Name and Roll No.: _

1. Suppose $p(x) = (1+x+x^2+x^3+..+x^{n-1}), q(x) = (1-x)$. Find the dot product of $DFT_n(p(x))$ and $DFT_n(q(x))$. Clearly justify your answer.

Soln:
$$DFT_n(p(x))^T DFT_n(q(x)) = DFT_n(p(x)q(x)) = DFT_n(1-x^n) = 0.$$

- 2. Let T be a Hermitian operator on a finite dimensional complex inner product space V. Let $\lambda_1 \neq \lambda_2$ be distinct Eigen values of T with corresponding Eigen vectors v_1 and v_2 . Show that $(v_1, v_2) = 0$. Soln: Since T is Hermitian, we have $(v_1, T(v_2)) = (T(v_1), v_2)$. $LS = (v_1, \lambda_2 v_2) = \lambda_2(v_1, v_2)$ as λ_2 is real as T is Hermitian. Similarly, $RS = \lambda_1(v_1, v_2)$. Since LS = RS, we have $(v_1, v_2) = 0$ since $\lambda_1 \neq \lambda_2$.
- 3. Find the matrix (wrt the standard basis) of the orthogonal projection operator along the direction $\frac{1}{\sqrt{3}}[1,1,1]^T$ in \mathbf{R}^3

Soln: Let $b_1 = \frac{1}{\sqrt{3}}[1,1,1]^T$. Let $W = span(b_1)$. Let b_2, b_3 be chosen as a basis for W^{\perp} in \mathbf{R}^3 . Consider the matrix $P = b_1 b_1^T$. Note that $P(b_1) = b_1, P(b_2) = P(b_3) = 0$. For any vector $v = x_1 b_1 + x_2 b_2 + x_3 b_3 \in \mathbf{R}^3$, where x_1, x_2, x_3 are in \mathbf{R} . We have $Pv = (b_1 b_1^T)(v) = (b_1 b_1^T)(x_1 b_1)$ (why?) $= x_1 b_1 (b_1^T b_1) = x_1 b_1$ which is precisely the component of v along the direction b_1 . Thus, the solution is $P = b_1 b_1^T = \frac{1}{3}[1, 1, 1]^T[1, 1, 1]$. Note that P is a 3×3 matrix. (Careful study of this example is important because this technique helps us to compute the matrix (w.r.t the standard basis) for the projection operator along any given direction b_1 , provided the coordinates of b_1 are known (w.r.t the standard basis)).

4. Find the matrix of the orthogonal projection operator along the plane perpendicular to $\frac{1}{\sqrt{3}}[1, 1, 1]^T$ in \mathbf{R}^3 (wrt the standard basis).

Soln: If P is the projection along W, then the perpendicular projection along W^{\perp} must be I - P.

5. Suppose P is a projection operator over a finite dimensional complex inner product space V. Suppose P is also a unitary transformation, what can you conclude about P? justify your answer. Soln: Since P is a projection, $P^2 = P$. Since P is unitary, $PP^* = I$. Combining the equations we have, $I = PP^* = P^2P^* = P(PP^*) = PI = P$. Thus, P must be the identify transformation. [Note: The original post for this solution was incorrect. This is the corrected version]

6. Suppose P is an orthogonal projection into a subspace W of an inner product space V. Let v be any vector in V and w be any vector in W. Show that $(Pv - w, Pv - w) \leq (v - w, v - w)$. Soln: Consider the triangle formed by the end points v, Pv and w. If we can establish that v - Pv is perpendicular to Pv - w, then $||v - w|^2 = ||(v - Pv) + (Pv - w)||^2 = ||v - Pv||^2 + ||Pv - w||^2 + 2(v - Pv, Pv - w) = ||v - Pv||^2 + ||Pv - w||^2$ and the required inequality follows. The task of proving that (v - Pv, Pv - w) = 0 is left as exercise for the final exam!! 3

3

3

3

3

3