1. Let u, v be Eigen vectors of an operator T on an inner product space V over \mathbf{C}. Let λ and μ the corresponding Eigen values. Suppose $\lambda \neq \mu$, show that u, v are linearly independent.
Soln: Suppose u, v are linearly dependent. Then, there must be some scalar α such that $u=\alpha v$. But then we have $\lambda u=T(u)=T(\alpha v)=\alpha T(v)=\alpha \mu v=\mu \alpha v=\mu u$. This means $(\lambda-\mu) u=0$. But by definition of an Eigen vector, $u \neq 0$, consequently $\lambda=\mu$, a contradiction.
2. Suppose u, v be orthogonal vectors in an inner product space V over \mathbf{C}. Show that u, v are linearly independent.
Soln: Suppose $\alpha u+\beta v=0$ for some scalars α, β. Then $0=(0, u)=(\alpha u+\beta v, u)=\alpha(u, u)+$ $\beta(v, u)=\alpha\|u\|^{2}$. Since $\|u\| \neq 0$ we have $\alpha=0$ when $u \neq 0$. Similarly, $v \neq 0 \Rightarrow \beta=0$.
3. Find an orthonormal basis that diagonalizes the operator in \mathbf{R}^{2} whose matrix A wrt the standard basis is $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
Soln: Since the vectors $b_{1}=\frac{1}{\sqrt{2}}[1,1]^{T}, b_{2}=\frac{1}{\sqrt{2}}[1,-1]^{T}$ are orthonormal Eigen vectors of A, with Eigen values 3 and 1 , the operator represented by A in the standard basis will have matrix $A^{\prime}=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$ with respect to $\left[b_{1}, b_{2}\right]$.
4. For the operator of the previous question, find a 2×2 orthonormal basis translation matrix B such that the matrix of the operator wrt the basis defined by B is a diagonal matrix.
Soln: In the above question we have $\left[e_{1}, e_{2}\right]=\left[b_{1}, b_{2}\right] \frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. Hence we have $B=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
5. Let A be any $n \times n$ real matrix. Show that $A^{T} A$ is positive definite if and only if A is non-singular.

Soln: A is non-singular, if and only if $A x \neq 0$ for all $x \neq 0$, if and only if $\|A x\|^{2} \neq 0$ for all $x \neq 0$, if and only if $(A x, A x) \neq 0$ for all $x \neq 0$, if and only if $x^{T}\left(A^{T} A\right) x \neq 0$ for all $x \neq 0$ if and only if $A^{T} A$ is positive definite (by definition).
6. Find a parity check matrix for the code given by the 1×4 generator matrix $G=[0,1,1,0]$ in \mathbf{F}_{2}^{4} List all the codewords in the code.
Since G is a 1×4 matrix, the code defined by G has dimension 1 and contains just $\{0000,0110\}$ as codewords. Thus, the dual space must be a three dimensional space consisting of 8 vectors, consiting of $\{0000,0110,1001,1111,1000,0001,0111,1110\}$. The partity check matrix is a generator matrix for this dual space, and is any 3×4 matrix whose rows generate this dual space. One such matrix is $\left(\begin{array}{lllll}1 & 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$
7. Recall that for a subspace W of an inner product space V, we define $W^{\perp}=\{u \in V:(u, w)=0$ for all $w \in W\}$. Show that $W \cap W^{\perp}=\{0\}$.
Soln: Suppose $v \in W \cap W^{\perp}$. As v is both in W and W^{\perp}, we have $(v, v)=0$ which can happen if and only if $v=0$.
8. Consider the basis in \mathbf{C}^{3} consisting of the vectors $b_{1}=[1,1,1], b_{2}=\left[1, \omega, \omega^{2}\right], b_{3}=\left[1, \omega^{2}, \omega\right]$ where $\omega=e^{j \frac{2 \pi}{3}}$ (unit vector at 120° from the positive real line).

1. Is b_{1}, b_{2}, b_{3} an orthogonal basis? Prove/Disprove.
2. Find the matrix B for coordinate translation from the standard basis to this basis.

Soln: Noting that $\bar{\omega}=\omega^{2}$ and $\overline{\omega^{2}}=\omega$, it is easy to see that $\left[1, \omega^{2}, \omega\right] \overline{\left[1, \omega, \omega^{2}\right]^{T}}=0$ and consequently the basis is orthogonal, but not orthonormal. (The normalizing factor is $\frac{1}{\sqrt{3}}$). The matrix B of basis translation is easy to find for an orthogonal basis translation; $B=\frac{1}{3}\left(\begin{array}{cc}1 & 1 \\ 1 & \omega^{2} \\ 1 & \omega \\ 1 & \omega \\ \omega^{2}\end{array}\right)$

