Name and Roll No.:

1. Suppose $p(x)=\left(1+x+x^{2}+x^{3}+. .+x^{n-1}\right), q(x)=(1-x)$. Find the dot product of $D F T_{n}(p(x))$ and $D F T_{n}(q(x))$. Clearly justify your answer.
Soln: $\operatorname{DFT}_{n}(p(x))^{T} D F T_{n}(q(x))=D F T_{n}(p(x) q(x))=D F T_{n}\left(1-x^{n}\right)=0$.
2. Let T be a Hermitian operator on a finite dimensional complex inner product space V. Let $\lambda_{1} \neq \lambda_{2}$ be distinct Eigen values of T with corresponding Eigen vectors v_{1} and v_{2}. Show that $\left(v_{1}, v_{2}\right)=0$.
Soln: Since T is Hermitian, we have $\left(v_{1}, T\left(v_{2}\right)\right)=\left(T\left(v_{1}\right), v_{2}\right) . L S=\left(v_{1}, \lambda_{2} v_{2}\right)=\lambda_{2}\left(v_{1}, v_{2}\right)$ as λ_{2} is real as T is Hermitian. Similarly, $R S=\lambda_{1}\left(v_{1}, v_{2}\right)$. Since $L S=R S$, we have $\left(v_{1}, v_{2}\right)=0$ since $\lambda_{1} \neq \lambda_{2}$.
3. Find the matrix (wrt the standard basis) of the orthogonal projection operator along the direction $\frac{1}{\sqrt{3}}[1,1,1]^{T}$ in $\mathbf{R}^{\mathbf{3}}$
Soln: Let $b_{1}=\frac{1}{\sqrt{3}}[1,1,1]^{T}$. Let $W=\operatorname{span}\left(b_{1}\right)$. Let b_{2}, b_{3} be chosen as a basis for W^{\perp} in $\mathbf{R}^{\mathbf{3}}$. Consider the matrix $P=b_{1} b_{1}^{T}$. Note that $P\left(b_{1}\right)=b_{1}, P\left(b_{2}\right)=P\left(b_{3}\right)=0$. For any vector $v=x_{1} b_{1}+x_{2} b_{2}+x_{3} b_{3} \in \mathbf{R}^{\mathbf{3}}$, where x_{1}, x_{2}, x_{3} are in \mathbf{R}. We have $P v=\left(b_{1} b_{1}^{T}\right)(v)=\left(b_{1} b_{1}^{T}\right)\left(x_{1} b_{1}\right)$ (why?) $=x_{1} b_{1}\left(b_{1}^{T} b_{1}\right)=x_{1} b_{1}$ which is precisely the component of v along the direction b_{1}. Thus, the solution is $P=b_{1} b_{1}^{T}=\frac{1}{3}[1,1,1]^{T}[1,1,1]$. Note that P is a 3×3 matrix. (Careful study of this example is important because this technique helps us to compute the matrix (w.r.t the standard basis) for the projection operator along any given direction b_{1}, provided the coordinates of b_{1} are known (w.r.t the standard basis)).
4. Find the matrix of the orthogonal projection operator along the plane perpendicular to $\frac{1}{\sqrt{3}}[1,1,1]^{T}$ in \mathbf{R}^{3} (wrt the standard basis).
Soln: If P is the projection along W, then the perpendicular projection along W^{\perp} must be $I-P$.
5. Suppose P is a projection operator over a finite dimensional complex inner product space V. Suppose P is also a unitary transformation, what can you conclude about P ? justify your answer.
Soln: Since P is a projection, $P^{2}=P$. Since P is unitary, $P P^{*}=I$. Combining the equations we have, $I=P P^{*}=P^{2} P^{*}=P\left(P P^{*}\right)=P I=P$. Thus, P must be the identify transformation.
[Note: The original post for this solution was incorrect. This is the corrected version]
6. Suppose P is an orthogonal projection into a subspace W of an inner product space V. Let v be any vector in V and w be any vector in W. Show that $(P v-w, P v-w) \leq(v-w, v-w)$.
Soln: Consider the triangle formed by the end points $v, P v$ and w. If we can establish that $v-P v$ is perpendicular to $P v-w$, then $\left\|v-\left.w\right|^{2}=\right\|(v-P v)+(P v-w)\left\|^{2}=\right\| v-P v\left\|^{2}+\right\| P v-$ $w\left\|^{2}+2(v-P v, P v-w)=\right\| v-P v\left\|^{2}+\right\| P v-w \|^{2}$ and the required inequality follows. The task of proving that $(v-P v, P v-w)=0$ is left as exercise for the final exam!!
