3

3

3 + 3

3

3

3

3

Answer strictly within the space provided **Proper** justification to your answers is **absolutely** necessary.

Solution Key _

- 1. Let S be an ideal in a ring R. Let $a, b \in R$. Let $x \in a + S, y \in b + S$. Show that $xy \in ab + S$. Soln: we have $x = a + s_1, y = b + s_2$ for some $s_1, s_2 \in S$ by definition. Hence $xy = ab + s_1b + s_2a + s_1s_2$. Since S is an ideal, $s_1b \in S, s_2a \in S$ and $s_1s_2 \in S$ (why?). Thus if we set $s = s_1b + s_2a + s_1s_2$, then xy = ab + s with $s \in S$ (why?), or $xy \in ab + S$.
- 2. Let f be a homomorphism from a ring R to a ring R'. Let $S = \{x \in R : f(x) = 0\}$. Let $a, b \in R$ such that $b \in a + S$. Show that for any $z \in R$, f(za) = f(zb). Soln: Since $b \in a + S$, b = a + s for some $s \in S$. Hence $b - a = s \in S$. Therefore, f(b - a) = f(s) = 0. Now, f(zb) - f(za) = f(za - zb) = f(z(a - b)) = f(z)f(s) = f(z) = 0.
- 3. From the additive group $(\mathbf{R}^2, +)$ to $(\mathbf{R}^2, +)$ define the homomorphism:

$$f[x,y] = [x,y] \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

Find the equations for the set of points in \mathbb{R}^2 corresponding to a) ker(f), b) img(f).

Soln: Clearly, $ker(f) = \{[x, y] : x + y = 0\}$. We claim that $img(f) = \{[x, y] : x + y = 0\}$ as well. For this, take any point [a, -a] for any $a \in \mathbf{R}$. Clearly f[a, 0] = [a, -a]. Thus all points in the line $\{[[x, y] : x + y = 0\}$ belongs to Img(f). Moreover, given any $[x, y] \in \mathbf{R}^2$, f([x, y]) = [x + y, -(x + y)] is a point in the line x + y = 0. Thus $[x, y] \in Img(f)$ if and only if x + y = 0.

4. Let p be an odd prime. If g is a generator of $\mathbf{Z}_{\mathbf{p}}^*$, what is the value of $g^{\frac{p-1}{2}} \mod p$? Justify your answer.

soln: Let $h = g^{\frac{p-1}{2}} \mod p$. Since $h^2 = g^{p-1} = 1 \mod p$ by Fermat's theorem, h must be a square root of 1 mod p. However, $h \neq 1 \mod p$ for in that case, we would have $g^{\frac{p-1}{2}} = 1 \mod p$ which would contradict o(g) = p - 1. Hence h must be a square root of 1 other than 1 itself. Since \mathbf{Z}_p is a field, the only square roots of 1 are 1 and $-1 = p - 1 \mod p$. Thus we must have $h = p - 1 \mod p$.

5. How many $a \in \mathbb{Z}_{p}^{*}$ will satisfy $a^{\frac{p-1}{2}} = -1 \mod p$? Justify your answer. (Hint: Use the previous question).

Soln: Let g be a generator of Z_p^* . $(g^i)^{\frac{p-1}{2}} = (g^{\frac{p-1}{2}})^i = (-1)^i$. Thus if i = 2k + 1 for some k, $(g^i)^{\frac{p-1}{2}} = -1$ and if i = 2k for some k, $(g^i)^{\frac{p-1}{2}} = 1 \mod p$. In particular $\{g, g^3, g^5, ..., g^{p-2}\}$ is the set of $\frac{p-1}{2}$ elements which satisfy the property stated in the question.

- 6. For what values of n between 100 and 110 does 6 generate the additive group \mathbf{Z}_n ? Justify. soln: $(Z_n, +)$ is a cyclic group generated by 1. Thus i generates Z_n if and only if GCD(i, n) = 1. When i = 6, this is true for for $n \in \{101, 103, 107, 109\}$.
- 7. Suppose on input n = 35, if the random element a in \mathbf{Z}_{15}^* chosen by the Miller Rabin test is 6, what will be the output of the Miller Rabin test? What about the Fermat Test? Give clear justification Soln: $6^2 = 1 \mod 35$. Thus $6^k = 6 \mod 35$ when k is odd and $6^k = 1 \mod 35$ when k is even. Both the Fermat's test and the Miller Rabin test finds that $6^{34} = 1$, and this check does not

reveal any evidence for compositeness. At this point, Fermat's test returns "prime". Miller Rabin test further evaluates $6^{\frac{35-1}{2}} = 6^{17} = 6 \mod 35$. Since this value is neither 1 nor -1, but is a square root of 1, Miller Rabin test returns "composite". (Note that this question does not assume anything other than a knowledge of the steps performed by the Miller Rabin test and the Fermat's test).

8. Let $p_1, p_2, ..., p_n$ be distinct odd primes. Find the smallest positive integer x such that

 $(p_1-1)x = 1 \mod p_1, (p_2-1)x = 1 \mod p_2, ..., (p_n-1)x = 1 \mod p_n$. You must prove that the x found so is the smallest. Express x as a function of $p_1, ..., p_n$.

Soln: First observe that $(p_i - 1) = -1 \mod p_i$ for each *i*. Thus the give system can be reformulated as $-x = 1 \mod p_i$ or equivalently $x = -1 \mod p_i$ for each *i*. a trivial solution to this set of equations is x = -1. To get a positive number, observe that $Z_{p_1p_2...p_n}$ is isomorphic to $Z_{p_1} \times Z_{p_2} \times ... Z_{p_n}$. Thus x = -1 corresponds to (-1, -1, ... -1) on the RHS and this corresponds to $x = \prod_{i=1}^{i=n} p_i - 1$ in $Z_{p_1p_2...p_n}$. That this value is the least positive such integer follows from Chinese remainder theorem which asserts that there is a unique number x between 0 and $\prod_{i=1}^{i=n} p_i - 1$ satisfying $x = -1 \mod p_i$ for all $1 \le i \le n$.

9. Let g be a generator of $\mathbf{Z}_{\mathbf{p}}^*$ that does not generate $\mathbf{Z}_{\mathbf{p}^2}^*$. What is the order of g in $\mathbf{Z}_{\mathbf{p}^2}^*$? **Prove**. (Use the next page if necessary).

Soln: Let *i* be the order of *g* in $\mathbf{Z}_{\mathbf{p}^2}^*$. Since *g* does not generate $\mathbf{Z}_{\mathbf{p}^2}^*$, its order in this group must be a strict divisor of p(p-1). First we show that *p* does not divide *i*. Suppose i = tp, then $g^{tp} = 1 \mod p^2 \Rightarrow g^{tp} = 1 \mod p \Rightarrow (g^p)^t = g^t = 1 \mod p \Rightarrow (p-1)|t$. However, then p(p-1)|rt, or p(p-1)|i which contradicts the fact that *g* is not a generator of $\mathbf{Z}_{\mathbf{p}^2}^*$. Thus we conclude that *i* divides p-1. We have to prove that i = p-1 to complete the proof.

Now since *i* is the order of *g* in $\mathbf{Z}_{\mathbf{p}^2}^*$, $g^i = 1 \mod p^2 \Rightarrow g^i = 1 \mod p$. Since *g* is a generator of $\mathbf{Z}_{\mathbf{p}}^*$, $g^i = 1 \mod p \Rightarrow (p-1)$ divides *i*. But *i* divides p-1 and p-1 divides *i* implies that i = p-1.

3

3