Answer strictly within the space provided
Proper justification to your answers is absolutely necessary.

Solution Key

1. Let S be an ideal in a ring R. Let $a, b \in R$. Let $x \in a+S, y \in b+S$. Show that $x y \in a b+S$.

Soln: we have $x=a+s_{1}, y=b+s_{2}$ for some $s_{1}, s_{2} \in S$ by definition. Hence $x y=$ $a b+s_{1} b+s_{2} a+s_{1} s_{2}$. Since S is an ideal, $s_{1} b \in S, s_{2} a \in S$ and $s_{1} s_{2} \in S$ (why?). Thus if we set $s=s_{1} b+s_{2} a+s_{1} s_{2}$, then $x y=a b+s$ with $s \in S$ (why?), or $x y \in a b+S$.
2. Let f be a homomorphism from a ring R to a ring R^{\prime}. Let $S=\{x \in R: f(x)=0\}$. Let $a, b \in R$ such that $b \in a+S$. Show that for any $z \in R, f(z a)=f(z b)$.
Soln: Since $b \in a+S, b=a+s$ for some $s \in S$. Hence $b-a=s \in S$. Therefore, $f(b-a)=$ $f(s)=0$. Now, $f(z b)-f(z a)=f(z a-z b)=f(z(a-b))=f(z) f(s)=f(z) .0=0$.
3. From the additive group $\left(\mathbf{R}^{2},+\right)$ to $\left(\mathbf{R}^{2},+\right)$ define the homomorphism:

$$
f[x, y]=[x, y]\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Find the equations for the set of points in $\mathbf{R}^{\mathbf{2}}$ corresponding to a) $\operatorname{ker}(f)$, b) $\operatorname{img}(f)$.
Soln: Clearly, $\operatorname{ker}(f)=\{[x, y]: x+y=0\}$. We claim that $\operatorname{img}(f)=\{[x, y]: x+y=0\}$ as well. For this, take any point $[a,-a]$ for any $a \in \mathbf{R}$. Clearly $f[a, 0]=[a,-a]$. Thus all points in the line $\left\{[[x, y]: x+y=0\}\right.$ belongs to $\operatorname{Img}(f)$. Moreover, given any $[x, y] \in \mathbf{R}^{\mathbf{2}}$, $f([x, y])=[x+y,-(x+y)]$ is a point in the line $x+y=0$. Thus $[x, y] \in \operatorname{Img}(f)$ if and only if $x+y=0$.
4. Let p be an odd prime. If g is a generator of $\mathbf{Z}_{\mathbf{p}}^{*}$, what is the value of $g^{\frac{p-1}{2}} \bmod p$? Justify your answer.
soln: Let $h=g^{\frac{p-1}{2}} \bmod p$. Since $h^{2}=g^{p-1}=1 \bmod p$ by Fermat's theorem, h must be a square root of $1 \bmod p$. However, $h \neq 1 \bmod p$ for in that case, we would have $g^{\frac{p-1}{2}}=1$ $\bmod p$ which would contradict $o(g)=p-1$. Hence h must be a square root of 1 other than 1 itself. Since $\mathbf{Z}_{\mathbf{p}}$ is a field, the only square roots of 1 are 1 and $-1=p-1 \bmod p$. Thus we must have $h=p-1 \bmod p$.
5. How many $a \in \mathbf{Z}_{\mathbf{p}}^{*}$ will satisfy $a^{\frac{p-1}{2}}=-1 \bmod p$? Justify your answer. (Hint: Use the previous question).
Soln: Let g be a generator of Z_{p}^{*}. $\left(g^{i}\right)^{\frac{p-1}{2}}=\left(g^{\frac{p-1}{2}}\right)^{i}=(-1)^{i}$. Thus if $i=2 k+1$ for some k, $\left(g^{i}\right)^{\frac{p-1}{2}}=-1$ and if $i=2 k$ for some $k,\left(g^{i}\right)^{\frac{p-1}{2}}=1 \bmod p$. In particular $\left\{g, g^{3}, g^{5}, \ldots, g^{p-2}\right\}$ is the set of $\frac{p-1}{2}$ elements which satisfy the property stated in the question.
6. For what values of n between 100 and 110 does 6 generate the additive group $\mathbf{Z}_{\mathbf{n}}$? Justify.
soln: $\left(Z_{n},+\right)$ is a cyclic group generated by 1 . Thus i generates Z_{n} if and only if $G C D(i, n)=1$. When $i=6$, this is true for for $n \in\{101,103,107,109\}$.
7. Suppose on input $n=35$, if the random element a in \mathbf{Z}_{15}^{*} chosen by the Miller Rabin test is 6 , what will be the output of the Miller Rabin test? What about the Fermat Test? Give clear justification
Soln: $6^{2}=1 \bmod 35$. Thus $6^{k}=6 \bmod 35$ when k is odd and $6^{k}=1 \bmod 35$ when k is even. Both the Fermat's test and the Miller Rabin test finds that $6^{34}=1$, and this check does not
reveal any evidence for compositeness. At this point, Fermat's test returns "prime". Miller Rabin test further evaluates $6^{\frac{35-1}{2}}=6^{17}=6 \bmod 35$. Since this value is neither 1 nor -1 , but is a square root of 1 , Miller Rabin test returns "composite". (Note that this question does not assume anything other than a knowledge of the steps performed by the Miller Rabin test and the Fermat's test).
8. Let $p_{1}, p_{2}, . ., p_{n}$ be distinct odd primes. Find the smallest positive integer x such that $\left(p_{1}-1\right) x=1 \bmod p_{1},\left(p_{2}-1\right) x=1 \bmod p_{2}, \ldots,\left(p_{n}-1\right) x=1 \bmod p_{n}$. You must prove that the x found so is the smallest. Express x as a function of p_{1}, \ldots, p_{n}.
Soln: First observe that $\left(p_{i}-1\right)=-1 \bmod p_{i}$ for each i. Thus the give system can be reformulated as $-x=1 \bmod p_{i}$ or equivalently $x=-1 \bmod p_{i}$ for each i. a trivial solution to this set of equations is $x=-1$. To get a positive number, observe that $Z_{p_{1} p_{2} \ldots p_{n}}$ is isomorphic to $Z_{p_{1}} \times$ $Z_{p_{2}} \times \ldots Z_{p_{n}}$. Thus $x=-1$ corresponds to $(-1,-1, \ldots-1)$ on the RHS and this corresponds to $x=\prod_{i=1}^{i=n} p_{i}-1$ in $Z_{p_{1} p_{2} \ldots p_{n}}$. That this value is the least positive such integer follows from Chinese remainder theorem which asserts that there is a unique number x between 0 and $\prod_{i=1}^{i=n} p_{i}-1$ satisfying $x=-1 \bmod p_{i}$ for all $1 \leq i \leq n$.
9. Let g be a generator of $\mathbf{Z}_{\mathbf{p}}^{*}$ that does not generate $\mathbf{Z}_{\mathbf{p}^{2}}^{*}$. What is the order of g in $\mathbf{Z}_{\mathbf{p}^{2}}^{*}$? Prove. (Use the next page if necessary).
Soln: Let i be the order of g in $\mathbf{Z}_{\mathbf{p}^{2}}^{*}$. Since g does not generate $\mathbf{Z}_{\mathbf{p}^{2}}^{*}$, its order in this group must be a strict divisor of $p(p-1)$. First we show that p does not divide i. Suppose $i=t p$, then $g^{t p}=1$ $\bmod p^{2} \Rightarrow g^{t p}=1 \bmod p \Rightarrow\left(g^{p}\right)^{t}=g^{t}=1 \bmod p \Rightarrow(p-1) \mid t$. However, then $p(p-1) \mid r t$, or $p(p-1) \mid i$ which contradicts the fact that g is not a generator of $\mathbf{Z}_{\mathbf{p}^{2}}^{*}$. Thus we conclude that i divides $p-1$. We have to prove that $i=p-1$ to complete the proof.
Now since i is the order of g in $\mathbf{Z}_{\mathbf{p}^{\mathbf{2}}}^{*}, g^{i}=1 \bmod p^{2} \Rightarrow g^{i}=1 \bmod p$. Since g is a generator of $\mathbf{Z}_{\mathbf{p}}^{*}, g^{i}=1 \bmod p \Rightarrow(p-1)$ divides i. But i divides $p-1$ and $p-1$ divides i implies that $i=p-1$.

