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Lecture 3: Expander Mixing Lemma

Lecturer: Thomas Sauerwald & He Sun

1 Existence and Constructibility of Expander Graphs

Expander graphs have two seemingly contradictory properties: low degree and high connectivity.
Two general problems are existence and constructibility of expander graphs. Among these two
problems, existential proofs of expanders are easier, as one can resort to probabilistic techniques.
Further, the existence of expanders can be often used as a black-box to show the existence of
other interesting combinatorial objects. On the other hand, many applications of expanders
need explicit constructions. We will mention some explicit constructions in this lecture, but
they do not always match the bounds given by probabilistic methods.

Let Gd,N be the set of bipartite graphs with bipartite sets L,R of size N and left degree d.
The following lemma shows the existence of expanders.

Theorem 3.1. For any d, there exists an α(d) > 0, such that for all N

Pr[G is an (αN, d− 2)-expander ] ≥ 1/2,

where G is chosen uniformly from Gd,N .

Proof. Define
pk := Pr [∃S ⊆ L : |S| = k, |Γ(S)| < (d− 2)|S|] .

So G is not an (αN, d− 2)-expander iff
∑

k pk > 0.
Assume that there is a set S of size K and |Γ(S)| < (d− 2)|S|. Then there are at least 2k

repeats among all the neighbors of vertices in S. We calculate the probability

Pr[at least 2k repeats among all the neighbors of vertices in S] ≤
(
dk

2k

)(
dk

N

)2k

.

Therefore

pk ≤
(
N

k

)(
dk

2k

)(
dk

N

)2k

≤
(
Ne
k

)k
·
(
dke
2k

)2k

·
(
dk

N

)2k

=
(
cd4k

N

)k
where c = e3. By setting α = 1/(cd4) and k ≤ αN , we know that pk ≤ 4−k and

Pr[G is not an (αN, d− 2)-expander] ≤
αN∑
k=1

pk ≤
αN∑
k=1

4−k ≤ 1/2.
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Let us now turn to the constructibility of expanders.

Definition 3.2. Let {Gi}i∈N be a family of expander graphs where Gi is a d-regular graph on
ni vertices and the integers {ni} are increasing, but not too fast.(e.g. ni+1 ≤ n2

i will do)

1. The family is called Mildly Explicit if there is an algorithm that generates the j-th graph
in the family {Gi}i∈N in time polynomial in j.

2. The family is called Very Explicit if there is an algorithm that on input of an integer i,
a vertex v ∈ V (Gi) and k ∈ {1, · · · , d} computes the k-th neighbor of the vertex v in the
graph Gi. The algorithm’s running time should be polynomial in its input length.

Example. A family of 3-regular p vertex graph for a prime number p. Let G = (Zp, E). For
any vertex x ∈ Zp, vertex x is connected to x + 1, x − 1 and x−1. (The inverse of 0 is defined
to be 0.)

The family of expanders above is just mildly explicit, since we are at present unable to
generate large prime number deterministically.

Example (Margulis, 1973). Fix a positive integer M and let [M ] = {1, 2, · · · ,M}. Define the
bipartite graph G = (V,E) as follows. Let V = [M ]2 ∪ [M ]2, where vertices in the first partite
set as denoted (x, y)1 and vertices in the second partite set are denoted (x, y)2. From each vertex
(x, y)1, put in edges

(x, y)2, (x, x+ y)2, (x, x+ y + 1)2, (x+ y, y)2, (x+ y + 1, y)2,

where all arithmetic is done modulo M . Then G is an expander.

Example (Jimbo and Maruoka, 1987). Let G = (L ∪R,E) be the graph described above, then
∀X ⊂ L, |Γ(X)| ≥ |X|(1 + d0|X|/n), where d0 = (2−

√
3)/4 is the optimal constant.

2 Expander Mixing Lemma

Consider two experiments on a d-regular graph G. (1) Pick a random vertex u ∈ V and then
pick one of its neighbors v. (2) Pick two random vertices u, v ∈ V randomly and independently
from V × V . What is the probability of the event (u, v) ∈ S × T, S, T ⊆ V for these two
experiments? For the first experiment, the probability is |E(S, T )|/(nd). The probability for
the second probability is µ(S) · µ(T ), where µ(S) := |S|/n is the density of set S.

For the random bits used in these two experiments, it is easy to show that the first experiment
uses log n + log d random bits and the second one uses 2 log n random bits. However, we will
show that for graphs with good expansion these two probabilities are quite close to each other.

Lemma 3.3 (Expander Mixing Lemma). [AC88] Let G = (V,E) be a d-regular n-vertex graph
with spectral expansion λ. Then ∀S, T ⊆ V , we have∣∣∣∣|E(S, T )| − d|S| · |T |

n

∣∣∣∣ ≤ λd√|S||T |.
Let us consider the two terms in the left side: the size of E(S, T ) is the number of edges

between two sets, and d|S| · |T |/n is the expected number of edges between S and T in a random
graph with edge density d/n. So small λ implies that G is “more” random.

Proof. Let 1S ,1T be the characteristic vectors of S and T . Expand these vectors in the or-
thonormal basis of eigenvectors v1, · · · , vn, i. e. 1S =

∑
i αivi, and 1T =

∑
i βivi. Then

|E(S, T )| = 1S ·A · 1T =

(∑
i

αivi

)
A

(∑
i

βivi

)
=
∑
i

λiαiβi,
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where λis are eigenvalues of A. Since α1 = 〈1S , 1√
n
〉 = |S|√

n
, β1 = |T |√

n
and λ1 = d, then

|E(S, T )| = d · |S| · |T |
n

+
n∑
i=2

λiαiβi.

Thus ∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ ≤ n∑
i=2

λiαiβi ≤ λ · d ·
n∑
i=2

|αiβi|

By Cauchy-Schwartz inequality, we have∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ ≤ λ||1S || · ||1T || = λ · d ·
√
|S| · |T |.

Some remarks about the expander mixing lemma.

Lemma 3.4 (Converse of the Expander Mixing Lemma). [BL06] Let G be a d-regular graph
and suppose that ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ θd√|S||T |
holds for every two disjoint sets S, T and for some positive θ. Then λ = O(θ(1 + log(d/θ))).

In the following, we use a three-tuple (n, d, λ) to represent an n-vertex d-regular graph with
spectral expansion λ.

Corollary 3.5. The size of the independent set for any (n, d, λ)-graph is at most λn.

Proof. Let T = S. By Expander Mixing Lemma, we get |S| ≤ λn.

Corollary 3.6. For any (n, d, λ)-graph G, the chromatic number χ(G) ≥ 1/λ.

Proof. Let c : V → {1, · · · , k} be a coloring of G. Then for every 1 ≤ i ≤ k, c−1(i) is
an independent set. Since the size of every independent set is at most λn, so the chromatic
number is at least 1/λ.

3 Cheeger’s Inequality

Expander Mixing Lemma states that on graphs with good expansion, the graph’s edges are well
distributed and the spectral expansion of graphs are closely related to behavior of any cut in a
graph.

Theorem 3.7 (Cheeger’s Inequality). Let G be a d-regular graph and the eigenvalues of A(G)
are λ1 ≥ . . . ≥ λn. Then

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2).
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