b1, b2 − (�b1, b2�/�b1, b1�+ ǫ) b1� = −ǫ�b1, b1� = −ǫ�b1�2.
We show that �b′1�2 < �b1�2/3 unless we are in the last two iterations of the algorithm.

To do this, suppose that �b′1�2 ≥ �b1�2/3. Then
|�b′1, b′2�| = |�b′1, b1�| = |ǫ|�b1�2 ≤ 1

2�b1�
2 ≤ 3

2�b
′
1�2.

It follows that, in the next iteration of the algorithm, we will be taking m = ⌊µ⌉ ∈
{−1, 0, 1} and so the next iteration would, at most, replace b′1 with b′2±b′1 = b1±(b2−mb1).
But, if this were smaller than b′1 then we would have already computed b′1 differently in
the current iteration. Hence, the next step is the final iteration. �

3The reader is warned that the notation Bi will have a different meaning when we are discussing the
LLL algorithm.

