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Abstract

Linear Optimization is essentially the process of optimizing a linear objective function subjected
to a finite number of linear constraints. Such optimization problems are usually expressed as
linear programming problems. The computational strategies for linear programming problems
are well explained in the literature. From a geomeric perspective, we see that linear programming
problems have well defined structural geometry. This thesis explores the structural foundations
of linear programming by investigating the structural geometry of polyhedral sets and derives
the core results in linear programming like Caratheodory characterization theorem and the
Fundamental theorem of linear programing by means of these structural concepts with elementary
linear algebra and real analysis. It also presents the primal dual theory and proves the duality
theorems with the aid of certain algebraic results formulated on the platform provided by the
fundametal theorem of linear programming. The approach taken in this thesis in deriving
various results give more emphasis to the underlying geometry. Hence it seems that the thesis
gives a better visual intuition of the notions and results in linear programming.
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Chapter 1

Introduction

1.1 History of linear programing

The linear programming method was first developed by Leonid Kantorovich in 1937. The
motivation for the development of the area is to plan the total expenditure and returns so as to
reduce the costs to the army and increase the losses incurred by the enemy in the Second World
War. This method was kept secret until George B. Dantzig published the Simplex method in
1947 [1].

Dantzig’s original example was aimed at finding the best assignment of 70 people to 70
jobs. The computing power required to test all the permutations to select the best one was
quiet large as the number of possible configurations was beyond a practically computable
limit. However, by expressing the problem as a linear program and then applying simplex
algorithm , it took only a reasonable time to find the optimal assignment. Immediately after
Dantzig published the linear programming methodology, another mathematician namely John
von Neumann introduced the concept of duality and established the famous Min-Max Theorem
in Game Theory. This invention also led to the further development of primal-dual theory and
its use in designing approximation algorithms for NP-Complete problems.

Even though the linear programming Method became popular in 1950’s several researchers
developed the idea in the past. Among those, the contributions of Jean-Baptiste Joseph Fourier
and de la Valle Poussin are of great relevance. Each published papers describing the linear
programming theory in the year 1823 and 1911 respectively.

The linear programming problem was first shown to be solvable in polynomial time by
Leonid Khachiyan in 1979. Later on an Indian mathematician Narendra Karmarkar laid
a milestone in the field of linear programing with the advent of a famous polynomial time
algorithm known as interior point method for solving linear programming Problems and published
the same in the year 1984. Now this area has grown to a full fledged field of Mathematics with
strong theoretical as well as practical support.

1.2 Scope of linear programming

The field of linear programming has wide scope in the field of Science and Technology. The
application of this area ranges from solving simple numerical problems to computable problems
with extremely high computational complexity. Linear programming is one of the classical
fields of optimization. Several problems in Operations Research can be represented as linear
programming problems. The ideas in linear programming forms the backbone for the development
of Primal-Dual based Approximation Algorithm Design for classical NP-Complete Problems.
Linear programming is widely used in the field of Economics and Company Management where
the primary focus is on maximizing the profit with least possible consumption of the resources.
The field of linear programming based combinatorial optimization finds its applications in

1



Chapter 1. Introduction

various areas of VLSI design like floorplanning so as to produce highly efficient integrated chips
with least space and power consumption.

1.3 Objectives of the Project

The primary focus of the project is to explore the geometric foundations of linear programming
and derive the core results in linear programming like Caratheodory characterisation theorem [1]
and the fundamental theorem of linear programming by means of these geometric characteristics.
This not only makes the understanding of the subject simpler, but also gives the geometric
visualisation of various results in linear programming and thereby strengthen the conceptual
knowledge of the subject. This makes the thesis to cover the entire theory of the graphical
method of solving linear programs. The project also focuses on presenting the essentials of
primal dual theory with a specific attention to prove the strong duality theorem from the first
principles with the aid of elementary linear algebra and real analysis.

1.4 Motivation for the Work

The basic facts which motivate this work are the following.

1. An in-depth study of linear optimization is difficult and requires strong foundation in
mathematical areas like linear algebra and real analysis. Most of the linear programming
related works found in the literature gives emphasis to the computational aspects of
linear optimization. Therefore presenting the fundamentals of linear optimization from a
geometric perspective with elementary linear algebra and real analysis seems to be very
useful to a novice person in the field of Engineering Optimization.

2. An extensive study of approximation algorithms requires strong foundation in primal dual
theory which include the weak duality theorem, the strong duality theorem etc [2] [3].
Most of the classical approaches of proving results like strong duality theorem requires
very strong foundation in multivariable calculus or advanced results like Farkas Lemma,
Theorem of Alternatives etc. Hence it seems that a material which derives the duality
theorems based on the geometric characterisation of linear programming reduces the efforts
to be taken by the reader to have a clear understanding of the primal dual theory.

1.5 Prerequiste for the Reader

While presenting various notions and establishing results, it seems that the fundamental notions
in Topology like closed sets, bounded sets, compact sets etc and basic knowledge in linear
algebra are inevitable. Therefore the reader is expected to have a basic knowledge in Real
Analysis and Linear Algebra.

1.6 Overview of the Thesis

The thesis is organised into six chapters and three appendices. The second chapter deals with
the preliminaries of linear programming including the general, canonical and standard orms of
linear programs, their equivalence and the concepts regarding feasibility and unboundedness
of linear programs. The chapter also contains algorithms for converting one form to other.
The third chaper introduces the underlying geometric concepts in various linear programming
results. This chapter primarly includes the discussion of convex sets and cones in the Eucledian
space with a view point of illustrating the theorems and results essential for deriving linear
programing results. The fourth chapter is dedicated to discuss the geometry of linear programming.

2



Chapter 1. Introduction

This chapter starts with the discussion of vertices, extreme points and basic feasible solutions
and their equivalence. This chapter outlines the formulation of geometric notions such as
recession directions, extreme directions in linear programing context. It also contains a detailed
discussion on Caratheodory Theorem and the Fundamental Theorem of linear programing
along with their proof and algorithms introduced wherever necessary and hence explores the
foundation for the graphical method of solving linear programs. The fifth chapter discuss the
primal dual theory in detail. This chapter starts with the definitions of primal and dual linear
programs and proceed to the discussions on the weak Duality theorm, complementary slackness
conditions and terminates with the stong Duality theorem giving the proofs of each. The sixth
chapter concludes the thesis with a summary of the core ideas illustated in the thesis and giving
the recomendations for future work.

As pointed out earlier, the thesis also consists of three appendices. Appendix A discuss the
technical results which are essential for proving the strong duality theorem. Both appendices
B and C essentially outlines various notions and results which are essential in the preceeding
chapters without proofs. These results are reffered to as Facts throughout the thesis and are
freely used wherever required. Appendix B introduces the essential linear algebra required to
derive the results. The proof of various Facts introduced in Appendix B can be seen in any
standard text book on linear algebra such as the one by Kenneth Hoffman and Ray Kunze.
Appendix C is dedicated to the discussion of Real Analysis concepts which are essential to
meet the objectives of the thesis. The proofs of various Facts in this appendix are available in
textbooks on Modern Topology such as the one by G.F. Simmons.

3



Chapter 2

Geometric Notions in Linear
Programing

2.1 Introduction

In this chapter, we present the geometric notions and results in the Eucledian space which are
essential for deriving various linear programming results. The results from Linear Algebra which
are used in this chapter are discussed briefly in Appendix A without proof. A detailed discussion
of these results and their proof can be seen in any standard textbook on Linear Algebra. The
results from Real Analysis which support the concepts in this chapter are outlined in Appendix
B. An in-depth discussion on these topics are available standard textbooks on Modern Toplogy
such as the book Introduction to Topology and Modern analysis by George F. Simmons [4].

2.2 Cones and Convex Sets

In this section, we define the notions of convex sets and cones and explores the geometric
characteristics of these sets [5] [6].

Definition 2.2.1.
Let V be a vector space and S ⊆ V . Let x1,x2,x3, · · · ,xk in S. Then

(a) any expression of the form
k∑
i=1

λixi where λi ∈ R for each i ∈ {1, 2, 3, · · · , k} and
k∑
i=1

λi = 1

is called an affine combination of x1,x2,x3, · · · ,xk.

(b) any expression of the form
k∑
i=1

λixi where λi ≥ 0, 1 ≤ i ≤ k is called a conic combination

or positive combination of x1,x2,x3, · · · ,xk. In particular, any expression of the form
k∑
i=1

λixi where λi > 0, 1 ≤ i ≤ k is called a strict conic combination of x1,x2,x3, · · · ,xk.

(c) any expression of the form
k∑
i=1

λixi where λi ≥ 0, 1 ≤ i ≤ k and
k∑
i=1

λi = 1 is called a convex

combination of x1,x2,x3, · · · ,xk. In particular, any expression of the form
k∑
i=1

λixi where

λi > 0, 1 ≤ i ≤ k and
k∑
i=1

λi = 1 is called a strict convex combination of x1,x2,x3, · · · ,xk.

Definition 2.2.2.
Let V be a vector space and S ⊆ V . Then

4



Chapter 2. Geometric Notions in Linear Programing

x1

x2

x0

x1

x2

x3

0

0



Figure 2.1: The Shaded Region is a cone, but not a convex cone.

(a) S is said to be an affine set if S is closed under affine combinations.

(b) S is said to be a convex set if S is closed under convex combinations.

(c) S is said to be a cone if for any x ∈ S, λ > 0 we must have λx ∈ S.

(d) S is said to be a convex cone if S is a cone as well as a convex set.

Remark 2.2.1.
Let V be a vector space and cone S ⊆ V . Since S is a cone, we see that corresponding to

any x ∈ S, we must have 0̇x ∈ S. This implies that the zero vector 0V of V is an element of S.

Remark 2.2.2.
By the definiton of convex sets, it is clear that any convex combination of two points x1 and

x2 in a convex set S ⊂ Rn is also an element of S. That is ∀ x1,x2 ∈ S, we must have λ1x1 +
λ2x2 ∈ S,∀λ1, λ2 ≥ 0 such that λ1 + λ2 = 1. This means that the line segment joining the
points x1 and x2 must fully lie in S.

Now we are going to prove that intersection of convex sets is also convex.

Lemma 2.2.1.
Convex sets are closed under intersection.

Proof.
Let S1, S2, S3, · · · , Sk be k convex subsets of a vector space V . We are going to prove that⋂k

i=1 Si is convex.
Let x1,x2,x3, · · · ,xt be the elements of

⋂k
i=1 Si. Let y be any convex combination of the

elements x1,x2,x3, · · · ,xt. Therefore there exist positive real numbers λ1, λ2, λ3, · · · , λt such

that y =
t∑

j=1

λjxj and
t∑

j=1

λj = 1

It is easy to see that each of x1,x2,x3, · · · ,xt is an element of all of S1, S2, S3, · · · , Sk.
Since each of S1, S2, S3, · · · , Sk is convex, we see that y which is a convex combination of
x1,x2,x3, · · · ,xt is an element of each of S1, S2, S3, · · · , Sk. This further implies that y is an
element of

⋂k
i=1 Si. Since the choice of elements x1,x2,x3, · · · ,xt within

⋂k
i=1 Si is arbitrary,

5



Chapter 2. Geometric Notions in Linear Programing

x1

x2

x0

x1

0

0



Figure 2.2: For any two points x1,x2 in Rn Cone({x1,x2}) is the region bounded by the line segments
originating from the origin to x1 and x2 within the orthant(s) containing x1 and x2. It is easy to se
that Cone({x1,x2}) is a convex cone.

we conclude that
⋂k
i=1 Si is closed under convex combinations. Hence

⋂k
i=1 Si is convex. Hence

the Lemma.

Lemma 2.2.2.
Let V be a vector space S ⊆ V . S is a convex cone if and only if S is closed under conic

combinations.

Proof.
If part:-
Let S be closed under conic combinations. This implies that for any vectors x1,x2,x3, · · · ,xk,

all conic combinations of the form λ1x1 + λ2x2 + λ3x3 + · · · + λkxk where λi ≥ 0, 1 ≤ i ≤ k
are also elements of S. This implies that all convex combinations of the form γ1x1 + γ2x2 +

γ3x3 + · · ·+ γkxk where γi ≥ 0, 1 ≤ i ≤ k and
k∑
i=1

γi = 1 are also elements of S. Therefore S is

a convex set. Moreover for any x ∈ S, it must be the case that all conic combinations of the
form λx + 0.x = λx, λ ≥ 0 are also elements of S. Hence we see that S is a cone. Thus we
conclude that S is a convex cone.

Only if Part:-
Given that S is a convex cone. Therefore by definition, S must contain all convex combinations

of the elements of S. Let T be the set of all conic combinations of the elements of S. We prove
this part by proving that each of S and T are subsets of each other.

The fact that S ⊆ T is trivial. To prove that T ⊆ S, let us take an arbitrary element

x in T . Therefore x can be expressed as a conic combination of the form x =
m∑
1=1

λiyi for

some m ∈ N, {yi | 1 ≤ i ≤ m} ⊂ S and λi ≥ 0 for each i ∈ {1, 2, 3, · · · ,m}. Clearly

λi
m∑
j=1

λj

∈ [0, 1] for each i ∈ {1, 2, 3, · · · ,m} and
m∑
i=1

 λi
m∑
j=1

λj

 = 1, we see that
m∑
i=1

 λi
m∑
j=1

λj

yi is a

convex combination of the elements of S and hence it must be a member of S. This further

6



Chapter 2. Geometric Notions in Linear Programing

implies that x =
m∑
i=1

λiyi =
m∑
j=1

λj

 m∑
i=1

 λi
m∑
j=1

λj

yi

 ∈ S since S is a cone.

Since the choice of x is arbitrary in T , we claim that ∀x ∈ T , it must be the case that
x ∈ S. Thus we claim that S ⊆ T and T ⊆ S and hence S = T . Hence the Lemma.

Remark 2.2.3.
By the definition of convex cone, it is clear that any conic combination of two points x1 and

x2 in a convex cone S ⊂ Rn is also an element of S. That is λ1x1 + λ2x2 ∈ S ∀λ1, λ2 ≥ 0.
This means that the entire area bounded by the two lines - one through 0n and x1 and the
other through 0n and x2 within the orthant(s) containing x1 and x2 is also included in S (See
Figure 2.2).

Definition 2.2.3.
Let V be a vector space and S ⊆ V . Then

(a) the set of all elements of V obtained by the convex combinations of the elements of S is
called the convex hull of S and is denoted by conv(S).

Conv(S) = {x | x ∈ V and
∑

xi∈S λixi where each λi ≥ 0 and
∑
λi = 1}

(b) the set of all elements of V obtained by the conic combinations of the elements of S is
called the conic hull of S and is denoted by Cone(S).

Cone(S) = {x | x ∈ V and
∑

xi∈S λixi where each λi ≥ 0}

Remark 2.2.4.
We follow the convention that Cone(φ) = Conv(φ) = φ.

Remark 2.2.5.
Let V be a vector space and S be a non-empty subset of V . Then Conv(S) ⊆ Cone(S). This

follows from the fact that every convex combination of the elements of S is a conic combination
also.

Lemma 2.2.3.
Let V be a vector space and S be a non-empty subset of V . Then Cone(S) is the smallest

convex cone containing S.

Proof.
The fact that S ⊆ Cone(S) is trivial. Let x1,x2,x3, · · · ,xk be any elements of Cone(S).

Then by the definition of Cone(S), xi =
ki∑
j=1

αijyij such that corresponding to each i ∈

{1, 2, 3, · · · , k}, we have the relations αij ≥ 0,yij ∈ S, 1 ≤ j ≤ ki for some ki ∈ N

Let x =
m∑
i=1

λixi where λi ≥ 0 for each i ∈ {1, 2, 3, · · · ,m}.

Now we have

x =
m∑
i=1

λixi =
m∑
i=1

λi

{
ki∑
j=1

αijyij

}
=

m∑
i=1

ki∑
j=1

λiαijyij

Clearly λiαij ≥ 0 for each i ∈ {1, 2, 3, · · · ,m}. Thus x is a conic combination of several
elements of S and hence belongs to Cone(S). Since the choice of x1,x2,x3, · · · ,xk is arbitrary
within Cone(S) , we further infer that any conic combination of the elements of Conv(S) is
also an element of Cone(S). Hence we conclude that Cone(S) is a convex cone by Lemma 2.2.2.

7
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Let T be convex cone in V such that S ⊆ T and T ⊂ Cone(S). This implies that there

must have some element u in Cone(S) \T such that u =
k∑
i=1

γizi where each zi ∈ S and γi ≥ 0.

Since S ⊆ T , this further implies that each of the elements zi belongs to T . Therefore we infer
that u is a conic combination of the elements of T but not a member of T which contradicts
the fact that T is a cone. Hence we conclude that there does not have a convex cone T in V
such that S ⊆ T and T ⊂ Cone(S).

Hence the Lemma.

Lemma 2.2.4.
Let V be a vector space and S ⊆ V . Then Conv(S) is the smallest convex set containing S.

Proof.
The fact that S ⊆ Conv(S) is trivial. Let x1,x2,x3, · · · ,xk be any elements of Conv(S).

Then by the definition of Conv(S), xi =
ki∑
j=1

αijyij such that corresponding to each i ∈

{1, 2, 3, · · · , k}, we have the relations αij ≥ 0,yij ∈ S, 1 ≤ j ≤ ki for some ki ∈ N such

that
ki∑
j=1

αij = 1.

Let x =
m∑
i=1

λixi where λi ≥ 0,
m∑
i=1

λi = 1, 1 ≤ i ≤ m.

Now we have

x =
m∑
i=1

λixi =
m∑
i=1

λi

{
ki∑
j=1

αijyij

}
=

m∑
i=1

ki∑
j=1

λiαijyij

Clearly λiαij ≥ 0 for each i ∈ {1, 2, 3, · · · ,m}.
Moreover

m∑
i=1

ki∑
j=1

λiαij =
m∑
i=1

λi

{
ki∑
j=1

αij

}
= 1

Thus x is a convex combination of several elements of S and hence belongs to Conv(S).
Since the choice of x1,x2,x3, · · · ,xk is arbitrary within Conv(S) , we further infer that any
convex combination of the elements of Conv(S) is also an element of Conv(S). Hence we
conclude that Conv(S) is a convex set.

Let T be convex subset of V such that S ⊆ T and T ⊂ Conv(S). This implies that there

must have some element u in Conv(S) \ T such that u =
k∑
i=1

γizi where each zi ∈ S and γi ≥ 0

such that
m∑
i=1

γi = 1. Since S ⊆ T , this further implies that each of the elements zi belongs to

T . Therefore we infer that u is a convex combination of the elements of T but not a member
of T which contradicts the fact that T is a convex set. Hence we conclude that there does not
have a convex subset T of V such that S ⊆ T and T ⊂ Conv(S).

Hence the Lemma.

Lemma 2.2.5.
Let V be a vector space and S be a non-empty subset of V . Then Cone(Conv(S)) =

Cone(S).

8
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Figure 2.3: The figure on the RHS is the convex hull determined by the points in the set on the LHS

Proof.
We prove the Lemma by showing that each of Cone(Conv(S)) and Cone(S) is a subset of

the other.
Since S ⊆ Conv(S), it is easy to see that Cone(S) ⊆ Cone(Conv(S)). Let y be any element

of Cone(Conv(S)). This means that y is a conic combination of the elements of Conv(S). Since
Conv(S) ⊆ Cone(S), we further infer that y is a conic combination of the elements of Cone(S)
and is obviously an element of Cone(S). Since y can be any element of Cone(Conv(S)), we
conclude that Cone(Conv(S)) ⊆ Cone(S).

Hence the Lemma.

Lemma 2.2.6.
For any finite subset S of Rn, Conv(S) is a bounded set .

Proof.
Let S = {xi | 1 ≤ i ≤ k} where each xi ∈ Rn and k ∈ N. Let δ = max ({‖y‖ | y ∈ S}). Let

x be any element of Conv(S). Therefore we must have

x =
k∑
i=1

λixi such that λi ≥ 0, 1 ≤ i ≤ k and
k∑
i=1

λi = 1

Now we have

‖x‖ =

∥∥∥∥∥
k∑
i=1

λixi

∥∥∥∥∥ =
k∑
i=1

λi ‖xi‖ ≤
k∑
i=1

λiδ

which imples that ‖x‖ ≤ δ as
k∑
i=1

λi = 1. Since x can be chosen any vector in Conv(S),

we infer that ∀x ∈ Conv(S) it must be the case that ‖x‖ ≤ δ. Hence Conv(S) ⊂ Bδ+1 (0n).
Hence the Lemma.

Now we introduce the notions of recession directions in convex sets.

Definition 2.2.4.
Given x,d ∈ Rn. Then the set {x + αd | α ≥ 0} is called a half-line anchored at x and

direction d.

Definition 2.2.5.
Given a convex set C ⊆ Rn. Then any non-zero vector d ∈ Rn is said to be a recession

direction of C if ∀x ∈ C, the half-line {x + αd | α ≥ 0} ⊆ C.

Lemma 2.2.7.
Let C ⊆ Rn be a closed convex set . Then the following statements are equivalent.

(1) The vector d ∈ Rn is a recession direction of C.

(2) ∀x ∈ C, {x + αd | α ≥ 0} ⊆ C

9
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(3) ∃x ∈ C, {x + αd | α ≥ 0} ⊆ C

Proof.
(1) ⇒ (2) by the definition of recession directions,
(2) ⇒ (3) is trivial.
What remains to prove the equivalence is (3) ⇒ (1).
Let there be some x ∈ C such that the half-line {x+αd | α ≥ 0} ⊆ C. Let x′ be any vector

in C. Now we need to consider two cases.
Case 1: x′ lies on the line {x + αd | α ∈ R}.

In this case, we need to consider two cases.
Case 1.1: x′ lies on the half-line {x + αd | α ≥ 0}.

In this case, there exists α0 ≥ 0 such that x′ = x + α0d. Therefore

{x′ + αd | α ≥ 0} = {x + (α + α0)d | α ≥ 0} ⊆ C

Case 1.2: x′ lies on the half-line {x− αd | α ≥ 0}.
In this case, there exists α1 ≥ 0 such that x′ = x− α1d. Therefore x = x′ + α1d. Since C

is convex and the points x′,x′ + α1d, the line segment {x′ + αd | 0 ≤ α ≤ α1} ⊆ C. Moreover
{x′ + αd | α ≥ α1} = {x + (α − α1)d | α ≥ α1} = {x′ + αd | α ≥ 0} ⊆ C. These two results
together imply that the half-line {x′ + αd | α ≥ 0} ⊆ C.

Case 2: x′ does not lie on the line {x + αd | α ∈ R}.
Consider the sequence {yk}k∈N defined by yk = x + kd,∀k ∈ N. Obviously {yk}k∈N is a

sequence in C. It is not hard to see that {‖yk‖} → ∞ (Refer to Fact C.1.2 in Appendix C).
This further implies that {‖yk − x‖} → ∞. Hence there exists a subsequence {uj}j∈N of the
sequence {yk − x′}k∈N defined by uj = ykj − x′, ∀j ∈ N such that the sequence {‖uj‖}j∈N ={∥∥ykj − x′

∥∥}
j∈N is strictly increasing and {‖uj‖} =

{∥∥ykj − x′
∥∥}→∞.

Let α be any real number. Since the sequence {uj}j∈N is strictly increasing and {‖uj‖} →
∞., there exists a least integer t such that α ‖d‖ < ‖ut+j‖ ,∀j ∈ N. Let the sequence {zj}j∈N
be defined by zj = x′ + α‖d‖

‖ut+j‖ut+j,∀j ∈ N.
Now

zj = x′ +
α ‖d‖
‖ut+j‖

ut+j = x′ +
α ‖d‖
‖ut+j‖

(
ykj − x′

)
=

α ‖d‖
‖ut+j‖

ykj + x′
(

1− α ‖d‖
‖ut+j‖

)
This implies that each term zj is a convex combination of the two vectors ykj and x′ in C

as α ‖d‖ < ‖ut+j‖ ,∀j ∈ N. Hence {zj}j∈N is a sequence over C.
[Note:- ‖zj − x′‖ = α ‖d‖ ,∀j ∈ N. Thus each zj lies on the boundary of a closed ball of

radius α ‖d‖ centered at x′ (Refer to Definition C.1.11 in Appendix C) as shown in figure 2.4
We have

zj = x′ +
α ‖d‖
‖ut+j‖

ut+j

= x′ +
α ‖d‖∥∥ykj − x′

∥∥ (ykj − x′
)

= x′ +
1

‖x− x′ + kt+jd‖
(x− x′) +

kt+j ‖d‖
‖x− x′ + kt+jd‖

αd

Now

lim
j→∞

1

‖x− x′ + kt+jd‖
= lim

kt+j→∞

1

‖x− x′ + kt+jd‖
= 0

lim
j→∞

kt+j ‖d‖
‖x− x′ + kt+jd‖

= lim
kt+j→∞

kt+j ‖d‖
‖x− x′ + kt+jd‖

= 1 (By L’Hospital’s rule)

10
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Therefore

lim
j→∞

zj = lim
j→∞

x′ + lim
j→∞

1

‖x− x′ + kt+jd‖
(x− x′) + lim

j→∞

kt+j ‖d‖
‖x− x′ + kt+jd‖

αd

= lim
j→∞

x′ + lim
kt+j→∞

1

‖x− x′ + kt+jd‖
(x− x′) + lim

kt+j→∞

kt+j ‖d‖
‖x− x′ + kt+jd‖

αd

= x′ + αd

Hence we see that the sequence {zj}j∈N converges to x′ + αd (See Figure 2.4).
Since {zj}j∈N is a sequence over C and C is closed, it follows that x′ + αd ∈ C (Refer to

Fact C.1.4 in Appendix C). Since α can be chosen as any arbitrary non-negative real number,
we conclude that the set {x′ + αd |α ≥ 0} ⊆ C. Thus we see that in both cases, the set
{x′ + αd |α ≥ 0} ⊆ C. Since x′ can be chosen as arbitrarily within C, we conclude that
∀x′ ∈ C, α ≥ 0 the vector x′ + αd ∈ C. Therefore d is a recession direction of C. Thus (3) ⇒
(1). Hence the Lemma.

Lemma 2.2.8.
Let C ⊆ Rn be a closed convex set. C is unbounded if and only if it contains a half-line .

Proof.
if part:-
Let C consist of some half-line {x + αd | α ≥ 0} for some x ∈ C. Clearly the sequence

{x + kd}k∈N is a sequence over C and {‖x + kd‖} → ∞. Therefore C must be unbounded.
only-if part:-
Let C be an unbounded set. Let x0 be any vector in C. Since C is unbounded, C \

{x0} is also unbounded. Therefore there exists a sequence {xk}k∈N in C \ {x0} such that the
sequence {‖xk‖}k∈N is strictly increasing sequence in R and ‖xk‖ → ∞ (Refer to Fact C.1.8 in
Appendix C). Furthermore there exists a sequence {xk − x0}k∈N in Rn such that the sequence
{‖xk − x0‖}k∈N is strictly increasing and ‖xk − x0‖ → ∞ (Refer to Fact C.1.1 in Appendix C).

Consider the sequence
{

xk−x0

‖xk−x0‖

}
k∈N

. Each vector in this sequence has unit l2 norm (Refer

to Example B.1.3 in Appendix B) in Rn and therefore this sequence is a bounded sequence.
Therefore by Bolzano-Weistrass Theorem (Refer to Fact C.1.9 in Appendix C), there exists a

converging subsequence

{
xkj−x0

‖xkj−x0‖

}
j∈N

of the sequence
{

xk−x0

‖xk−x0‖

}
k∈N

such that
xkj−x0

‖xkj−x0‖ → d

for some d ∈ Rn. It is obvious that d 6= 0n.

Let α be any non-negative real number. Since {‖xk − x0‖}k∈N is strictly increasing and
‖xk − x0‖ → ∞, the subsequence {

∥∥xkj − x0

∥∥}j∈N is also strictly increasing and
∥∥xkj − x0

∥∥→
∞ (Refer to Fact C.1.3 in Appendix C). This ensures the existence of a least positive integer t
such that α <

∥∥xkt+j − x0

∥∥ , ∀j ∈ N.

Now consider the sequence {zj}j∈N defined by zj = x0 + α
xkt+j−x0

‖xkt+j−x0‖ ,∀j ∈ N.

We have

∀j ∈ N, zj = x0 +
xkt+j − x0∥∥xkt+j − x0

∥∥ =
α∥∥xkt+j − x0

∥∥xkt+j +

(
1− α∥∥xkt+j − x0

∥∥
)

x0

Hence we see that each zj is a convex combination of the vectors xkt+j and x0 both belonging
to C as α <

∥∥xkt+j − x0

∥∥ ,∀j ∈ N. Thus it follows that {zj}j∈N is a sequence over C.
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x

y1

y2

y3

y4

x′

x′ + αd

α ‖d‖

The Convex Set C

Figure 2.4: Illustration of Case 2 of Lemma 2.2.7. The points marked on the circle from left to right
are z1, z2, z3, z4 and x′ + αd respectively.

We also have

lim
j→∞

zj = lim
j→∞

x0 + lim
j→∞

α
xkt+j − x0∥∥xkt+j − x0

∥∥
= lim

j→∞
x0 + lim

j→∞

xkt+j − x0∥∥xkt+j − x0

∥∥
= x0 + αd

Hence we see that the sequence {zj}j∈N converges to x0 +αd(See Figure 2.5). Since {zj}j∈N
is a sequence over C and C is closed, we claim that x0 + αd ∈ C. Since α can be chosen as
any arbitrary non-negative real number, we further claim that the set {x0 + αd |α ≥ 0} ⊆ C.
This implies that C contains a half-line. Hence the Lemma.
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x1

xkt

xkt+1

xkt+2

x0

x0 + αd

α

The Convex Set C

Figure 2.5: Illustration of only-if part of Lemma 2.2.8. The points marked on the circle from left to
right are z1, z2 and x0 + αd respectively.

Corollary 2.2.1.
A non-empty closed convex set in Rn is unbounded if and only if it has at least one recession

direction.

Proof.
Let C be any non-empty closed convex set in Rn. By Lemma 2.2.8, C is unbounded if and

only if it contains some half-line {x + αd | α ≥ 0}. This further implies that C is unbounded
if and only if C has a recession direction by Lemma 2.2.7. Hence the Lemma.

Corollary 2.2.2.
A non-empty closed convex set in Rn is bounded if and only if it has no recession directions.

Lemma 2.2.9.
The set of all recession directions of a convex set in Rn together with 0n forms a convex

cone .

13
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Proof.
Let C ∈ Rn be a convex set. Let S be the set of all recession directions of C. To show that

S∪{0n} is a convex cone, it is enough to show that S∪{0n} contains all the conic combinations
of the elements of S by Lemma 2.2.2.

Let d1,d2,d3, · · · ,dk be any elements of S ∪ {0n}. Let d =
k∑
i=1

λidi, λi ≥ 0, 1 ≤ i ≤ k.

Claim:- d is a recession direction of C.
We prove the claim by applying mathematical induction on k.
Basis:- k = 1. Since d1 is a recession direction of C, we see that for each x in C, the set

{x +αd1 | α ≥ 0} ⊆ C. Hence we see that the set {x +αλ1d1 | α ≥ 0} ⊆ C. This implies that
d = λ1d1 is a recession direction of C. Hence Basis proved.

Inductive Hypothesis:-

Assume that d =
k∑
i=1

λidi, λi ≥ 0 is a recession direction of C for 1 ≤ k ≤ t for some t ∈ N.

Induction:-k = t+ 1.

Now d =
t+1∑
i=1

λidi =
t∑
i=1

λidi + λt+1dt+1 = d′ + λt+1dt+1 where d′ =
t∑
i=1

λidi.

By Inductive Hypothesis, d′ is a recession direction of C. Therefore we see that for each x
in C and each β ≥ 0, it must be the case that x + βd′ ∈ C.

Since dt+1 is a recession direction of C, we see that for each y in C and each γ ≥ 0, it must
be the case that y + γdt+1 ∈ C. This futher implies that for each y in C and each γ ≥ 0, the
vector y + γλt+1dt+1 ∈ C.

Combining the two inferences, we see that for each x in C and each α ≥ 0, it must be the
case that x + α(d′ + λt+1dt+1) = x + αd′ + αλt+1dt+1 ∈ C. Hence it follows that d′ + λt+1dt+1

is a recession direction of C.

Thus we conclude that ∀k ∈ N,d =
k∑
i=1

λidi, λi ≥ 0, 1 ≤ i ≤ k is a recession direction of C.

Since d is a recession direction of C, it must be a member of S ∪ {0n}. Thus we see
that any conic combination of d1,d2,d3, · · · ,dk is a member of S ∪ {0n}. Since the vectors
d1,d2,d3, · · · ,dk can be arbitrarily within C, we further infer that S ∪ {0n} contains all the
conic combinations of the elements of its own. Hence S ∪ {0n} is a convex cone. Hence the
Lemma.

Remark 2.2.6.
The convex cone formed by the recession directions of an unbounded convex set C in Rn

together with 0n is called recession cone of C and is denoted by Rc(C).

Lemma 2.2.10.
Given convex set C ⊆ Rn and its recession direction d ∈ Rn. Then there exists another

vector d′ ∈ Rn such that

(a) 〈1n,d
′〉 = 1

(b) d′ is also a recession direction of C.

Proof.
Letting d′ = 1

〈1n,d〉d, the result follows directly.

2.3 Hyperplanes and Polyhedral Sets

In this section, we first introduce the notions of hyperplanes, polyhedral sets and polytopes.
Following this discussion, we bring about the geometric notions - vertices and extreme points

14



Chapter 2. Geometric Notions in Linear Programing

Definition 2.3.1.
A hyperplane H in Rn is the set H = {x | x ∈ Rn and 〈a,x〉 = δ} for some a ∈ Rn and

δ ∈ R.

Definition 2.3.2.
A set Hs ⊆ Rn is said to be a closed half space if there exists some a ∈ Rn and δ ∈ R such

that Hs = {x | x ∈ Rn and 〈a,x〉(≤,≥)δ}.
Definition 2.3.3.

A set Hs ⊆ Rn is said to be an open half space if there exists some a ∈ Rn and δ ∈ R such
that Hs = {x | x ∈ Rn and 〈a,x〉(<,>)δ}.
Remark 2.3.1.

Intutively, a hyperplane H = {x | x ∈ Rn and 〈a,x〉 = δ, a ∈ Rn, δ ∈ R} divides Rn into
closed half spaces H≥ = {x | x ∈ Rn and 〈a,x〉 ≥ δ} and H≤ = {x | x ∈ Rn and 〈a,x〉 ≤ δ}.
It is easy to see that H≥ = H ′≤ and H≤ = H ′≥ where H ′ = {x | x ∈ Rn and 〈−a,x〉 = −δ}

Similarly hyperplaneH divides Rn into disjoint open half spacesH> = {x | x ∈ Rn and 〈a,x〉 >
δ} and H< = {x | x ∈ Rn and 〈a,x〉 < δ}. It easily follows that H> = H ′< and H< = H ′>
where H ′ = {x | x ∈ Rn and 〈−a,x〉 = −δ}
Definition 2.3.4.

Given the non empty subset S ⊆ Rn. The Hyperplane H = {x | x ∈ Rn and 〈a,x〉 = δ
for some a ∈ Rn and δ ∈ R} is said to be a supporting hyperplane for S if the following two
conditions are satisfied.

(i) ∃y ∈ S such that 〈a,y〉 = δ.

(ii) S ⊆ H≥ or S ⊆ H≤.

It is equivalent to say that H supports S if either δ = min
{
〈a,x〉

∣∣∣ x ∈ S
}

or δ =

max
{
〈a,x〉

∣∣∣ x ∈ S
}

Definition 2.3.5.
The intersection of a finite number of closed half spaces in Rn is called a polyhedral set or

simply polyhedron . In particular a bounded polyhedral set in Rn is called a polytope .

Remark 2.3.2.
Since the intersection of a finite number of closed sets is closed, polyhedral sets are closed.

Lemma 2.3.1.
Given P ⊆ Rn. P is a polyhedral set if and only if there exists m ∈ N,A ∈ Rm×n and

b ∈ Rm such that P = {x | x ∈ Rn and Ax ≤ b}.
Proof.

if part:-

Let m be any positive integer. Let A =
[
a1 a2 a3 · · · am

]T
where ai ∈ Rn, 1 ≤ i ≤ m

and b =
[
b1 b2 b3 · · · , bm

]T
.

Now

{x | x ∈ Rn and Ax ≤ b} = {x | x ∈ Rn and 〈ai,x〉 ≤ bi∀i such that 1 ≤ i ≤ m}

=
m⋂
i=1

{x | x ∈ Rn and 〈ai,x〉 ≤ bi}

Thus we see that the set {x | x ∈ Rn and Ax ≤ b} is a polyhedral set, each of the sets
{x | x ∈ Rn and 〈ai,x〉 ≤ bi} are closed half-spaces in Rn.
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only if part:-
Let P be a polyhedral set in Rn. Therefore there exists positive integer m and hyperplanes

Hi = {x | x ∈ Rn and 〈ai,x〉 = bi} such that ai ∈ Rn and bi ∈ R for each i ∈ {1, 2, 3, · · · ,m}
and P =

⋂m
i=1Hi≤. Therefore P can be expressed as {x | x ∈ Rn and Ax ≤ b} where

A =
[
a1 a2 a3 · · · am

]T
and b =

[
b1 b2 b3 · · · bm

]T
.

Hence the Lemma.

Definition 2.3.6.
Given convex set C ⊆ Rn and x ∈ P . Then x is said to be a vertex or corner point of C if

C has a supporting hyperplane H in Rn such that C ∩H = {x}. In other words x is said to
be a vertex of C if there exists some hyperplane H in Rn such that C ∩H = {x} and C ⊆ H≤.

Lemma 2.3.2.
Given convex set C ⊆ Rn and x ∈ C. Then x is a vertex of C if and only if there exists

some vector c ∈ Rn such that x is the unique point in C such that 〈c,x〉 > 〈c,y〉 for each
y ∈ C \ {x}.

Proof.
if part:-
Let c ∈ Rn such that 〈c,x〉 > 〈c,y〉 for each y ∈ C \ {x}.
Consider the hyperplane H = {z | z ∈ Rn such that 〈c, z〉 = 〈c,x〉}. Clearly C ∩ H =

{x} and C \ {x} ⊆ H<. This implies that C ∩H = {x} and C ⊆ H≤. Thus x is a vertex of C.
only if part:-
Let x be a vertex of C. Therefore there exists hyperplaneH = {z | z ∈ Rn such that 〈c, z〉 =

δ} where c ∈ Rn, δ ∈ R and C∩H = {x}. This further implies that C∩H = {x} and C ⊆ H≤.
That is x ∈ H and C \ {x} ⊆ H<. Hence we see that 〈c,x〉 = δ and ∀y ∈ P \ {x}, 〈c,y〉 < δ.
In other words, 〈c,x〉 > 〈c,y〉 for each y ∈ C \ {x}. Hence the Lemma.

Definition 2.3.7.
Given convex set C ⊆ Rn and x ∈ C. Then x is said to be an extreme point of C if there

exist no distinct points y, z in C such that x = λy + (1 − λ)z, λ ∈ (0, 1). In other words, x
is an extreme point of C if x cannot be expressed as a strict convex combination of two other
points in C. Geometrically this means that x does not lie on a line joining any two vectors in
C.

Lemma 2.3.3.
Given convex set C ⊆ Rn and y ∈ C. If y is a vertex of C, then y will be an extreme point

of C.

Proof.
Let y be a vertex of C. Therefore by Lemma 2.3.2, there exists vector c ∈ Rn such that

for each z in C \ {y}, we have the relation 〈c,y〉 > 〈c, z〉. Assume that y is not an extreme
point of C. Therefore there exist vectors u and v in C such that y = λu + (1− λ)v for some
λ ∈ (0, 1).

Now

〈c,y〉 = 〈c, λ〉u + (1− λ)v〉 = λ〈c,u〉+ (1− λ)〈c,v〉 < λ〈c,y〉+ (1− λ)〈c,y〉
(∵ u,v ∈ C ⇒ 〈c,u〉 < 〈c,y〉, 〈c,v〉 < 〈c,y〉)

which lead to the contradiction that 〈c,y〉 < 〈c,y〉 . Hence we claim that y is an extreme
point of C.
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0
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1
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Figure 2.6: Illustration of Remark 2.3.3. The point E is an extreme point of C but not a vertex.

Remark 2.3.3.
The converse of Lemma 2.3.3 is not true. To see thts, consider the convex set C ⊂ R2 given

by C =

{
x

∣∣∣∣x ∈ R2 and

∥∥∥∥∥x−
[

0

1

]∥∥∥∥∥ ≤ 1

}
∪ {x | x ∈ R2 and ‖x‖∞ = 1} (See Figure 2.6). It

is easy to see that the vector

[
1

1

]
∈ C and is an extreme point of C. In R2, C has only one

supporting hyperplane H =

{
x

∣∣∣∣x ∈ R2 and

〈[
1

0

]
,x

〉
= 1

}
=

{[
1

y

] ∣∣∣∣y ∈ R

}
which passes

through

[
1

1

]
, but H ∩ C =

{[
1

y

] ∣∣∣∣ | y |≤ 1

}
6=

[
1

1

]
. Therefore

[
1

1

]
is not a vertex of C.

We close the chapter by giving two observations which will be used exclusively in the
subsequent chapters.

(a) The presence of a half-line within a polyhedral set in Rn is a necessary and sufficient
condition for the polyhedral set to be unbounded.

(b) A polytope in Rn does not have any recession directions and hence no extreme directions.

2.4 Summary

In this chapter, we discussed the basic geometric notions and results which we use in the
subsequent chapters for deriving various results in linear programming. We had started the
chapter with the notions of cones, convex sets, convex hull, recession directions and extreme
directions in Rn. We proved that the presence of a single half-line within a closed convex
set confirms that the set is unbounded which further implies that a bounded convex set in
the eucledian space does not have any recession directions. Following this, we came across
the concept of polyhedral sets and polytopes which are of great importance in the subsequent
chapters. In this section, the notions of vertices and extreme points of polyhedral sets were
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formally defined and established the necessary and sufficient condition for a point in a polyhedral
set to be a vertex by showing the existence of a linear function on Rn which is uniquely optimized
at the point under consideration. In the next chapter, we introduce the mathematical model
of linear programming with supporting notions and results.

18



Chapter 3

Linear Programming Fundamentals

3.1 Introduction

In this chapter, we present the fundamentals of linear programming. In section 3.2, we give the
informal definition of linear programming and its features. Section 3.3 starts with the formal
definition of a linear program as a 5-tupe along with the general form of a linear program and
proceed to the notions of feasibility, unboundedness and equivalence in linear programming.
This section also discusses the canonical and the standared forms of linear programs and the
algorithms for converting one form to another form. We close this chapter by establishing the
equivalence of the three forms of linear programs.

3.2 What is Linear Programming?

According to George B. Dantzig, Linear programming can be viewed as part of a great revolutionary
development which has given mankind the ability to state general goals and to lay out a path of
detailed decisions to take in order to best achieve its goals when faced with practical situations
of great complexity [1]

Linear programming, sometimes known as linear optimization, is the problem of maximizing
or minimizing a linear function over a convex polyhedron specified by a set of linear constraints.
In other words, linear programming is the optimization of an outcome based on some set of
constraints using a linear mathematical model.

Linear programming can also be defined in a more simple way as the problem of optimising a
linear function of a given set of decision variables(called objective function) subjected to one or
more linear constraints involving these variables. From this definition, the following inferences
can easily be made.

• Linear programming is an optimization technique.

• The number of decision variables is finite.

• Both the objective function and the constraints are linear functions.

• There should be a single objective function.

Following are the essential assumptions which must be made while formulating a given
problem as a linear programming problem. [7]

• Proportionality assumption:- The value of the objective function and the left hand side of
the constraints are directly proportional to the value of the decision variables.

• Independence and additivity assumption:- The value of each decision variable is completely
independent of the values of other decision variables and therefore the contributions of
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each decision variable to the objective function and various constraints may be added to
give the total value of the objective function and the total value of the left hand side of
each constraint.

• Divisibility assumption:- The decision variables are assumed to be infinitely divisible which
means that the decision variables may be assigned fractional values. In other words
decision variables are assumed to be continuous decision variables.

• Certainity assumption:- The coefficients of various decision variables and constraints
must be known completely without any uncertainity and they should never undergo any
changes.

• Finiteness Assumption:- The number of decision variables and constraints are assumed to
be finite without which the optimal solution can’t be determined.

3.3 Mathematical model of LP

In this section, we formally define the term linear program.

3.3.1 Formal Definition and General Form of linear programs

Definition 3.3.1.
A linear programming problem or simply linear program is a 5-tuple P = (V, obj, C,N, T )

where

V is the set of n > 0 decision variables each of which is assumed to take real values.

obj is called the objective function which is a linear function of the decision variables.

obj : Rn → R of the form
n∑
j=1

cjxj where cj ∈ R, 1 ≤ j ≤ n, to be optimized

C is the finite set of m ≥ 0 linear constraints of the form
n∑
j=1

aijxj opi bi where bi ∈ R, aij ∈ R, opi ∈ {≤,≥,=} and 1 ≤ i ≤ m, 1 ≤ j ≤ n

N is the set of constraints of the form xj opj 0 where opj ∈ {≥,≤,≷}, 1 ≤ j ≤ n

T is the type of optimization of the objective function.i.e, T ∈ {Maximize, Minimize}

That is P has the general form

Minimize / Maximize
n∑
j=1

cjxj subject to

n∑
j=1

aijxj(≤,≥,=)bi

xj(≥,≤,≷)0 1 ≤ i ≤ m, 1 ≤ j ≤ n

(3.1)

Remark 3.3.1.
If T is Maximize, then P is called a maximization linear program. Similarly if T is Minimize,

then P is called a minimization linear program . A constraint of the form xj ≥ 0 is called a
non-negativity constraint of P . Similarly a constraint of the form xj ≤ 0 is called a non-positivity
constraint of P . A decision variable xj of P that can take any real value is called a free variable.
All constraints in C having the form α = β are called equality constraints of P . All other
constraints are called inequality constraints of P .
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3.3.2 Feasibility, Unboundedness and Equivalence in LP

In this section, we bring about the concepts of feasible region, feasible linear programs, bounded
linear programs and equivalence of linear programs [3].

Definition 3.3.2.
Given linear program P = (V, obj, C,N, T ). Then any x ∈ Rn is said to be a feasible solution

of P if x satisfies all the constraints in C ∪ N . The set of all feasible solutions of P is called
the feasible solution set or feasible region of P and is denoted by F (P ).

F (P ) = {x | x ∈ Rn and x satisfies the constraints in C ∪N}
Definition 3.3.3.

The image of a linear program P is denoted by Image(P ) and is defined as

Image(P ) =

{
obj(x)

∣∣∣∣x ∈ F (P )

}
.

Definition 3.3.4.
A linear program P = (V, obj, C,N, T ) is said to have finite optimum if there exists some

x ∈ F (P ) such that

obj(x) ≤ obj(y),∀x ∈ F (P ) if T = Minimize

obj(x) ≥ obj(y),∀x ∈ F (P ) if T = Maximize

In such case, x is called the optimal solution of P and obj(x) is the finite optimum of P .
We denote the optimum of P by the notation OPT (P ) and is given by

OPT (P ) =

{
max (Img(P )) if T=Maximize

min (Img(P )) if T=Minimize

Definition 3.3.5.
A linear program P is said to be an infeasible linear program if the feasible solution set

F (P ) is empty. Otherwise P is called a feasible linear program.

Definition 3.3.6.
A linear program P = (V, obj, C,N, T ) is said to be a unbounded linear program if for every

α ∈ R, there exists x ∈ F (P ) such that

obj(x) < α if T = Minimize

obj(x) > α if T = Maximize

In other words, P is said to be unbounded if sup(Img(P )) = ∞ or inf(Img(P )) = −∞
according to whether T is Maximize or Minimize.

Remark 3.3.2.
The fact that a linear program has finte optimum does not imply that the corresponding

feasible region is a bounded set. This can easily be seen from the following linear program.

Minimize x1 + x2 subject to

x1 + x2 ≥ 0

x1 ≥ 0

x2 ≥ 0

(3.2)

The feasible region of this linear program is the first quadrant of R2 which is an unbounded

set. But the linear program has optimum 0 at

[
0

0

]
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Example 3.3.1.
Consider the following linear programs.

Maximize x1 + x2 subject to

x1 + 2x2 ≤ 6

2x1 + x2 ≤ 6

x1 ≥ 0

x2 ≥ 0

(3.3)

Maximize x1 + x2 subject to

x1 + 2x2 ≤ −6

2x1 + x2 ≤ −6

x1 ≥ 0

x2 ≥ 0

(3.4)

Maximize x1 + x2 subject to

x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6

x1 ≥ 0

x2 ≥ 0

(3.5)

The linear program(3.6) is feasible as x =

[
1

1

]
is a feasible solution of the program whereas

the linear program (3.4) is infeasible. It is easy to see that the linear program(3.5) is unbounded.

Remark 3.3.3.
By Definitions 3.3.4, 3.3.5 and 3.3.6, we see that a linear program has finite optimum if and

only if the linear program is neither infeasible nor unbounded. Thus it follows that any linear
program P satisfies exactly one of the following statements.

1. P is infeasible.

2. P is unbounded.

3. P has finite optimum.

Definition 3.3.7.
Given linear programs P1 = (V1, obj1, C1, N1, T1) and P2 = (V2, obj2, C2, N2, T2) where T1 =

T2. We say that P1 and P2 are equivalent if for any x ∈ F (P1) there exists some y ∈ F (P2)
such that obj1(x) = obj2(y) and vice versa. In such case, we see that Img(P1) = Img(P2).

Given linear programs P1 = (V1, obj1, C1, N1,Maximize) and P2 = (V2, obj2, C2, N2,Minimize).
We say that P1 and P2 are equivalent if for any x ∈ F (P1) there exists some y ∈ F (P2) such
that obj1(x) = −obj2(y) and vice versa.

Remark 3.3.4.
Given linear program P = (V, obj, C,N,Minimize). Then we can form another linear

program P ′ = (V,−obj, C,N,Maximize). The fact that P and P ′ are equivalent follows from
Defintion 3.3.7.
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3.3.3 Canonical Form of a linear program

In this section, we introduce the canonical form of a linear program and an algorithm to convert
a linear program in general form to canonical form [3].

Definition 3.3.8.
Given linear program P = (V, obj, C,N, T ). Then P is said to be in canonial form if it

satisfies the following conditions.

1. T=Maximize.

2. Each constraint in C is of the form
n∑
j=1

hjxj ≤ t

3. Each decision variable must be non-negative. That is for each decision variable xj ∈ V ,
there exists the constraint xj ≥ 0 in N .

Remark 3.3.5.
Given linear program P = (V, obj, C,N, T ) in general form. Using the following steps, we

can form another linear program P ′ in canonical form such that P and P ′ are equivalent.

1. If T = Minimize, then obtain the linear program P1 = (V1, obj1, C1, N1,Maximize) where

V1 = V, obj1 = −obj, C1 = C, N1 = N

If T = Maximize, then set P1 = P .

2. If P1 has free decision variables or non-positive decision variables, then obtain the linear
program P2 given by P2 = (V2, obj2, C2, N2,Maximize) where

(a) V2 consists of all decision variables of P1 except the free variables and non-positive
variables of P1 and new decision variables xj

+ and xj
− for each free decision variable

xj and x′k for each non-positive decision variable xk.

(b) obj2 is obtained by replacing each free variable xj in obj1 by the expression xj
+−xj−

and each non-positive decision variable xk by the expression −x′k.
(c) C2 is the set of all constraints obtained by replacing each free decision variable xj and

each non-positive variable xk in the constraints belonging to C1 by the expressions
xj

+ − xj− and −x′k respectively.

(d) N2 consists of all constraints of N1 except the non-positivity constraints and new
constraints xj

+ ≥ 0, xj
− ≥ 0 and x′k ≥ 0 corresponding to each free decision variable

xj and each non-positive decision variable xk respectively.

If P1 has no free variables, then set P2 = P1.

3. Obtain the linear program P ′ = (V ′, obj′, C ′, N ′,Maximize) where V ′, obj′ and N ′ are
same as V2, obj2 and N2 respectively.

The set C ′ consists of

(a) all constraints in C2 of the form α ≤ β.

(b) constraint −α ≤ −β corresponding to each constraint in C2 that is in the form α ≥ β

(c) constraints γ ≤ δ and −γ ≤ −δ corresponding to each constraint in C2 that is in the
form γ = δ.

It is easy to see that P ′ is in Canonical form.
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Algorithm toCanonicalForm(P )
(∗ The algorithm converts the linear program in general form to canonical form. ∗)
Input: The linear program P = (V, obj, C,N, T ).
Output: The linear program P ′ = (V ′, obj′, C ′, N ′,Maximize) which is in canonical form and

equivalent to P
1. C ′ := φ,N ′ = φ;
2. S1 := {xj | xj is a free variable of P};
3. S2 := {xj+, xj− | xj is a free decision variable of P};
4. S3 := {xk ′ | xk is a non-positive decision variable of P};
5. V ′ := (V \ S1) ∪ S2 ∪ S3;
6. obj1 := obj with xj replaced by xj

+ − xj− for each free decision variable xj of P ;
7. obj2 := obj1 with xk replaced by − xk ′ for each non-positive decision variable xk of P ;
8. if T = Minimize
9. then obj′ := −obj2
10. else obj′ := obj2;
11. for each constraint α ≤ β in C
12. do α1 := α with xj replaced by xj

+ − xj− for each free decision variable xj of P ;
13. α2 := α1 with xk replaced by − xk ′ for each non-positive decision variable xk of P ;
14. C ′ := C ′ ∪ {α2 ≤ β};
15. for each constraint α ≥ β in C
16. do α1 := α with xj replaced by xj

+ − xj− for each free decision variable xj of P ;
17. α2 := α1 with xk replaced by − xk ′ for each non-positive decision variable xk of P ;
18. C ′ := C ′ ∪ {−α2 ≤ −β};
19. for each constraint α = β in C
20. do α1 := α with xj replaced by xj

+ − xj− for each free decision variable xj of P ;
21. α2 := α1 with xk replaced by − xk ′ for each non-positive decision variable xk of P ;
22. C ′ := C ′ ∪ {α2 ≤ β,−α2 ≤ −β};
23. N ′ := {v ≥ 0 | v ∈ V ′};
24. P ′ := (V ′, obj′, C ′, N ′,Maximize);
25. return P ′;

Algorithm 3.1: Algorithm that returns the linear program in canonical form which is equivalent to
the input linear program in general form.

Referring to these steps, we may write the Algorithm toCanonicalForm (See Algorithm 3.1)
that converts a given linear program in P in general form to an equivalent linear program P ′

in canonical form .

Example 3.3.2.
The linear programs LP 3.6 and LP 3.4 in Example 3.3.1 are in canonical form.

Remark 3.3.6.
Given linear program P = (V, obj, C,N, T ) where

V = {x1, x2, x3, · · · , xn}

obj =
n∑
j=1

cjxj

C =

{ n∑
j=1

aijxj ≥ bi | 1 ≤ i ≤ m

}
N = {xj ≥ 0 | 1 ≤ j ≤ n}
T = Maximize
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It is easy to see that P is in canonical form. P can be represented in matrix form as

Maximize 〈c,x〉 subject to

Ax ≤ b

x ≥ 0n where

A = [aij]m×n ∈ Rm×n

x = [xj]n×1 ∈ Rn

b = [bi]m×1 ∈ Rm

c = [cj]n×1 ∈ Rn

(3.6)

The feasible region of P is given by F (P ) = {x | x ∈ Rn,Ax ≤ b,x ≥ 0n}. By Lemma
2.3.1, we see that F (P ) is a polyhedral set in the positive orthant of Rn. Since every polyhedral
set is a convex set, F (P ) is convex too. Note that F (P ) is closed since polyhedral sets are
closed by definition.

3.3.4 Standard Form of a linear program

In this section, we introduce the standard form of a linear program and an algorithm to convert
a linear program in general form to stanadrd form [3]. Before this, we intoduce the notions of
slack vector and surplus vector.

Definition 3.3.9.
Let P be the linear program

Maximize 〈c,x〉 subject to

Ax ≤ b

x ≥ 0n where

A ∈ Rm×n, b ∈ Rm, c ∈ Rn

(3.7)

Let x be any feasible solution of P . Then the vector b−Ax is called the slack vector of P
associated with x and is denoted by sx.

Definition 3.3.10.
Let P be the linear program

Minimize 〈c,x〉 subject to

Ax ≥ b

x ≥ 0n where

A ∈ Rm×n, b ∈ Rm, c ∈ Rn

(3.8)

Let x be any feasible solution of P . Then the vector Ax− b is called the surplus vector of
P associated with x and is denoted by tx.

Now we give the definition of standard form.

Definition 3.3.11.
Given linear program Problem P = (V, obj, C,N, T ). Then P is said to be in standard form

if it satisfies the following conditions.

1. T = Maximize.

2. Each constraint in C is an equality constraint. That is each constraint in C is of the form
n∑
j=1

hjxj = t.
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3. Each decision variable must be non-negative. That is for each decision variable xj ∈ V ,
there exists the constraint xj ≥ 0 in N .

Remark 3.3.7.
Given a linear program P = (V, obj, C,N, T ) in the general form. Using the following steps,

we can form another linear program P ′ = (V ′, obj′, C ′, N ′,Maximize) in standard form such
that P and P ′ are equivalent .

1. Follow the first two steps of converting P to the Canonical form as given in Remark 3.3.6.
This results in the linear program P2 = (V2, obj2, C2, N2,Maximize).

2. Obtain the linear program P ′ = (V ′, obj′, C ′, N ′,Maximize)

where

(a) V ′ consists of all decision variables of P2 and new decision variables si, tj corresponding
to each constraint in C2 having the form αi ≤ βi and γj ≥ δj respectively. Here each
si is called a slack variable and each tj is called a surplus variable.

(b) obj′ is same as obj2.

(c) C ′ consists of

(i) all equality constraints in C2.

(ii) αi + si = βi corresponding to each constraint in C2 that is in the form αi ≤ βi.

(iii) γj + tj = δj corresponding to each constraint in C2 that is in the form γj ≥ δj.

(d) N ′ consists of constraints of the form v ≥ 0 corresponding to each decision variable
v in V ′.

It is to see that P ′ is in standard form.

Referring to these steps, we may write the Algorithm toStandardForm (See Algorithm 3.2)
that converts a given linear program in P in general form to an equivalent linear program P ′

in standard form.

Remark 3.3.8.
Let P1 be the linear program

Minimize 〈c1,x〉 subject to

A1x ≥ b1

x ≥ 0n where

A1 ∈ Rm×n, b1 ∈ Rm, c1 ∈ Rn

(3.9)

and P2 be the linear program

Maximise 〈c2,x〉 subject to

A2x ≤ b2

x ≥ 0n where

A2 ∈ Rm×n, b2 ∈ Rm, c2 ∈ Rn

(3.10)

Let P1
′ be the linear program

Minimize 〈c1,x〉 subject to

A1x− tx = b1

x ≥ 0n

tx ≥ 0m

(3.11)
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and P2
′ be the linear program

Maximise 〈c2,x〉 subject to

A2x + sx = b2

x ≥ 0n

sx ≥ 0m

(3.12)

It is easy to see that P1
′ is in standard form and is equivalent to P1. Similarly P2

′ is in
standard form and is equivalent to P2.

Algorithm toStandardForm(P )
(∗ The algorithm converts the linear program in general form to standard form. ∗)
Input: The linear program P = (V, obj, C,N, T ).
Output: The linear program P ′ = (V ′, obj′, C ′, N ′,Maximize) which is in canonical form and

equivalent to P
1. C ′ := φ,N ′ = φ;
2. S1 := {xj | xj is a free decision variable of P}};
3. S2 := {xj+, xj− | xj is a free decision variable of P}};
4. S3 := {xk ′ | xk is a non-positive decision variable of P};
5. V ′ := (V \ S1) ∪ S2 ∪ S3;
6. obj1 := obj with xj replaced by xj

+ − xj− for each free decision variable xj of P ;
7. obj2 := obj1 with xk replaced by − xk ′ for each non-positive decision variable xk of P ;
8. if T = Minimize
9. then obj′ := −obj2
10. else obj′ := obj2;
11. for each constraint αi ≤ βi in C
12. do α1 := αi with xj replaced by xj

+ − xj− for each free decision variable xj of P ;
13. α2 := α1 with xk replaced by − xk ′ for each non-positive decision variable xk of P ;
14. V ′ := V ′ ∪ {si};
15. C ′ := C ′ ∪ {α2 + si = βi};
16. for each constraint αj ≥ βj in C
17. do α1 := αj with xj replaced by xj

+ − xj− for each free decision variable xj of P ;
18. α2 := α1 with xk replaced by − xk ′ for each non-positive decision variable xk of P ;
19. V ′ := V ′ ∪ {tj};
20. C ′ := C ′ ∪ {α2 − tj = βj};
21. for each constraint α = β in C
22. do α1 := α with xj replaced by xj

+ − xj− for each free decision variable xj of P ;
23. α2 := α1 with xk replaced by − xk ′ for each non-positive decision variable xk of P ;
24. C ′ := C ′ ∪ {α2 = β};
25. N ′ := {v ≥ 0 | v ∈ V ′};
26. P ′ := (V ′, obj′, C ′, N ′,Maximize);
27. return P ′;

Algorithm 3.2: Algorithm that returns the linear program in standard form which is equivalent to the
input linear program in general form.

3.3.5 Equivalence of General, Canonical and Standard Forms

From the discussions done so far, we see that corresponding to any linear program in general
form, there exist linear programs in canonical form and standard form and may be obtained by
calling Algorithms toCanonicalForm and toStandardForm respectively. Each linear program
in the canonical form or standard form is in the general form and therefore an equivalent
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linear program in the third form may obtained by calling Algorithm toCanonicalForm or
Algorithm toStandardForm accordingly. The following lemma summarises the discussions done
so far.

Lemma 3.3.1.
The general, canonical and the standard forms of linear programs are equivalent.

3.4 Summary

In this chapter, we introduced the fundamental concepts in linear programming. We have
started the chapter with the general form of a linear program which follows the discussion on
notions of feasible region, feasible linear programs, unbounded linear programs and equivalent
linear programs with illustrative examples. Then we defined the canonical and standard forms
of LP and established the equivalence of various forms with algorithms for converting from one
form to another form. In the next chapter, we shall discuss the geometry of linear programming
which provides the platform for the graphical method of solving linear programs.
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Chapter 4

Geometry of Linear Programming

4.1 Introduction

This chapter is intended to give a geometric interpretation for linear programming problems
and a graphical method to solve linear programs. In section 2.2, we introduce the notion of
basic feasible solution and establish its equivalence with vertices and extreme points. Section
2.3 is dedicated to the discussion of recession directions and extreme directions of a polyhedral
set. In section 2.4, we prove and illustrate the General representation theorem [7] for linear
programming due to Constantin Carathodory and the fundamental theorem of linear prgramming.
We complete this chapter by giving a brute force algorithm for solving linear programs with a
brief graphical illustration of the algorithm in section 2.5.

Throughout this chapter we assume that the linear program under consideration is in the
canonical form given by

Maximize 〈c,x〉 subject to

Ax ≤ b

x ≥ 0n

(4.1)

where A ∈ Rm×n, c ∈ Rn,b ∈ Rm.
The feasible region of the linear program can be expressed as {x | x ∈ Rn,Gx ≤ h} where

G =
[
g1 g2 g3 · · · gm+n

]T
=

[
A

−In

]
∈ R(m+n)×n

h =
[
h1 h2 h3 · · · hm+n

]T
=

[
b

0n

]
∈ Rm+n

4.2 Basic Feasible Solutions

In this section, we introduce the concept of basic feasible solutions of a linear program and
establish that the basic feasible solution of a linear program, vertices and extreme points of the
polyhedral set representing the feasible region of the linear program are equivalent.

Definition 4.2.1.
Given any feasible linear program P in canonical form and S ⊆ {1, 2, 3, · · · ,m + n}. Then

the set of constraints {〈gi,x〉 ≤ hi | i ∈ S} of P is said to be linearly independent if {gi | i ∈ S}
forms a linearly independent set of vectors in Rn.

Definition 4.2.2.
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Given any feasible linear program P in canonical form and x ∈ Rn. The number of linearly
independent constraints of P which are tight at x is called the rank of x with respect to P and
is denoted by rankP (x).

Remark 4.2.1.
Since the maximum number of linearly indpendent vectors in any set of vectors in Rn is n,

we see that the maximum number of linearly independent constraints of P is n. This implies
that for any linear program P in canonical form, the rank of all elements of F (P ) with respect
to P is at most n.

The following Lemma characterizes the interior points in F (P ).

Lemma 4.2.1.
Given linear Program P in the canonical form and y ∈ F (P ). y is an interior point of

F (P ) if and only if rankP (y) = 0.

Proof.
Let the constraints of P be expressed as

〈gi,x〉 ≤ hi, gi ∈ Rn, bi ∈ R, 1 ≤ i ≤ m+ n

if part:-
Let rankP (x) = 0. Clearly x > 0n. Since rankP (x) = 0, we see that none of the constraints

of P is tight at x and hence 〈gi,x〉 < hi for each i ∈ {1, 2, 3, · · · ,m + n}. This implies that
corresponding to each i ∈ {1, 2, 3, · · · ,m + n}, there exists δi > 0 such that 〈gi,x〉 = hi − δi.
This further implies that corresponding to each i in {1, 2, 3, · · · ,m+n}, there exists some vector

di =
[
εi

1 εi
2 εi

3 · · · εi
n

]T
> 0n such that 〈gi,di〉 ≤ δi and hence 〈gi,x± di〉 ≤ hi.

Let ε = min {εij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} and d = ε1n. Then we see that 〈gi,x± d〉 ≤ hi for
each i ∈ {1, 2, 3, · · · ,m+n}. We futher see that for each vector d′ in Rn such that 0n ≤ d′ ≤ d,
it must be the case that 〈gi,x± d′〉 ≤ hi for each i ∈ {1, 2, 3, · · · ,m+n}. In other words, there
exists ε > 0 such that corresponding to each vector d′ in Rn with ‖d′‖∞ ≤ ε, we must have
〈gi,x± d′〉 ≤ hi for each i ∈ {1, 2, 3, · · · ,m + n}. Thus it follows that there exists ε > 0 such
that all vectors z in Rn with ‖z− x‖∞ ≤ ε are members of F (P ). Since the norms in Rn are
equivalent (Refer to Fact in Appendix), we further see that there exists some δ > 0 such that
all vectors z in Rn with ‖z− x‖ ≤ δ are members of F (P ). This confirms that there exists
some δ > 0 such that Nδ(x) ⊆ F (P ). Hence we conclude that x is an interior point of F (P ).

only if part:-
Let y be an interior point of F (P ). Therefore there exists δ > 0 such that Nδ(y) ⊆ F (P ).

This ensures that coresponding to each d ∈ Rn, there exists ε > 0 such that y ± εd ∈ F (P ).
In other words, corresponding to each d ∈ Rn, there exists ε > 0 such that 〈gi,y ± εd〉 =
〈gi,y〉 ± ε 〈gi,d〉 ≤ hi for each i ∈ {1, 2, 3, · · · ,m + n}. Since ε > 0 and gi 6= 0n, we further
infer that 〈gi,x〉 < hi for each i in {1, 2, 3, · · · ,m+ n}. Hence we see that rankP (y) = 0

Hence the Lemma.

Corollary 4.2.1.
Given linear Program P in the canonical form and y ∈ Rn. rankP (y) = 0 if and only if for

each d ∈ Rn, there exists δ > 0 such that x± δd ∈ F (P ).

Definition 4.2.3.
Given linear Program P in the canonical form and y ∈ Rn. Then y is said to be a basic

feasible solution(bfs) [7] of P if

(i) rankP (y) = n.

(ii) y ∈ F (P ).
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Theorem 4.2.1.
Given a feasible linear Program P in canonical form and y ∈ F (P ). Then the following

statements are equivalent.

(a) y is a vertex of F (P ).

(b) y is an extreme point of F (P ).

(c) y is a basic feasible solution of P .

Proof.
Let the constraints of P be expressed as

〈gi,x〉 ≤ hi, gi ∈ Rn, hi ∈ R, 1 ≤ i ≤ m+ n

(a)⇒ (b) by Lemma 2.3.3.
(b) ⇒ (c)
Let y be an extreme point of F (P ). Assume that y is not a basic feasible solution of P .

Therefore rankP (y) < n since every extreme point of F (P ) is a member of F (P ). Now we shall
consider the following two cases.

Case 1: rankP (y) = 0
Let d be any non-zero vector in Rn. Therefore by Corollary 4.2.1, there exists δ > 0 such

that x± δd ∈ F (P ). This gives a representation for y as a convex combination of two distinct
points y + δd and y − δd in F (P ) given by y = 1

2
(y + δd) + 1

2
(y − δd) which leads to the

contradiction that y is not an extreme point of F (P ).
Case 2: 1 ≤ rankP (y) < n

Let r = rankP (y). Without loss of generality, we may assume that the first t ≥ r constraints
of P are are tight at y and the first r among these costraints are linearly independent. That is

〈gj,y〉 = hj, 1 ≤ j ≤ t and 〈gj,y〉 < hj, t+ 1 ≤ j ≤ m+ n

Claim. There exists a non-zero vector d ∈ Rn and δ > 0 such that y ± δd ∈ F (P ).

Since r < n, the homogeneous system of linear equations
[
g1 g2 g3 · · · gt

]T
z = Or has

infinitely many solutions. Let d be any non zero solution of this homogeneous system . That
is 〈gj,d〉 = 0 for each j in {1, 2, 3, · · · , t}.

Let j be any index in {1, 2, 3, · · · ,m+ n}.
If j ≤ t, we see that for each ε ≥ 0

〈gj,y ± εd〉 = 〈gj,y〉 ± ε〈gj,d〉 = hj ± 0 = hj

If t + 1 ≤ j ≤ m + n, we see that 〈gj,y〉 < hj. This means that there exists some positive
real number αj such that 〈gj,y〉 = hj − αj. Thus it follows that there exists some δj > 0 such
that 〈gj, δjd〉 ≤ αj and hence 〈gj,y ± δjd〉 ≤ hj.

Now by letting δ = min{δj | t + 1 ≤ j ≤ m + n}, we see that 〈gj,y ± δd〉 ≤ hj for each
j ∈ {1, 2, 3, · · · ,m + n}. Thus it follows that there exists a non-zero vector d ∈ Rn and δ > 0
such that y + δd ∈ F (P ) and y − δd ∈ F (P ).

Now y = 1
2
(y + δd) + 1

2
(y − δd) which is a strict convex combination of two points y + δd

and y − δd in F (P ) which leads to the contradiction that y is not an extreme point of F (P ).
Hence in either case we get results contradicting to the fact that y is not an extreme point

of F (P ). Hence we claim that y is a basic feasible solution of P .
(c) ⇒ (a):-
Let y be a basic feasible solution of P . Therefore rankP (y) = n and hence n linearly

independent constraints of P are tight at y. Without loss of generality, we may assume that

31



Chapter 4. Geometry of Linear Programming

the first t ≥ n constraints of P are are tight at y and the first n among these costraints are
linearly independent. That is

〈gj,y〉 = hj, 1 ≤ j ≤ t and 〈gj,y〉 < hj, t+ 1 ≤ j ≤ m+ n

Clearly the rank of the matrix
[
g1 g2 g3 · · · ,gn

]
z = 0n is n and hence the system of

linear equations
[
g1 g2 g3 · · · ,gn

]
z = h has a unique solution which is y. This implies

that y is the unique point in Rn such that 〈gi,y〉 = hi for each i ∈ {1, 2, 3, · · · , n}. This further
implies that for each vector v in F (P ) \ {y}, there exists k ∈ N such that 1 ≤ k ≤ n and
〈gk,v〉 < hk.

Let c ∈ Rn defined by c =
n∑
j=1

gj. Now 〈c,y〉 =
n∑
j=1

〈gj,y〉 =
n∑
j=1

hj. For each vector v in

F (P ) \ {y}, we have the relation 〈c,v〉 =
n∑
j=1

〈gj,v〉 <
n∑
j=1

hj.

Hence we see that there exists vector c ∈ Rn such that 〈c,y〉 > 〈c,v〉 for each vector v in
F (P ) \ {y}. Therefore by Lemma 2.3.2, y is a vertex of F (P ).

Hence the Theorem.

Example 4.2.1.
Consider the linear program

Maximize x1 + x2 subject to

2x1 + x2 ≤ 6

x1 + 2x2 ≤ 6

x1 + x2 ≤ 4

x1 ≥ 0

x2 ≥ 0

(4.2)

This linear program is in the canonical form and its feasible region is shown in Figure 4.1.

We see that The basic feasible solutions of P are

[
0

3

]
,

[
3

0

]
,

[
2

2

]
and

[
0

0

]
. It is easy to see that

these vectors are the vertices and the extreme points of F (P ).

Remark 4.2.2.
Referring to Theorem 4.2.1, we may write the Algorithm getExtremePoints (See Algorithm

4.1) that returns the extreme points of a linear program in canonical form .

Remark 4.2.3.
In theorem 4.2.1, we proved the equivalence of the notions of vertices and extreme points for

polyhedral sets in the first orthant of Rn. This equivalence can be generalised to any polyhedral
set in Rn. However, this equivalence does not hold for an arbitrary convex set in Rn as shown
in Remark 2.3.3.

Now we are going to prove an important result that states that any constraint which is tight
at any two feasible solutions of a linear program in canonical form is tight all strict convex
combinations of the two feasible solutions and vice versa.

Lemma 4.2.2.
Let P be any feasible linear program in canonical form and two vectors u and v in F (P ).

Let C be any constraint of P . Then the following statements are equivalent.
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x2
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
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

3

0



2

2
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x2 = 0

x1 = 0

x1 + x2 = 4

x1 + 2x2 = 6

2x1 + x2 = 6

Figure 4.1: The shaded region is the feasible region of LP 4.2.

Algorithm getExtremePoints(F (P ))
(∗ The algorithm returns the extreme points of a linear program P in canonical form. ∗)
Input: F (P ) = {x | x ∈ Rn and 〈gi,x〉 ≤ hi, i ∈ {1, 2, 3 · · · ,m+ n}}
Output: The extreme points of P
1. EP := φ;
2. for each permutation I of {1, 2, 3 · · · ,m+ n} of size n

3. B =
[
gi

]
i∈I

;

4. if rank(B) := n
5. then Solve {〈gi,y〉 = hi | i ∈ I} using Gauss Elimination method.
6. EP := EP ∪ {y} ;
7. return EP ;

Algorithm 4.1: Algorithm that returns the extreme points of a linear program in canonical form.

(1) C is tight at both u and v.

(2) C is tight at every strict convex combination of u and v.

(3) C is tight at some strict convex combination of u and v.
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Proof.
Let the constraints of P be expressed as

〈gi,x〉 ≤ hi gi ∈ Rn, hi ∈ R, 1 ≤ i ≤ m+ n

Let C be the constraint 〈ak,x〉 ≤ bk where k ∈ {1, 2, 3, · · · ,m+ n}.
(1) ⇒ (2):-
Let C be tight at u and v. That is 〈gk,u〉 = 〈gk,v〉 = hk.
Let z be any strict convex combination of u and v. Therefore there exists some λ ∈ (0, 1)

such that z = λu + (1− λ)v.
Now

〈gk, z〉 = 〈gk, λu + (1− λ)v〉 = λ 〈gk,u〉+ (1− λ) 〈gk,v〉 = hk

Thus we see that C is tight at z. Since z can be any strict convex combination of u and v,
it follows that C is tight at all strict convex combinations of u and v.

(2) ⇒ (3) is trivial.
(3) ⇒ (1):-
Let y be some strict convex combination of u and v. Therefore there exists some α ∈ (0, 1)

such that y = αu + (1− α)v. Let C be tight at y. Assume that C is not tight at at least one
of u and v. Now

〈gk,y〉 = 〈gk, αu + (1− α)v〉 = α 〈gk,u〉+ (1− α) 〈gk,v〉 < αhk + (1− α)hk

which implies that 〈gk,y〉 < hk and leads to the contradiction that C is not tight at y. Hence
we see that the constraint C is tight at both u and v.

Hence the Lemma

Now we are going to extend Lemma 4.2.2 to affine combinations. However, the extension is
possible only in one direction as illustrated below.

Lemma 4.2.3.
Let P be any feasible linear program in canonical form and two vectors u and v in F (P ).

Then any constraints of P that is tight at both u and v is tight at any feasible affine combinations
of u and v.

Proof.
Let k be any index in {1, 2, 3, · · · ,m + n} such that the constraint 〈gk,x〉 ≤ bk is tight at

both u and v. That is 〈gk,u〉 = 〈gk,v〉 = hk.
Let z be any feasible affine combination of u and v. Therefore there exists real number β

such that z = βu + (1− β)v. Now

〈gk, z〉 = 〈gk, βu + (1− β)v〉 = β 〈gk,u〉+ (1− β) 〈gk,v〉 = hk

Thus we see that the constraint 〈gk,x〉 ≤ hk is tight at z. Since z can be chosen as any
feasible affine combination of u and v and the choice of k is arbitrary in the range [1,m+n], any
constraint of P that is tight at both u and v will also be tight at any feasible affine combination
of u and v. Hence the Lemma.

It can be shown that the converse of Lemma 4.2.3 is not true in general. We illustrate this
by means of an example given in the following remark.
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Remark 4.2.4.
Consider the linear program P given by

Maximize x1 + x2 subject to

x1 + 2x2 ≤ 6

2x1 + x2 ≤ 6

x1 ≥ 0

x2 ≥ 0

(4.3)

The feasible region of P shown in Figure 4.2. The constraint 2x1 + x2 ≤ 6 is tight at the

feasible points

[
2.3

1.6

]
(point u in Figure 4.2) and

[
5.4

0.6

]
(point v in Figure 4.2). It is easy to see

that this constraint is tight at the point

[
2.5

1

]
(point z in Figure 4.2) which is a strict convex

combination of u and v and at the point

[
2

2

]
(point y in Figure 4.2) which is a feasible affine

combination of u and v. It can also be seen that the constraint x1 + 2x2 ≤ 6 is also tight at y
and is not tight at any of u,v or z.

The following corollary easily follows from Lemma 4.2.2, Lemma 4.2.3 and Remark 4.2.4.

Corollary 4.2.2.
Let P be any feasible linear program in canonical form and two vectors u and v in F (P ).

Then the rank of any feasible affine combination of u and v with respect to P is at least the
rank of any strict convex combination of u and v with respect to P .

Now we discuss a lemma which essentially states that it is impossible to move infinitely
along both the forward and backward directions the feasible region of a linear program while
retaining feasiblity in both the directions.

Lemma 4.2.4.
Let P be any feasible linear program in canonical form and z be any strict convex combination

of two vectors u and v in F (P ). Let S1 and S2 be two subsets of real numbers defined by
S1 = {α | α ≥ 0 and z + α(u− v) ∈ F (P )} and S2 = {α | α ≥ 0 and z + α(v − u) ∈ F (P )}.
Let α1 = sup(S1) and α2 = sup(S2). Then

(1) α1 > 0 and α2 > 0.

(2) min{α1, α2} <∞.

(3) If α1 <∞, then

(a) α1 = max ({α | α ≥ 0 and z + α(u− v) ∈ F (P )}).

(b) z + α1(u− v) ∈ F (P ).

(c) rankP (z + α1(u− v)) > rankP (z).

(4) If α2 <∞, then

(a) α2 = max ({α | α ≥ 0 and z + α(v − u) ∈ F (P )}).

(b) z + α2(v − u) ∈ F (P ).

(c) rankP (z + α2(v − u)) > rankP (z).
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Figure 4.2: The shaded region is the feasible region of LP 4.3. It is easy to see that the constraint
2x1 + x2 ≤ 6 is tight at both u and v. This constraint is also tight at z which is a strict convex
combination of u and v and at y which is a feasible affine combination of u and v. It is also seen that
the constraint x1 + 2x2 ≤ 6 is also tight at y and is not tight at any of u,v or z.

Proof.
(1):- Since z is a strict convex combination of u and v, there exists some λ ∈ (0, 1) such

that z = λu + (1−λ)v. Hence u = z + (1−λ)(u−v) and v = z +λ(v−u). This implies that
there exists α1, α2 > 0 such that z + α1(u − v) ∈ F (P ) and z + α2(v − u) ∈ F (P ). Thus we
can conclude that α1 > 0 and α2 > 0.

(2):- It is easy to see that as α increases, one among z+α(u−v) and z+α(v−u) violates the
non-negativity constraints of P . This implies that there exists some α0 <∞ such that at least
one of z+α(u−v) and z+α(v−u) will not belong to F (P ) for each α > α0. Therefore we see
that at least one of S1 and S2 is bounded. Hence we conclude that at least one of S1 and S2 has a
finite supremum (Refer to Fact C.1.7 in Appendix C). Hence min{α1, α2} <∞ (See Figure 4.3).

(3):- If α1 < ∞, then we see that S1 is bounded. It is not hard to see that S1 is closed.
Thus we see that S1 is compact by Heine Borel Theorem (Refer to Fact C.2.1 in Appendix C).
Hence S1 has a finite maximum (Refer to Fact C.2.2 in Appendix C). Thus it follows that S1

has a finite maximum α1 such that z + α1(u− v) ∈ F (P ).
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Let T1 = {z + α(u− v) | α ∈ S1} and y1 = z + α1(u− v). We have

z + α(u− v) = λu + (1− λ)v + α(u− v) = (λ+ α)u + (1− λ− α)v

Thus we see that z + α(u− v) is an affine combination of u and v for all real values of α.
Thus it follows that y1 is an affine combination of u and v. Now the application of Lemma 4.2.2
and Lemma 4.2.3 implies that all constraints of P which are tight at z are tight at all vectors
in S1 which includes y1 also . Moreover the fact that α1 < ∞ implies that for all values of
α > α1, it must be the case that z +α(u−v) 6∈ F (P ). This further implies that in addition to
the constraints which are tight at z, there is at least one more constraint of P becomes tight
at y1.

Now we are going to prove that the constraint of P which is exclusively tight at y1 is not
linearly dependent on the other constraints which are tight at all points in S1 as follows. Let
r = rankP (z) . Without loss of generality, we may take the first t constraints of P are tight
at z for some t satisfying t ≥ r. Therefore these constraints are tight at all vectors in T1 by
Lemma 4.2.3. Let k be an index such that t + 1 ≤ k ≤ m + n and the constraint 〈gk,x〉 ≤ hk
is not tight at any of the points of T1 except y1. Assume that this constraint is linearly
dependent on the first t constraints which are tight at y1. Therefore there exists real numbers

β1, β2, β3, · · · , βt not all of which are zero such that gk =
t∑
i=1

βigi.

Now we see that for each vector x in T1, it must be the case that

〈gk,x〉 =

〈
t∑
i=1

βigi,x

〉
=

t∑
i=1

βi 〈gi,x〉 =
t∑
i=1

βihi

Since z ∈ T1 and the constraint 〈gk,x〉 ≤ hk is tight at z1, we conclude that
t∑
i=1

βihi = hk.

Thus we see that 〈gk,x〉 = hk for each vector x ∈ T1 which contradicts the fact that the
constraint 〈gk,x〉 ≤ hk is tight at none of the points of T1 other than y1. Thus we conclude
that the constraint of P which is exclusively tight at y1 is not linearly dependent on the other
constraints which are tight at all points in T1.

Thus we see that the number of tight linearly independent constraints at y1 is more than
that at z. Hence rankP (y1) > rankP (z).

(4) can proved in the same way as (3) was proved.
Hence the Lemma.

Corollary 4.2.3.
Let P be a linear program in canonical form such that F (P ) is bounded. Let z be any

strict convex combination of two given vectors u and v in F (P ). Let S1, S2 ⊆ R defined by
S1 = {α | α ≥ 0 and z + α(u− v) ∈ F (P )} and S2 = {α | α ≥ 0 and z + α(v − u) ∈ F (P )}.
Let α1 = sup(S1) and α2 = sup(S2). Then

1. 0 < α1 <∞ and 0 < α2 <∞.

2. z + α1(u− v) ∈ F (P ) and z + α2(v − u) ∈ F (P ).

3. rankP (z + α1(u− v)) > rankP (z) and rankP (z + α2(v − v)) > rankP (z)

Corollary 4.2.4.
Let P be a linear program in canonical form such that F (P ) is unbounded. Let z be any

strict convex combination of two given vectors u and v in F (P ). Let S1, S2 ⊆ R defined by
S1 = {α | α ≥ 0 and z + α(u− v) ∈ F (P )} and S2 = {α | α ≥ 0 and z + α(v − u) ∈ F (P )}.
Let α1 = sup(S1) and α2 = sup(S2). Then

1. at most one of α1 and α2 is infinity.
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2. if α1 =∞, then u− v is a recession direction of F (P ).

3. if α2 =∞, then v − u is a recession direction of F (P ).

Example 4.2.2.

1. In Figure 4.2, we see that the feasible region F (P ) is bounded. The vectors y and y′

marked in the figure are affine combinations of u and v and the vectors z is a strict convex
combination of u and v. We see that rankP (z) = 1 and rankP (y) = rankP (y′) = 2.

2. In Figure 4.3, we see that the feasible region F (P ) is unbounded. Here we see that α1 =∞
and u− v is a recession direction of F (P ).

x1

x2

0

0



v

z

u

Figure 4.3: Ilustration of observation(2) in Example 4.2.2.

Theorem 4.2.2.
For any feasible linear Program P in canonical form, F (P ) has finite non-zero number of

extreme points [7].

Proof.
It follows from Theorem 4.2.1 that the set of extreme points of F (P ) and the set of basic

feasible solutions of P are the same and hence the number of extreme points of F (P ) is same
as the number of basic feasible solutions of P which is at most

(
m+n
n

)
. Thus we see that F (P )

has finite number of extreme points.

38



Chapter 4. Geometry of Linear Programming

The no trivial part is to prove that F (P ) has at least one extreme point. Let z ∈ F (P ).
Clearly rankP (z) ≤ n. If rankP (z) = n, then z will be an extreme point of F (P ) and the proof
is finished. Therefore we shall consider the case where rankP (z) < n. Therefore z is not a basic
feasible solution of F (P ) and hence by Theorem 4.2.1, it is not an extreme point of F (P ).
Hence it is clear that there exist two points u and v such that z is a strict convex combination
of u and v. That is z = λu + (1− λ)v for some λ ∈ (0, 1).

Let S = {α | α ≥ 0, z + α (u− v) ∈ F (P ) and z + α (v − u) ∈ F (P )}. Let α1 = max(S).
By Lemma 4.2.4, we see that 0 < α1 <∞ and rank of at least one of the two feasible solutions
y + α1(u − v) and y − α1(u − v) must be strictly greater than rankP (y). Without loss of
generality we may assume that rankP (y + α1(u− v)) > rankP (y). Now applying the strategy
mentioned above on y + α1(u − v), we will obtain another feasible solution whose rank with
respect to P is strictly greater than rankP (y + α1(u− v)). Continuing like this, we will get a
point in F (P ) whose rank with respect to P is n which will be a basic feasible solution of P
and hence an extreme point of F (P ) by Theorem 4.2.1. Thus we see that F (P ) must have at
least one extreme point.

Now we are going to prove that a bounded feasible region can be represented as the convex
hull of the set of extreme points of the feasible region using the ideas developed so far in this
section.

Theorem 4.2.3.
Let P a linear program such that F (P ) is bounded. Then F (P ) is the convex hull of the set

of extreme points of F (P ).

Proof.
Let x1,x2,x3, · · · ,xk be the extreme points of F (P ). By Lemma 4.2.2, 1 ≤ k < ∞. We

need to show that F (P ) = Conv ({x1,x2,x3, · · · ,xk}). We prove the Theorem by showing that
F (P ) and Conv ({x1,x2,x3, · · · ,xk}) are subsets of each other.

Claim. Conv ({x1,x2,x3, · · · ,xk}) ⊆ F (P ):-

Let x be an arbitrary element of Conv ({x1,x2,x3, · · · ,xk}). Therefore x can be expressed

as x =
k∑
i=1

λixi such that λi ∈ [0, 1] for each i ∈ {1, 2, 3, · · · , k} and
k∑
i=1

λi = 1.

Now

Gx = G

(
k∑
i=1

λixi

)
=

k∑
i=1

λiGxi ≤
k∑
i=1

λih

which implies that Gx ≤ h since
k∑
i=1

λi = 1. Hence Conv ({x1,x2,x3, · · · ,xk}) ⊆ F (P ).

Claim. F (P ) ⊆ Conv ({x1,x2,x3, · · · ,xk}):-

In this case, we prove that whenever z ∈ F (P ), z ∈ Conv ({x1,x2,x3, · · · ,xk}). We prove
this result by applying reverse induction on rankP (z).

Basis :
If rankP (z) = n, then z must be an extreme point of F (P ). Hence z ∈ {x1,x2,x3, · · · ,xk}

and the result follows immediately.
Inductive Hypothesis:-
Assume that each z ∈ F (P ) satisfying n ≥ rankP (x) ≥ r is contained in Conv ({x1,x2,x3, · · · ,xk})

for some positive integer r.
Induction:-
Let rankP (z) = r − 1. Clearly y is not an extreme point of F (P ). Hence there exist

vectors u,v in F (P ) such that z = λu + (1 − λ)v for some λ ∈ (0, 1). Let α1 = sup{α |
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α ≥ 0 and z + α(u − v) ∈ F (P )} and α2 = sup{α | α ≥ 0 and z + α(v − u) ∈ F (P )}. By
Lemma 4.2.4 and Corollary 4.2.3, we see that 0 < α1 < ∞, 0 < α2 < ∞ and ranks of both
the feasible solutions z + α1(u − v), z + α2(v − u) with respect to P are strictly greater than
rankP (z). That is there exist two feasible solutions y1 = z +α1(u−v) and y2 = z +α2(v−u)
such that rankP (y1) ≥ r and rankP (y2) ≥ r. By inductive Hypthesis y1 and y2 are contained
in Conv ({x1,x2,x3, · · · ,xk}).

It is easy to see that z = α2

α1+α2
y1 + α1

α1+α2
y2 which is a convex combination of two vectors

in Conv ({x1,x2,x3, · · · ,xk}). Hence z is also contained in Conv ({x1,x2,x3, · · · ,xk}).
Thus by induction we see that each z ∈ F (P ) is contained in Conv ({x1,x2,x3, · · · ,xk}).

Since any element of F (P ) may be chosen as z, we further conclude that all vectors in F (P )
are contained in Conv ({x1,x2,x3, · · · ,xk}). Hence F (P ) ⊆ Conv ({x1,x2,x3, · · · ,xk}).

Thus it follows that F (P ) = Conv ({x1,x2,x3, · · · ,xk}) by the two claims. Hence the
Theorem.

Theorem 4.2.4.
Given a linear program P in canonical form such that F (P ) is a polytope. Then P has an

optimal extreme point solution.

Proof.
Since the objective function of P is a linear transformation from Rn to R, we see that the

objective function 〈c,x〉 is continuous (Refer to Fact B.2.1 in Appendix B). Furthermore F (P )
is a polytope and hence F (P ) is closed and bounded. Thus we see that F (P ) is a compact
subset of Rn by Heine Borel Theorem . Hence Image(P ) is a compact subset of R and must
have a finite maximum (Refer to Fact C.2.4 and Fact C.2.2 in Appendix C). Thus it follows
that P has an optimal solution.

Let x1,x2,x3, · · · ,xk be the extreme points of F (P ). By Theorem 4.2.2, we see that 1 ≤
k < ∞. Since F (P ) is a polytope, we see that F (P ) = Conv ({x1,x2,x3, · · · ,xk}). Let t be
the index satisfying the conditions 1 ≤ t ≤ k and 〈c,xt〉 = max ({〈c,xi〉 | 1 ≤ i ≤ k}).

Let x∗ be the optimal solution of P . Therefore there exist non-negative real numbers

λ1, λ2, λ3, · · · , λk such that x∗ =
k∑
i=1

λixi and
k∑
i=1

λi = 1. Now we have

〈c,x∗〉 =

〈
c,

k∑
i=1

λixi

〉
=

k∑
i=1

λi〈c,xi〉 ≤ 〈c,xt〉
k∑
i=1

λi

Hence xt must be optimal. Hence the Theorem.

The following corollary is an immediate consequence of Theorem 4.2.4.

Corollary 4.2.5.
Let P be a feasible linear program in canonical form. If P is unbounded, then F (P ) is

unbounded.

To summarise what discussed so far, we see that for any linear program having a bounded
feasible region, there will be an extreme point optimal solution. In the forthcoming sections,
we try to extend this result to linear programs with unbounded feasible region.

4.3 Recession Directions and Extreme Directions of Feasible Region

In this section we introduce the notion of extreme directions and its characterisation using
extreme points [7].
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Lemma 4.3.1.
Given a linear Program P in canonical form and d ∈ Rn. d is a recession direction of F (P )

if and only if Gd ≤ Om+n,d 6= 0n.

Proof.
if part:-
Let d be a recession direction of F (P ). This implies that for every x in F (P ), the half-line

{x + αd | α ≥ 0} ⊆ F (P ) which requires G(x + αd) = Gx + αGd ≤ h for all α ≥ 0. This is
posible only if Gd ≤ Om+n. Note that d 6= On by the definition of recession direction.

only- if part:-
Let Gd ≤ Om+n and d 6= 0n. Therefore we see that for every x in F (P ), it is the case

that G(x + αd) = Gx + αGd ≤ h for each α ≥ 0. This further implies that the half-line
{x + αd | α ≥ 0} ⊆ C. Therefore d is a recession direction of F (P ).

Hence the Lemma.

Corollary 4.3.1.
Given linear Program P in canonical form. The recession cone of the feasible region F (P )

is given by RC(F (P )) = {d | d ∈ Rn and Gd ≤ 0m+n}.

Remark 4.3.1.

Since G =

[
A

−In

]
, the constraint Gd ≤ 0m+n implies that d ≥ 0n.

It is easy to see that if d is a recession direction, so will be αd for any α > 0. To have
a unique representative of all such collinear recession directions, we bring about the notion of
Normalised Recession Direction.

Definition 4.3.1.
Given linear Program P in canonical form such that F (P ) is unbounded. A recession

direction of F (P ) is said to be normalised recession direction if 〈1n,d〉 = 1. The set of all
normalised recession directions of F (P ) is called the normalised recession direction set of F (P )
is denoted by RN(F (P )). That is

RN(F (P )) = {d | d ∈ RC(F (P )) and 〈1n,d〉 = 1}

Remark 4.3.2.
For any linear program P in canonical form having an unbounded feasible region, it is easy

to see that RN(F (P )) ⊆ RC(F (P )). Moreover every recession direction of F (P ) lies in the first
orthant of Rn by Remark 4.3.1. This implies that the l1 norm of any recession direction in
RN(F (P )) is unity.

Lemma 4.3.2.
Given linear Program P in canonical form such that F (P ) is unbounded. RN(F (P )) is a

convex compact subset of RC(F (P )).

Proof.
RN(F (P )) is a subset of RC(F (P )) by definition.
We see that

RN(F (P )) = {d | d ∈ Rn,Gd ≤ 0m+n and 〈1n,d〉 = 1}
= {d | d ∈ Rn,Gd ≤ 0m+n} ∩ {x | x ∈ Rn and 〈1n,x〉 = 1}

Therefore RN(F (P )) is a polyhedral set and is thus closed.
By Remark 4.3.2, each vector d in RN(F (P )) has unit l1 norm. Thefore there exists some

finite positive real number t such that the l2 norm of each vector d in RN(F (P )) is at most t
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by equivalence of norms in Rn. This further implies that RN(F (P )) ⊂ Bt+1(0n). Thus we see
that RN(F (P )) is bounded. Since RN(F (P )) is closed and bounded, it is compact by Heine
Borel Theorem .

It is easy to see that the polyhedral set {d | d ∈ Rn,Gd ≤ 0m+n} is convex and the set
{x | x ∈ Rn and 〈1n,x〉 = 1} is convex. Since the intersection of two convex sets are convex, it
follows that RNF (P ) is also convex by Lemma 2.2.1.

Lemma 4.3.3.
Given linear Program P in canonical form such that F (P ) is unbounded. Then RC(F (P )) =

Cone (RN(F (P ))).

Proof.
We prove the Lemma by proving that each of Cone (RN(F (P ))) and RC(F (P )) is contained

in the other.
By definition, RN(F (P )) is a subset of RC(F (P )) and therefore the vectors in RN(F (P ))

are recession directions of F (P ). Therefore any conic combination of the vectors in RN(F (P ))
is also a recession direction of F (P ) by Lemma 2.2.2 and Lemma 2.2.9 and hence a member
of RC(F (P )). This further implies that each element of Cone (RN(F (P ))) is also a member of
RC(F (P )) and hence Cone (RN(F (P ))) ⊆ RC(F (P )).

Let d be any recession direction in RC(F (P )). By Lemma 2.2.8, there exists recession
direction d′ = 1

〈1n,d〉d of F (P ). Clearly d′ is a member of RN(F (P )) since 〈1n,d′〉 = 1. This

further impies that d = 〈1n,d〉d′ is a member of Cone (RN(F (P ))). Since the choice of d is
arbitrary within RC(F (P )), we conclude that every recession direction in RC(F (P )) is also a
member of Cone (RN(F (P ))) and hence RC(F (P )) ⊆ Cone (RN(F (P ))).

Hence the Lemma.

Now we introduce the notions of extreme directions and normalised extreme directions.

Definition 4.3.2.
Given linear Program P in canonical form such that F (P ) is unbounded. Then any recession

direction d of F (P ) is said to be an extreme direction of C if and only if there do not exist two
normalised recession directions d1 and d2 of F (P ) such that d = λ1d1+λ2d2 for some λ1, λ2 > 0.
That is an extreme direction of F (P ) cannot be expressed as a strict conic combination of two
normalised recession directions of F (P ).

Definition 4.3.3.
Given linear Program P in canonical form such that F (P ) is unbounded. An extreme

direction of F (P ) is said to be normalised extreme direction if 〈1n,d〉 = 1.

The following lemma characterises the normalised extreme directions of an unbounded
feasible region as the extreme points of the normalised recession direction set.

Lemma 4.3.4.
Let P be a linear program in canonical form such that F (P ) is unbounded. Let d ∈

RN(F (P )). Then d is a normalised extreme direction of F (P ) if and only if d is an extreme
point of RN(F (P )).

Proof.
if Part:
Let d be an extreme point of RN(F (P )). Assume that d is not a normalised extreme

direction of F (P ). Therefore there exist normalised recession directions d1 and d2 of F (P )
such that d = γ1d1 + γ2d2 where γ1, γ2 > 0.

Now

1 = 〈1n,d〉 = 〈1n, γ1d1 + γ2d2〉 = γ1〈1n,d1〉+ γ2〈1n,d2〉 = γ1 + γ2

(∵ d1 and d2 are normalised extreme directions and hence 〈1n,d1〉 = 〈1n,d2〉 = 1)

42



Chapter 4. Geometry of Linear Programming

Thus we see that d = γ1d1
′ + (1− γ1)d2

′ where λ1 ∈ (0, 1). That is d can be expressed as
a strict convex combination of two normalised recession directions d1,d2

′ ∈ RN(F (P )). This
contradicts the fact that d is an extreme point of RN(F (P )). Thus it follows that d is a
normalised extreme direction of F (P ).

only if part:-
Let d be a non-extreme point of RN(F (P )). This implies that there exist normalised

recession directions d1 and d2 in RN(F (P )) such that d = λd1 + (1− λ)d2 for some λ ∈ (0, 1).
Thus we see that d is a strict conic combination of two normalised recession directions d1 and
d2 of F (P ). Hence d is not a normalised extreme direction of F (P ).

Hence the Lemma.

Example 4.3.1.
Let P be the linear program

Maximize x1 + x2 subject to

x1 − 2x2 ≤ 2

− x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0

(4.4)

The feasible region F (P ) is shown Figure 4.4(a). The Recession cone of F (P ) is given by

RC(F (P )) = {d | d ∈ Rn,Gd ≤ 0m+n and 〈1n,d〉 = 1} where G =


1 −2

−1 1

−1 0

0 −1

.

The recession cone and the normalised recession direction set of F (P ) is shown in Figure 4.4(b).
By Lemma 4.3.4, we see that the vectors marked d1 and d2 in Figure 4.4(b) are normalised
extreme directions of F (P ).

Theorem 4.3.1.
Given linear Program P in canonical form. Then F (P ) has finite number of normalised

extreme directions.

Proof.
If F (P ) is a polytope, there are no extreme directions by corollary 2.2.2. Hence we see that

if F (P ) is bounded, there are no normalised extreme directions. In case F (P ) is unbounded, by
Lemma 4.3.4 we see that there are as many normalised extreme directions as the extreme points
of RN(F (P )). Since RN(F (P )) = {d | d ∈ Rn,Gd ≤ 0m+n, 〈1n,d〉 ≤ 1 and 〈−1n,d〉 ≤ −1},
the number of extreme points of RN(F (P )) is at most

(
m+n+2

n

)
by Theorem4.2.2. Thus it

follows that the number of normalised extreme directions of F (P ) is at most
(
m+n+2

n

)
.

Hence the result.

The following Theorem characterises the recession cone of an unbounded feasible region as
the conic hull of the set of normalised extreme directions of the feasible region. This has a
major role in proving the Caratheodory characterisation theorem.

Theorem 4.3.2.
For any linear program in canonical form with an unbounded feasible region, the recession

cone of the feasible region is the conic hull of the set of normalised extreme directions of the
feasible region.
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x1

x2

−x1 + x2 = 3

x1 − 2x2 = 2

(a) The feasible region F (P ) (yellow shaded region) in Example 4.3.1.

x1

x2

−x1 + x2 = 0

x1 − 2x2 = 0

x1 + x2 = 1

(b) The recession cone of F (P ) in Example 4.3.1 is the yellow shaded region. The normalised recession direction
set of F (P ) is the thick red line segment and its extreme points are the normalised extreme directions of F (P ).

Figure 4.4: Illustration of Lemma 4.3.4. The feasible region, recession cone, normalised recession
direction set and the normalised extreme directions of the linear program in Example 4.3.1.

Proof.
Let P be any linear program in canonical form as given by LP 4.1. By Lemma 4.3.2, we see

that RN(F (P )) is a polytope and is the feasible region of the linear program P ′ given by

Maximize 〈c,x〉 subject to

Ax ≤ 0m

〈1n,x〉 ≤ 1

〈−1n,x〉 ≤ −1

x ≥ 0n

Therefore we have
RC(F (P )) = Cone (RN(F (P ))) (By Lemma 4.3.4)

= Cone (F (P ′))
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= Cone (Conv ({x | x is an extreme point of F (P ′)})) (By Theorem 4.2.3)

= Cone ({x | x is an extreme point of RN(F (P ))}) (By Lemma 2.2.5)

= Cone ({x | x is a normalised extreme direction of F (P )}) (By Lemma 4.3.4)

Hence the result.

4.4 Fundamental Theorem of LP

In this section we present the fundamental theorem of linear programming which forms the
foundation for the graphical method of solving linear programs. In view of proving the
fundamental theorem of LP, we prove the Caratheodory characterisation theorem . We start
with a lemma that handles most of the technicalities of Caratheodory characterisation theorem.

Lemma 4.4.1.
Let P be a linear program in canonical form such that F (P ) is unbounded. Let EP be the

set of extreme points of F (P ) and γ ∈ R such that γ > max ({〈1n,x〉 | x ∈ EP}). Let Pγ be a
linear program such that F (Pγ) = F (P ) ∩ {x | x ∈ Rn and 〈1n,x〉 ≤ γ} and EPγ be the set of
extreme points of F (Pγ). Then

(1) F (Pγ) is a polytope such that F (Pγ) ⊆ F (P ) and EP ⊆ EPγ .

(2) For each w ∈ EPγ \ EP , there exists some y ∈ EP such that w = y + d for some
d ∈ RC(F (P )). That is, each extreme point of Pγ which is not extreme point of P is the
sum of some extreme point of P and some recession direction of P .

Proof.
(1):- The feasible region of Pγ is given by F (Pγ) = F (P ) ∩ {x | x ∈ Rn and 〈1n,x〉 < γ}.

Therefore F (Pγ) ⊆ F (P ). It is obvious that the l1 norm of each x in F (Pγ) is at most γ which
ensures that F (Pγ) is bounded. Hence F (Pγ) is a polytope.

Since γ > max ({〈1n,x〉 | x ∈ EP}) and F (Pγ) = F (P ) ∩ {x | x ∈ Rn and 〈1n,x〉 ≤ γ}, we
see that each extreme point of F (P ) is an extreme point of F (Pγ). Hence EP ⊆ EPγ .

(3):- Let w be any element of EPγ \ EP . Since w is an extreme point of Pγ and not an
extreme point of P , we further see that the constraint 〈1n,x〉 ≤ γ must be tight at w. Thus
we see that rankP (w) = n− 1.

Let α1 = sup{α | α ≥ 0 and w+α(u−v) ∈ F (P )}, α2 = sup{α | α ≥ 0 and w+α(v−u) ∈
F (P )}. By Lemma 4.2.4, we have α1, α2 > 0. Now we are going to prove that exactly one of
α1and α2 is infinity. Assume that both α1 and α2 are finite. Hence we see that rank of each
of the feasible points y = w + α1(u − v) and z = w + α2(v − u) is n by Lemma 4.2.4. This
implies that both y and z are extreme points of F (P ). Since every extreme point of F (P ) is
also an extreme point of F (Pγ), we see that and y and z are extreme points of F (Pγ) and hence
members of F (Pγ).

It is easy to see that w = α2

α1+α2
y + α1

α1+α2
z which is a strict convex combination of the two

elements y and z in F (Pγ) This imples that w is not an extreme point of F (Pγ) and cannot be
an element of EPγ , which is a contradiction. Thus we conclude that both α1 and α2 cannot be
finite. Moreover Lemma 4.2.4 implies that at least one of α1 and α2 is finite. Thus it follows
that exactly one of α1 and α2 is finite.

Without loss of generality, we may take α1 <∞. Therefore the point y is an extreme point
of F (P ). Since α2 = ∞, we infer that v − u is a recession direction of F (P ) and must be
present in Rc(F (P ). Since w−y = α1(v−u), we also see that w−y ∈ Rc(F (P ). Thus we see
that w − y is a recession direction of F (P ). In other words, w = y + d for some y ∈ EP and
d ∈ RC(F (P )). Since w can be any element of EPγ \ EP , we conclude that corresponding to
each w ∈ EPγ \EP , there exists some y ∈ EP such that w = y +d for some d ∈ RC(F (P ))
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Example 4.4.1.
Let P be the linear program

Maximize x1 + x2 subject to

x1 − 2x2 ≤ 2

− 4x1 − x2 ≤ −8

− x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0

(4.5)

The feasible region F (P ) is shown Figure 4.5(a).
Choosing γ = 9 and adding the new constraint x1 + x2 ≤ 9 we get the linear program Pγ

given below.

Maximize x1 + x2 subject to

x1 − 2x2 ≤ 2

− 4x1 − x2 ≤ −8

− x1 + x2 ≤ 3

x1 + x2 ≤ 9

x1 ≥ 0

x2 ≥ 0

(4.6)

The feasible region of F (Pγ) is a polytope and is shown in Figure 4.5(b) with thick red edges.
The extreme points of F (Pγ) are y1,y2,w1 and w2. We see that both w1−y1 and w2−y2 are
recession directions of F (P ).

Now we define an important term called minkowski sum of two sets as follows.

Definition 4.4.1.
Let S, T ⊆ Rn. Then the minkowski sum of S and T is denoted by S ⊕ T and is defined as

S ⊕ T = {x + y | x ∈ S,y ∈ T}.

The following lemma establishes the crux of Caratheodory characterisation theorem.

Lemma 4.4.2.
Let P be a linear program in canonical form such that F (P ) is unbounded. Then F (P ) is

the minkowski sum of the set of extreme points of F (P ) and the recession cone of F (P ).

Proof.
Let x1,x2,x3, · · · ,xk be the extreme points of F (P ). We are going to prove that F (P ) =

Conv ({x1,x2,x3, · · · ,xk}) ⊕ RC(F (P )). We prove the lemma by proving that LHS and RHS
are subsets of each other.

Claim. Conv ({x1,x2,x3, · · · ,xk})⊕RC(F (P )) ⊆ F (P ).

Proof.
Let x be any element of Conv ({x1,x2,x3, · · · ,xk}) ⊕ RC(F (P )). Therefore x can be

expressed as x =
k∑
i=1

βixi + d for some recession direction d of F (P ) and non-negative real

numbers β1, β2, β3, · · · , βk such that
k∑
i=1

βi = 1. Since each of x1,x2,x3, · · · ,xk are extreme

points of F (P ), we see that Gxi ≤ h for each i ∈ {1, 2, 3, · · · , k}. Since d is a recession
direction of F (P ), we must have Gd ≤ 0m+n by Lemma 4.3.1.
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x1

x2

y1

y2
−x1 + x2 = 3

x1 − 2x2 = 2

4x1 + x2 = 8

(a) The feasible region F (P ) (yellow shaded region) and the extreme points y1 and y2 in Example 4.4.1.

x1

x2

y1

y2
−x1 + x2 = 3

x1 − 2x2 = 2

4x1 + x2 = 8

x1 + x2 = 9

w1

w2

(b) The feasible region F (Pγ) in Example 4.4.1. F (Pγ) is a subset of F (P ) and is the bounded set shown with
thick red edges. The extreme points of of F (Pγ) are y1,y2,w1 and w2. It is easy to see that w1 − y1 and
w2 − y2 are recession directions of F (P ).

Figure 4.5: Illustration of Lemma 4.4.1. The feasible regions F (P ) and F (Pγ) and the respective
extreme points in Example 4.4.1.
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Now

Gx = G

(
k∑
i=1

βixi + d

)
=

k∑
i=1

βiGxi + Gd ≤ h

Thus we see that x is an element of F (P ). Since the choice of x within the minkowski sum
Conv ({x1,x2,x3, · · · ,xk})⊕RC(F (P )) is arbitrary, the claim follows.

Claim. Conv ({x1,x2,x3, · · · ,xk})⊕RC(F (P )) ⊆ F (P ).

Proof.
Let y be an element of F (P ). Let γ ∈ R such that

γ > max ({〈1n,y〉, 〈1n,x1〉, 〈1n,x2〉, 〈1n,x3〉, · · · , 〈1n,xk〉})

Consider the linear program Pγ such that F (Pγ) = F (P ) ∩ {x | x ∈ Rn and 〈1n,x〉 ≤ γ}.
By Lemma 4.4.1 each extreme point of F (P ) is an extreme point of F (Pγ) . Therefore we
may take the set of extreme points of F (Pγ) as {x1,x2,x3, · · · ,xk} ∪ {w1,w2,w3, · · · ,wl}. By
Lemma 4.2.2, we see that 1 ≤ k + l <∞.

By Lemma 4.4.1, we see that F (Pγ) is bounded. Hence the feasible region of Pγ can be
expressed as F (Pγ) = Conv ({x1,x2,x3, · · · ,xk,w1,w2,w3, · · · ,wl}) by Theorem 4.2.3. It is
easy to see that y ∈ F (Pγ) and hence y ∈ Conv ({x1,x2,x3, · · · ,xk,w1,w2,w3, · · · ,wl}).

Since y ∈ Conv ({x1,x2,x3, · · · ,xk,w1,w2,w3, · · · ,wl}), we see that there exist non-negative

real numbers λ1, λ2, λ3, · · · , λk and γ1, γ2, γ3, · · · , γl such that y =
k∑
i=1

λixi+
l∑

i=1

γiwi and
k∑
i=1

λi+

l∑
i=1

γi = 1. Furthermore by Lemma 4.4.1, wi = yi + di for some yi ∈ {x1,x2,x3, · · · ,xk} and

di ∈ RC(F (P )) for each i ∈ {1, 2, 3, · · · , l}. Hence we have
Now

y =
k∑
i=1

λixi +
l∑

i=1

γi(yi + di) =

(
k∑
i=1

λixi +
l∑

i=1

γiyi

)
+

(
l∑

i=1

γidi

)

It follows that
k∑
i=1

λixi +
l∑

i=1

γiyi is a convex combination of the extreme points of F (P )

and hence a member of Conv ({x1,x2,x3, · · · ,xk}). It can also be seen that
l∑

i=1

γidi is a conic

combination of some recession directions of F (P ) and hence a recession direction of F (P )

by Lemma 2.2.9. Therefore
l∑

i=1

γidi ∈ RC(F (P )). Thus it follows that y is an element of

Conv ({x1,x2,x3, · · · ,xk}) ⊕ RC(F (P )). Since the choice of y within F (P ) is arbitrary, we
conclude that F (P ) ⊆ Conv ({x1,x2,x3, · · · ,xk})⊕RC(F (P )).

Thus we conclude that the feasible region F (P ) = Conv ({x1,x2,x3, · · · ,xk})⊕ RC(F (P ))
by the two claims.

Now we are going to prove an important lemma which specifies the necessary and sufficient
conditions for a linear program to be unbounded.

Lemma 4.4.3.
Let P be a feasible linear program in canonical form. Then P is unbounded if and only if

there exists some d ∈ RC(F (P )) such that 〈c,d〉 > 0.
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Proof.
Let x1,x2,x3, · · · ,xk be the extreme points of F (P ).
if part:-
Let there exists some d ∈ RC(F (P )) such that 〈c,d〉 > 0. Assume that P has a finite

optimum and the corresponding optimal solution is x. By Lemma 4.4.2, we see that there

exist non-negative real numbers λ1, λ2, λ3, · · · , λk and d′ ∈ RC(F (P )) such that
k∑
i=1

λi = 1 and

x =
k∑
i=1

λixi + d′.

Let x′ = x + d. Since d′ is a recession direction of F (P ), we see that the conic combination
d′+d is also a recession direction of F (P ). This implies that x′ ∈ Conv ({x1,x2,x3, · · · ,xk})⊕
RC(F (P )). Hence by Lemma 4.4.2, we see that x′ ∈ F (P ).

Now

〈c,x′〉 = 〈c,x + d〉 = 〈c,x〉+ 〈c,d〉 > 〈c,x〉 (∵ 〈c,d〉 > 0)

This contradicts the optimality of x. Hence we see that P is unbounded.

only if part:-
Let P be unbounded. By Corollary 4.2.5, we see that F (P ) is unbounded. Hence by

Lemma 2.2.1, we see that F (P ) has recession directions and hence RC(F (P )) is non-empty.
Assume that each d ∈ RC(F (P )) satisfies the condition 〈c,d〉 ≤ 0. Let t be the index satisfying
the conditions 1 ≤ t ≤ k and 〈c,xt〉 = max ({〈c,xi〉 | 1 ≤ i ≤ k}).

Let y be any feasible solution of P . Hence by lemma 4.4.2, there exist non-negative real

numbers α1, α2, α3, · · · , αk and d
′′ ∈ RC(F (P )) such that y =

k∑
i=1

αixi + d
′′
.

Now

〈c,y〉 =

〈
c,

k∑
i=1

αixi + d
′′

〉
=

k∑
i=1

αi〈c,xi〉+ 〈c,d′′〉 ≤ 〈c,xt〉
k∑
i=1

αi + 〈c,d′′〉

which implies that 〈c,y〉 ≤ 〈c,xt〉 since
k∑
i=1

αi = 1 and 〈c,d′′〉 ≤ 0. Since y can be any

element of F (P ), we see that xt is an optimal solution of P . This contradicts the fact that
P is unbounded. Hence we conclude that P must have some recesion direction d such that
〈c,d〉 > 0. Hence the Lemma.

The following corollary easily follows from Lemma 4.3.1 and Lemma 4.4.3.

Corollary 4.4.1.
Let P be a feasible linear program in canonical form. Then P has a finite optimum if and

only if there exists no d ∈ Rn such that Gd ≤ 0m+n and 〈c,d〉 > 0.

Theorem 4.4.1. (Caratheodory Characterisation Theorem)
Let P be a linear program in canonical form. Then F (P ) is the minkowski sum of the convex

hull of the set of extreme points of the feasible region and the conic hull of the set of normalised
extreme directions of the feasible region.

Proof.
If RC(F (P )) is empty, then F (P ) is bounded and the result follows from Theorem 4.2.3.

Otherwise F (P ) is unbounded. Let x1,x2,x3, · · · ,xk be the extreme points of F (P ). By
Lemma 4.4.2, we see that F (P ) = Conv ({x1,x2,x3, · · · ,xk})⊕RC(F (P )). By Theorem 4.3.2,
RC(F (P )) = Cone ({x | x is a normalised extreme direction of F (P )}). Hence it follows that
F (P ) = Conv ({x1,x2,x3, · · · ,xk})⊕Cone ({x | x is a normalised extreme direction of F (P )}).
Hence the proof.
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Theorem 4.4.2. (Fundamental Theorem of Linear Programming)
Given feasible linear Program P in canonical form. If P has an optimal solution, then P

will also have an extreme point optimal solution.

Proof.
If F (P ) is bounded, the theorem follows immediately by Theorem 4.2.4. Therefore we

consider the case where F (P ) is ubounded. Let x∗ be the optimal solution of P . Therefore
〈c,x∗〉 ≥ 〈c,x〉 for each x ∈ F (P ) \ {x∗}.

Let x1,x2,x3, · · · ,xk be the extreme points of F (P ) and d1,d2,d3, · · · ,dl be the extreme
directions of F (P ). By Lemma 4.3.1, we see that Gdj ≤ 0m+n for each j ∈ {1, 2, 3, · · · , l}. Since
P has finite optimum, we see that 〈c,dj〉 ≤ 0 or each j ∈ {1, 2, 3, · · · , l} by Corollary 4.4.1.

By Theorem 4.4.1, we see that F (P ) = Conv ({x1,x2,x3, · · · ,xk})⊕Cone ({d1,d2,d3, · · · ,dl}).
Hence there exist non-negative real numbers α1, α2, α3, · · · , αk and β1, β2, β3, · · · , βl such that
k∑
j=1

αj = 1 and x∗ =
k∑
j=1

αjxj +
l∑

j=1

βjdj.

Let t be the index such that 〈c,xt〉 = max ({〈c,xi〉 | 1 ≤ i ≤ k}).
Now we have

〈c,x∗〉 =

〈
c,

k∑
j=1

αjxj +
l∑

j=1

βjdj

〉
=

k∑
j=1

αj〈c,xj〉+
l∑

j=1

βj〈c,dj〉 ≤ 〈c,xt〉
k∑
j=1

αj

(∵ 〈c,dj〉 ≤ 0 for each j ∈ {1, 2, 3, · · · , l}.)

which implies that 〈c,x∗〉 = 〈c,xt〉 as
k∑
j=1

αj = 1 and x∗ is the optimal solution of P . Thus

we see that P has an optimal extreme point solution. Hence the Theorem.

The following lemma shows that if P is any feasible linear program in canonical form and
having a finite optimum, then any other feasible linear program with same objective function
and constraint matrix of P will also have finite optimum.

Lemma 4.4.4.
Let P be the feasible linear program

Maximize 〈c,x〉 subject to

Ax ≤ b

x ≥ 0n

and P ′ be the linear program

Maximize 〈c,x〉 subject to

Ax ≤ b′

x ≥ 0n

for some vector b′ ∈ Rm. If P has a finite optimum and P ′ is feasible, then P ′ has an
optimal basic feasible solution.

Proof.
Assume that P has a finite optimum and P ′ is feasible. Since P is feasible and has finite

optimum, by Corollary 4.4.1, we see that there exists no d ∈ Rn such that Gd ≤ 0m+n and
〈c,d〉 > 0. This further implies that P ′ also has a finite optimum. Hence by Theorem 4.4.2,
we see that P ′ has an optimal extreme point solution. By Theorem 4.2.1, extreme points are
equivalent to basic feasible solutions and hence P ′ has an optimal basic feasible solution.
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Lemma 4.4.5.
Given feasible linear Program P in canonical form. If P has more than one optimal solution

, then P has infinite number of optimal solutions.

Proof. Let x and y be two optimal solutions of P . Clearly 〈c,x〉 = 〈c,y〉. Let z = λx+(1−λ)y
where λ ∈ [0, 1]. By convexity of F (P ), we see that z is also a member of F (P ).

Now
〈c, z〉 = 〈c, λx + (1− λ)y〉 = λ〈c,x〉+ (1− λ)〈c, z〉 = 〈c,x〉

Hence z is also an optimal solution of P . Since x can be chosen as any convex combination
of x and y, we conclude that any convex combination of x and y is an optimal solution of P .
Hence P has infinite number of optimal solutions.

4.5 Brute-force algorithm and Graphical method for solving LP

By Theorem 4.4.2, we have seen that the optimal solution of a linear program occurs at some
extreme point of the feasible region. Based on this idea, it is possible to write a brute force
algorithm bruteforceLPSolve to solve a given linear program as follows. The correctness of the
algorithm is ensured by the discussions done so far in this chapter.

Algorithm bruteforceLPSolve(F (P ), obj)
(∗ The algorithm returns the optimal solution of a linear program P in the canonical form. ∗)
Input: The feasible region of P and its objective function obj.
Output: The optimal solution of P together with its finite optimum value of the objective function.
1. S :=getExtremePoints(F (P ));
2. OPT = −∞;
3. for each extreme point x ∈ S
4. do if obj(x) ≥ OPT
5. then OPT = obj(x);
6. x∗ = x;
7. return (x∗, OPT );

Algorithm 4.2: A brute force algorithm to solve a linear program in canonical form.

Since the extreme points are the vertices of the feasible region, we can solve a given linear
program in canonical form using the following steps.

1. Plot the feasible region of the linear program and identify its vertices.

2. Evaluate the objective function at each of the identified vertices. The vertex which yields
the highest value for the objective function will be the optimal solution of the linear
program.

This graphical method is illustated in the following example.

Example 4.5.1.
Consider the linear program

Maximize x1 + x2 subject to

2x1 + x2 ≤ 6

x1 + 2x2 ≤ 6

2x1 − x2 ≤ −1

x1 ≥ 0, x2 ≥ 0

(4.7)

This linear program is in the canonical form and its feasible region is shown in Figure 4.6.
The vertices of the feasible region and the values of the objective function at each of these
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vertices are given in Table 4.1. From the Table, it is seen that the linear program has the

optimal solution
[
2 2

]T
.

x1

x2

0

0



0

3

 2

2



2.5

1


1.25

0

 x2 = 0

x1 = 0

2x1 − x2 = −1

x1 + 2x2 = 6

2x1 + x2 = 6

Figure 4.6: The shaded region is the feasible region of LP 4.7.

Sl.No. Extreme Point

Value of the objective
function

1
[
0 0

]T 0

2
[
0 3

]T 3

3
[
2 2

]T 4

4
[
2.5 1

]T 3.5

5
[
1.25 0

]T 1.25

Table 4.1: The vertices of the fesible region of LP 4.7 together with the values of the objective function
at each of the vertices.
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4.6 Summary

In this chapter, we introduced the notion of rank of a feasible solution and characterised the
interior points of the feasible regions as feasible solutions with rank 0. We brought about the
notion of basic feasible solutions and established the equivalence of the vertices, extreme points
and basic feasible solutions and proved that all linear programs have finite non-zero number of
extreme points. We defined the notions of normalised recession directions, extreme directions
and normalised extreme directions of an unbounded feasible region. We had charcterised the
recession cone of an unbounded feasible region as the cone of the set of normalised recession
directions. We proved that any linear program with an unbounded feasible region has finite
number of normalised extreme directions. We proved the Carathedory characterisation theorem
and the fundamental theorem of linear programming and thereby established the foundation for
the graphical method of solving linear programs. Finally we presented a brute force algorithm
to solve linear programs and illustrated the graphical method for solving linear programs with
an example. In the next chapter, we shall discuss the primal dual theory in detail.
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Primal Dual Theory

5.1 Introduction

In this chapter, we introduce the notion of dual of a linear program and explore the relationship
beween a linear program and its dual. These results together form the primal dual theory
which serves as the basis of the primal-dual schema for designing approximation algorithms for
NP-Hard combinatorial optimization problems [2]. The Weak Duality Theorem, Strong Duality
Theorem and the Complementary Slackness Conditions are the building blocks of the theory.
In the forthcoming sections we shall discuss each of these in detail.

5.2 Dual of a Linear Program

In this section we introduce the concept of dual of a linear program.

Definition 5.2.1.
Given the maximization linear program P in canonical form called the primal program given

by

Maximize 〈c,x〉 subject to

Ax ≤ b

x ≥ 0n where

A ∈ Rm×n,x ∈ Rn,b ∈ Rm, c ∈ Rn

(5.1)

Then the minimization linear program D given by

Minimize 〈b,y〉 subject to

ATy ≥ c

y ≥ 0m where

y ∈ Rm

(5.2)

is called the dual program or simply the dual of P .

Remark 5.2.1.
Let the primal program (P ) be the maximization program given by

Maximize
n∑
j=1

cjxj subject to

n∑
j=1

aijxj ≤ bi, 1 ≤ i ≤ m

xj ≥ 0, 1 ≤ j ≤ n

(5.3)
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Then the dual program D of P is given by

Minimize
m∑
i=1

biyi subject to

m∑
i=1

aijyi ≥ cj, 1 ≤ j ≤ n

yi ≥ 0, 1 ≤ i ≤ m

(5.4)

Remark 5.2.2.
Let the primal program (P ) be the minimization program given by

Minimize 〈c,x〉 subject to

Ax ≥ b

x ≥ 0n where

A ∈ Rm×n, x ∈ Rn, b ∈ Rm, c ∈ Rn

Then the corresponding the dual program (D) of P is a maximization program

Maximize 〈b,y〉 subject to

ATy ≤ c

y ≥ 0m

Remark 5.2.3.
It must be noted that there are as many decision variables in the dual program as the

number of constraints in the primal program and as many constraints in the dual program as
the number of decision variables in the primal Program.

Lemma 5.2.1.
Given primal program P in (5.1) and the dual program D in (5.2). Then the dual of D is

P itself.

Proof.
By Remark 5.2.2, the dual of D is the maximization program given by

Maximize 〈c, z〉 subject to

Az ≤ b

z ≥ 0n

(5.5)

Clearly LP (5.5) is same as the primal program P itself. Hence the proof.

Remark 5.2.4.
In the rest of this section, we assume that P refers to the primal program

Maximize 〈c,x〉 subject to

Ax ≤ b

x ≥ 0n where

A ∈ Rm×n,x ∈ Rn,b ∈ Rm, c ∈ Rn

(5.6)
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and D refers to the dual program

Minimize 〈b,y〉 subject to

ATy ≥ c

y ≥ 0m

(5.7)

5.3 Primal Dual Relationships

In this section, we discuss three results stating the relationship between the primal and the
dual programs.

5.3.1 Weak Duality Theorem

The weak duality theorem states that any value in the image of the primal program is a lower
bound for the image of the dual program. We formally state this Theorem as follows.

Theorem 5.3.1. (Weak Duality Theorem)
Given the primal program P and the corresponding dual program D. Then for any x ∈ F (P )

and y ∈ F (D), it must be the case that 〈c,x〉 ≤ 〈b,y〉.

Proof.
Let x be any feasible solution of P and y be any feasible solution of D. Therefore we see

that Ax ≤ b,x ≥ 0n and ATy ≥ c,y ≥ 0m.
Now

cTx ≤ (ATy
T

)x = yT (Ax) ≤ yTb = bTy

Hence it follows that 〈c,x〉 ≤ b,y〉. Hence the Proof.

The following corollary is an immediate consequence of weak duality theorem.

Corollary 5.3.1.
Given the primal program P and the corresponding dual program D. If x and y are feasible

solutions of P and D respectively such that 〈c,x〉 = 〈b,y〉, then x is the optimal solution of P
and y is the optimal solution of D.

Now we are going to define a term called duality gap which is a measure of how far are a
given primal feasible solution and a dual feasible solution from the optimum.

Definition 5.3.1.
Given the primal program P and the corresponding dual program D. Then for any x ∈ F (P )

and y ∈ F (D), the difference 〈b,y〉 − 〈c,x〉 is called the duality gap between P and D with
respect to x and y and is denoted by γxy.

Given the primal program P and the corresponding dual program D. Let x be any feasible
solution of the primal program and y be any feasible solution of the dual program. Then by
Theorem 5.3.1, γxy ≥ 0. The case where γxy = 0 is of great importance and is the main
discussion in the remaining sections.

5.3.2 Complementary Slackness Conditions

Complementary slackness is a relationship between the primal and dual programs which informally
suggests that variables in one program are complementary to constraints in the other. Accordingly
there are two sets of complementary slackness conditions namely, primal complementary slackness
conditions and dual complementary slackness conditions . In this subsection, we discuss each
slackness conditions in detail.
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Theorem 5.3.2. (Complementary Slackness Conditions)
Given the primal program P and the corresponding dual program D. Let x be a primal

feasible solution and y be a dual feasible solution. Then γxy = 0 if and only if both
〈
ATy − c,x

〉
=

0 and 〈b−Ax,y〉 = 0.

Proof.
if part:-
Let

〈
ATy − c,x

〉
= 0 and 〈b−Ax,y〉 = 0. Hence we see that〈

ATy − c,x
〉

+ 〈b−Ax,y〉 =
〈
ATy,x

〉
− 〈c,x〉+ 〈b,y〉 − 〈Ax,y〉 = 〈b,y〉 − 〈c,x〉 = 0

(∵
〈
ATy,x

〉
= 〈y,Ax〉 = 〈Ax,y〉)

which imples that 〈b,y〉 − 〈c,x〉 = 0. That is γxy = 0.
only-if part:-
Let γxy = 0. Since x is a primal feasible solution and y is a dual feasible solution, we see

that Ax ≤ b, ATy ≥ c, x ≥ 0n and y ≥ 0m. This implies that〈
ATy − c,x

〉
≥ 0 and 〈b−Ax,y〉 ≥ 0

Now〈
ATy − c,x

〉
+ 〈b−Ax,y〉 =

〈
ATy,x

〉
− 〈c,x〉+ 〈b,y〉 − 〈Ax,y〉 = 0 (∵ 〈c,x〉 = 〈b,y〉)

Thus
〈
ATy − c,x

〉
= 0 and 〈b−Ax,y〉 = 0.

Remark 5.3.1.
The conditions

〈
ATy − c,x

〉
= 0 and 〈b−Ax,y〉 = 0 in Theorem 5.3.2 are called primal

complementary slackness conditions and dual complementary slackness conditions respectively.

Remark 5.3.2.
Let the primal program P be LP 5.3. Then the corresponding dual program D is given

by LP 5.4. Let x =
[
x1 x2 x3 · · · xn

]T
and y =

[
y1 y2 y3 · · · ym

]T
be the feasible

solutions of P and D respectively such that γxy = 0.

The condition
〈
ATy − c,x

〉
= 0 is equivalent to

(
m∑
i=1

aijyi − cj
)
xj = 0 for each j ∈

{1, 2, 3, · · · , n}. That is
m∑
i=1

aijyi = cj or xj = 0 for eah j ∈ {1, 2, 3, · · · , n} which form the

primal complementary slackness conditions.

Similarly the condition 〈b−Ax,y〉 = 0 is equivalent to

(
n∑
j=1

aijxj − bi

)
yi = 0 for each

i ∈ {1, 2, 3, · · · ,m}. That is
n∑
j=1

aijxj = bi or yi = 0 for eah i ∈ {1, 2, 3, · · · ,m} which form the

dual complementary slackness conditions..

Remark 5.3.3.
Given the primal program P and the dual program D. Let x be a primal feasible solution

and y be a dual feasible solution such that γxy = 0. Let sx ∈ Rm defined by sx = b − Ax
and ty ∈ Rn defined by ty = ATy − c. By Definition 3.3.9 and Definition 3.3.10, we see that
sx is the primal slack vector associated with x and ty is the dual surplus vector associated
with y. Then the primal complementary slackness conditions can be represented as 〈sx,y〉 = 0
and the dual complementary slackness conditions can be represented as 〈ty,x〉 = 0. That is
the primal slack vector sx and the dual feasible solution y are orthogonal to each other in
Rm and the dual surplus vector ty and the primal feasible solution x are orthogonal to each
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other in Rn. Since sx, ty,x and y are non-negative vectors, we infer that corresponding to
each i ∈ {1, 2, 3, · · · ,m}, at least one among the ith components of sx and y must be 0 and
corresponding to each j ∈ {1, 2, 3, · · · , n}, at least one among the jth components of ty and x
must be 0.

5.3.3 Strong Duality Theorem

The strong duality theorem is one of the significant milestones in the development of the
primal dual theory which essentially states that the finite optima of both the primal and the
dual programs are exactly the same [8] [9] [7].

In the following subsections, we discuss the preliminary results for proving the strong duality
theorem. Throughout these subsections P1 refers to the following linear program

Maximize 〈d, z〉 subject to

Gz = h

z ≥ 0n where

(5.8)

G =
[
g1 g2 g3 · · · gn

]
∈ Rm×n and rank(G) = m, d =

[
d1 d2 d3 · · · dn

]T
∈ Rn

and h =
[
h1 h2 h3 · · · hm

]T
∈ Rm

Remark 5.3.4. Corresponding to any linear program, an equivalent linear program of the
type(5.14) can be obtained by converting the given linear program to standard form and then
eliminating the redundant constraints if any.

5.3.3.1 Basis Matrix

Definition 5.3.2.
Given linear program P1. Then any m × m matrix B formed out of any m linearly

independent column vectors of G in such a way that the column vectors in B appear in he
same relative order as they are in G is called a basis matrix of P1. .

Remark 5.3.5. Given linear program P1. Since the columns of each basis matrix of P1 are
linearly independent, we see that each basis matrix of P1 is invertible.

Definition 5.3.3.
Given linear program P1 and a feasible solution z of P1. Let B be a basis matrix of P1. Let

N be the m × (n −m) matrix formed out of the column vectors in G which are not in B in
such a way that the column vectors of N appear in the same relative order as they are in G.
Let IB be the m-tuple whose ith entry is the index of the ith column in B within the matrix
G. Let IN be the (n−m)-tuple whose ith entry is the index of the ith column in N within the

matrix G. Let zB =
[
zi

]
i∈IB

and zN =
[
zj

]
j∈IN

. Then the vectors zB and zN are called basis

vector and non-basis vector defined by the basis matrix B. The components of zB and zN are
respectively called the basic components and the non-basic components of z.

Remark 5.3.6.
Let z be a feasible solution of P1. In various lemmas which we prove in this section we

follow the convention that B refers to a basis matrix of P1 and the sets IB and IN, matrices B
and N, vectors zB and zN are defined as in the Definition 5.3.3 where the vectors dB and dN
are defined as dB = [di]i∈IB and dN = [dj]j∈IN .

Let z be a any feasible solution of P1. Now we are going to find an expression for basic
components of a feasible solution of P1 in terms of the non-basic components.
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Since z is a feasible solution of P1, we have Gz = BzB + NzN = h which implies that

zB = B−1(h−NzN) (5.9)

We can also find an expression for the value of the objective function of P1 at z as follows.

〈d, z〉 =
n∑
j=1

djzj =
∑
j∈IB

djzj +
∑
j∈IN

djzj = 〈dB, zB〉+
∑
j∈IN

djxj

= 〈dB,B
−1 (h−NzN)〉+

∑
j∈IN

djzj = 〈dB,B
−1h〉 − 〈dB,B

−1NzN〉+
∑
j∈IN

djzj

= 〈dB,B
−1h〉 −

〈
dB,

∑
j∈IN

B−1gjzj

〉
+
∑
j∈IN

djzj

= 〈dB,B
−1h〉 −

∑
j∈IN

〈
dB,B

−1gj
〉
zj +

∑
j∈IN

djzj

Thus

〈d, z〉 = 〈dB,B
−1h〉+

∑
j∈IN

(
dj −

〈
dB,B

−1gj
〉)
zj (5.10)

Now we prove a lemma that characterizes the basic feasible solutions of P1 in terms of the
corresponding basis matrices.

Lemma 5.3.1.
Given linear program P1 and some vector z ∈ Rn. Then z is a basic feasible solution of P1

if and only if there exists a basis matrix B of P1 such that zB = B−1h ≥ 0m and zN = 0n−m.

Proof.
if part :-
Let there exists a basis matrix B of P1 such that zB = B−1h ≥ 0m and zN = 0n−m. Hence

we have BzB + NzN = h which means that Gz = h. Since zB ≥ 0m and zN = 0n−m, we see
that z ≥ 0n. Hence we see that z is a feasible solution of P1.

Since Gz = h and rank(G) = m, we see that the m constraints of P1 specified by G are
linearly independent and are tight at z. Since zN = 0n−m, we also see that n−m non-negativity
constraints of P1 are also tight z. Hence it follows that n linearly independent constraints of
P1 are tight at z. Hence we conclude that z is a basic feasible solution of P1.

only if part:-
Let z be a basic feasible solution of P1. Therefore rankP1(z) = n which means that n linearly

independent constraints of P1 must be tight at z. Since Gz = h and rank(G) = m, we see that
the m constraints defined by G are linearly independent and are tight at z. Hence at least n−m
non-negativity constraints must be tight at z in order that n linearly independent constraints
are tight at z. Hence it follows that z consists of at least n−m zero components. Let B be an
m×m matrix formed out of m column vectors of G and N be the m×(n−m) matrix formed out
of the the n−m columns of G in such a way that zN = 0n−m and Gz = BzB+NzN = BzB = h.
We are going to show that B is a basis matrix of P1.

Without loss of generality, we may take the first t ≥ n − m components of z are zero.
Since z is a basic feasible solution of P1, we see that z is a solution of the system of equations

G′y = h′ where G′ =
[
GT e1 e2 e3 · · · et

]T
such that rank(G′) = n and h′ =

[
h 0t

]T
.

Since rank(G) = n, we see that z is the only solution of this system. Consider the system of
equations Bx = h. Clearly zB is a solution of the system Bx = h. If this system has another
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solution x′, then

[
x′

0n−m

]
will be a solution of the system G′y = h′. This leads us to the

contradiction that the system G′y = h′ has more than one solution which in turn contradicts
the fact that rank(G′) = n. Hence we see that the system of equations Bx = h has a unique
solution and hence rank(B) = m. Hence we conclude that B is a basis matrix of P1.

Hence the Lemma.

Corollary 5.3.2.
Given linear program P1 and a basic feasible solution of z of P1. Let B be a basis matrix of

P1 such that zB = B−1h ≥ 0m and zN = 0n−m. Then 〈d, z〉 = 〈dB,B
−1h〉.

Proof.
Since zN = 0n−m, we see that each zj = 0 for each j ∈ IN. Substituting this in Equation 5.10,

we get 〈d, z〉 = 〈dB,B
−1h〉.

The following lemma derives a sufficient condition for a given basic feasible solution of P1

to be optimal.

Lemma 5.3.2.
Given linear Program P1 and a basic feasible solution z of P1. If dj − 〈dB,B

−1gj〉 ≤ 0 for
each non-basic component zj of z, then z is optimal.

Proof.
Let dj − 〈dB,B

−1gj〉 ≤ 0 for each non-basic variable zj of z. Let y be any basic feasible
solution of P1. Let r = y − z. Since Gz = Gy = h, we see that Gr = 0m. That is
BrB + NrN = BrB +

∑
j∈IN

gjrj = 0m which implies that

rB = −B−1
∑
j∈IN

gjrj

Now
〈d, r〉 = 〈dB, rB〉+ 〈dN, rN〉 = 〈dB,−B−1

∑
j∈IN

gjrj〉+
∑
j∈IN

djrj =
∑
j∈IN

(
dj − 〈dB,B

−1gj

)
rj

Corresponding to each j ∈ IN, we see that zj = 0. Since y is a feasible solution of P1,
we see that y ≥ 0n. These two facts shows that corresponding to each j ∈ IN, we must have
rj = yj − zj = yj ≥ 0. This together with the fact that dj − 〈dB,B

−1gj〉 ≤ 0 for each j ∈ IN
implies that 〈d, r〉 =

∑
j∈IN

(dj − 〈dB,B
−1gj) rj ≤ 0. That is 〈d,y〉 − 〈d, z〉 ≤ 0. In otherwords

〈d,y〉 ≤ 〈d, z〉. Since y may be chosen as any feasible solution of P1, we conclude that z is the
optimal solution of P . Hence the proof.

5.3.3.2 Non-degenerate Basic Feasible Solutions

The basic feasible solutions of P1 can be classified into non-degenerate basic feasible solutions
and degenerate basic feasible solutions according to whether exactly n or more than n constraints
are tight at those solutions.

Definition 5.3.4.
Given linear Program P1 and basic feasible solution z of P1. Then z is said to be non-degenerate

basic feasible solution if exactly n constraints of P1 are tight at P1. If more than n constraints of
P1 are tight at z, then z is called a degenerate basic feasible solution. The number of constraints
of P1 which are tight at z in excess of n is called degeneracy of z and is denoted by deg(z).

The following lemma characterizes the non-degenerate basic feasible solutions of P1.
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Lemma 5.3.3.
Given linear program P1 and some vector z ∈ Rn. Then z is a non-degenerate basic feasible

solution of P1 if and only if there exists a basis matrix B of P1 such that zB = B−1h > 0m and
zN = 0n−m.

Proof.
if part:-
Let there exists a basis matrix B of P1 such that zB = B−1h > 0m and zN = 0n−m. By

Lemma 5.3.1, we see that z is a basic feasible solution of P1. What remains is to show that z
is non-degenerate.

Since z is a basic feasible solution of P1, the m constraints specified by G are tight at z.
Since zB = B−1h > 0m and zN = 0n−m, we see that exactly n−m non-negativity constraints
of P1 are also tight at z. Thus we see that exactly n constraints of P1 are tight at z. Hence z
is a non-degenerate basic feasible solution of P1.

only if part:-
Let z be a non-degenerate basic feasible solution of P1. By Lemma 5.3.1, we see that there

exists a basis matrix B of P1 such that zB = B−1h ≥ 0m and zN = 0n−m. What remains is to
show that none of the components of B−1h is zero.

Since z is a non-degenerate basic feasible solution of P1, we see that there cannot have more
than n constraints of P1 tight at z. Since z is a feasible solution of P1, we see that the m
constraints specified by G are tight at z. We also see that n − m non-negativity constraints
of P1 are also tight at z as zN = 0n−m. Hence it follows that none of the components of zB is
zero in order that z is a non-degenerate basic feasible solution of P1. Hence the Lemma.

Now we are going to derive the necessary and sufficient conditions for a non-degenerate
basic feasible solution of P1 to be optimal. To derive these conditions, we require the following
lemma.

Lemma 5.3.4.
Given linear program P1 and a non-degenerate basic feasible solution z of P1 such that

dk − 〈dB,B
−1gk〉 = ε > 0 for some non-basic component zk of z. Then there exists some δ > 0

and feasible solution z′ of P1 such that 〈d, z′〉 = 〈d, z〉+ εδ.

Proof.
Given that z is a non-degenerate basic feasible solution of P1. By Lemma 5.3.3 we see that

there exists a basis matrix B of P1 such that zB = B−1h > 0m. Let δ be positive real number

and z′ =
[
z1
′ z2

′ z3
′ · · · zn

′
]T

be the vector defined by

zj
′ =

{
zj if j 6= k

δ if j = k

Let zN
′ =

[
zj
′
]
j∈IN

. Clearly zN
′ ≥ 0n−m. In order that z′ is a feasible solution of P1, it

should satisfy the conditions zB
′ = B−1h−B−1NzN

′ = B−1h−B−1gkδ and zB
′ ≥ 0m.

Let B−1h =
[
β1 β2 β3 · · · βm

]T
and B−1gk =

[
α1 α2 α3 · · · αm

]T
. Since B−1b >

0m, we see that βi > 0 for each i ∈ {1, 2, 3, · · · ,m}. Hence we must have

zB
′ =
[
β1 − δα1 β2 − δα2 β3 − δα3 · · · βm − δαm

]T
Now we need to consider two cases.
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Case 1: αi ≤ 0 for each i ∈ {1, 2, 3, · · · ,m}.

In this case, we see that for any non-negative value of δ, the vector zB
′ > 0m. This implies

that for any non-negative value of δ, the vector z′ will be a feasible solution of P1.

Case 2:- αi > 0 for one or more i ∈ {1, 2, 3, · · · ,m}.

In this case, if δ = min{ βi
αi
| i ∈ {1, 2, 3, ·,m} such that αi > 0}, we see that δ > 0 and

zB
′ ≥ 0m. This implies that for this choice of of δ, the vector z′ will be a feasible solution of

P1.
Hence in both cases we can find δ > 0 such that the vector z′ will be a feasible solution of

P1.
Now

〈d, z′〉 = 〈d,B−1h〉+
(
dk − 〈dB,B

−1gk〉
)
δ (∵ By Eqn (5.10))

= 〈d,B−1h〉+ εδ

= 〈d, z〉+ εδ (∵ By Corollary 5.3.2)

Hence the Lemma.

Lemma 5.3.5.
Given linear program P1 and a non-degenerate basic feasible solution z of P1. Then z is an

optimal solution of P1 if and only if dj − 〈dB,B
−1gj〉 ≤ 0 for each non-basic component zj of

z.

Proof.
The if part follows directly from Lemma 5.3.2. The only-if part can be proved as follows.
Let z be an optimal solution of P1. Asssume that there exists some non-basic component

zk such that dk − 〈dB,B
−1gk〉 = ε > 0. By Lemma 5.3.4, we see that there exists some δ > 0

and feasible solution z′ of P1 such that 〈d, z′〉 = 〈d, z〉 + εδ. This means that there exists
some feasible solution z′ of P1 such that 〈d, z′〉 > 〈d, z〉 which contradicts the optimality of z.
Hence we conclude that dj −〈dB,B

−1gj〉 ≤ 0 for each non-basic component zj of z. Hence the
Lemma.

Corollary 5.3.3.
Given linear program P1 and a non-degenerate basic feasible solution z of P1. Then z is an

optimal solution of P1 if and only if dT − dB
TB−1G ≤ 0n

T .

Proof.
By Lemma 5.3.5, we see that z is a non-degenerate optimal basic feasible solution of P if

and only if dj − 〈dB,B
−1gj〉 ≤ 0 for each non-basic component zj of z. This implies that z is

a non-degenerate optimal basic feasible solution of P if and only if dN
T − dB

TB−1N ≤ 0Tn−m.
Since cB

T − cB
TB−1B = 0Tm, we further see that z is a non-degenerate optimal basic feasible

solution of P if and only if dT − dB
TB−1G ≤ 0n

T .

We close this subsection with a lemma that has a major role in proving strong duality
theorem.

Lemma 5.3.6.
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Given primal program P in canonical form (5.6) and the corresponding dual program D in
(5.7). Let P ′ be the linear program in standard form and equivalent to P given by

Maximize 〈d, z〉 subject to

Gz = b

z ≥ 0m+n where

G =
[
A Im

]
∈ Rm×(m+n), d =

[
c

0m

]
∈ Rm+n

If P ′ has an optimal non-degenerate basic feasible solution, then there exist feasible solution
x of P and feasible solution y of D such that γxy = 0.

Proof.
It is not hard to see that P ′ is a linear program equivalent to the primal program P . Let z

an optimal non-degenerate basic feasible solution of P ′. Hence by Corollary‘5.3.2, we see that
〈d, z〉 = 〈dB,B

−1b〉. Furthermore by corollary 5.3.3, we have the conditions

dT − dB
TB−1G ≤ 0Tm+n (5.11)

Since G =
[
A Im

]
and d =

[
c

0m

]
, the conditions in (5.11) can be split into two as

cT − dB
TB−1A ≤ 0n

T and 0m
T − dB

TB−1Im ≤ 0m
T (5.12)

Let y ∈ Rm defined by y = (B−1)
T

dB. Hence we have

cT − yTA ≤ 0n
T and 0m

T − yT Im ≤ 0m
T

That is ATy ≥ c and y ≥ 0m. Hence y is a feasible solution of the dual program D.
Moreover 〈b,y〉 = 〈b,B−1TdB〉 = 〈dB,B

−1b〉 = 〈d, z〉. Since P and P ′ are equivalent, we see
that there exists some feasible solution x of P such that 〈c,x〉 = 〈d, z〉. Thus we conclude that
there exist some primal feasible solution x and dual feasible solution y such that 〈c,x〉 = 〈b,y〉
and hence γxy = 0. Hence the Lemma.

Lemma 5.3.6 can be extended to the case where all optimal basic feasible solutions of P ′

given in the lemma are degenerate. To do this extension, we require some results related to
degenerate basic feasible solutions.

5.3.3.3 Handling Degeneracy

The following Lemma characterizes the degenerate basic feasible solutions of P1.

Lemma 5.3.7.
Given linear program P1 in the standard form (5.14) and some vector z ∈ Rn. Then z is a

degenerate basic feasible solution of P1 with deg(z) = t if and only if there exists a basis matrix
B of P1 such that zN = 0n−m, zB = B−1h ≥ 0m and zB consists of exactly t zero components.

Proof.
if part:-
Let there exists a basis matrix B of P1 such that zN = 0n−m, zB = B−1h ≥ 0m and zB

consists of t zero components. By Lemma 5.3.1, we see that z is a basic feasible solution of P1.
What remains is to show that z is degenerate such that deg(z) = t.
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Since z is a basic feasible solution of P1, the m constraints specified by G are tight at z.
Since zB consists of t zero components and zN = 0n−m, we see that n −m + t non-negativity
constraints of P1 are also tight at z. Thus we see that exactly n+ t constraints of P1 are tight
at z. Hence z is a degenerate basic feasible solution of P1. such that deg(z) = t.

only if part:-
Let z be a degenerate basic feasible solution of P1 such that deg(z) = t. By Lemma 5.3.1,

we see that there exists a basis matrix B of P1 such that zB = B−1h ≥ 0m and zN = 0n−m.
What remains is to show that exactly t components of zB are zero.

Since deg(z) = t, we see that there are n+ t constraints of P1 tight at z. Since z is a feasible
solution of P1, we see that the m constraints specified by G are tight at z. We also see that
n−m+ t non-negativity constraints of P1 are also tight at z. Hence it follows that z consists
of n − m + t zero components out of which n − m components correspond to the non-basic
components as zN = 0n−m. Hence it follows that exactly t components of zB are zero. Hence
the Lemma.

The following Lemma has a major role in proving strong duality theorem.

Lemma 5.3.8.
Given linear program P1 in the standard form (5.14) such that P1 has an optimal degenerate

basic feasible solution. Then there exists a basis matrix B of P1 such that dT−dB
TB−1G ≤ 0n

T

and B−1h ≥ 0m.

Proof.
The proof of this lemma is technical and is moved to Appendix A.

Remark 5.3.7.
It is important to note that the basis matrix specified in Lemma 5.3.8 need not be the basis

matrix corresponding to the degenerate optimal basic feasible solution z of P1. However, if
z were a non-degenerate basic feasible solution of P1, the corresponding basis matrix would
satisfy the conditions dT − dB

TB−1G ≤ 0n
T and B−1h ≥ 0m as was shown in Lemma 5.3.3

and Lemma 5.3.5.

Now we are going to extend Lemma 5.3.6 to the case where the linear program P ′ given in
the lemma has a degenerate optimal basic feasible solution.

Lemma 5.3.9.
Given primal program P in canonical form (5.6) and the corresponding dual program D in

(5.7). Let P ′ be the linear program in standard form and equivalent to P given by

Maximize 〈d, z〉 subject to

Gz = b

z ≥ 0m+n where G =
[
A Im

]
∈ Rm×(m+n), d =

[
c

0m

]
∈ Rm+n

If P ′ has an optimal degenerate basic feasible solution, then there exist primal feasible
solution x and dual feasible solution y such that γxy = 0.

Proof.
It is not hard to see that P ′ is a linear program equivalent to the primal program P . Let

z be an optimal degenerate basic feasible solution of P ′. By Lemma 5.3.8, we see that there
exists a basis matrix B of P ′ such that dT − dB

TB−1G ≤ 0Tm+n and B−1b ≥ 0m. Since

G =
[
A Im

]
and d =

[
c

0m

]
, the conditions dT −dB

TB−1G ≤ 0m+n
T can be split into two as

cT − dB
TB−1A ≤ 0n

T and 0m
T − dB

TB−1Im ≤ 0m
T (5.13)
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Let y ∈ Rm defined by y = (B−1)
T

dB. Hence we have

cT − yTA ≤ 0n
T and 0m

T − yT Im ≤ 0m
T

That is ATy ≥ c and y ≥ 0m. Hence y is a feasible solution of the dual program D. Let z′

be a vector in Rm+n such that zB
′ = B−1b ≥ 0m and zN

′ = 0n. By Lemma 5.3.1, we see that
z′ is a basic feasible solution of P ′. Now by Corollary 5.3.2, we see that 〈d, z′〉 = 〈dB,B

−1b〉.
Hence 〈b,y〉 = 〈b,B−1TdB〉 = 〈dB,B

−1b〉 = 〈d, z′〉. Since P and P ′ are equivalent, we see
that there exists some feasible solution x of P such that 〈c,x〉 = 〈d, z′〉. Thus we conclude that
there exist some primal feasible solution x and dual feasible solution y such that 〈c,x〉 = 〈b,y〉
and hence γxy = 0. Hence the Lemma.

Corollary 5.3.4.
Given primal program P in canonical form (5.6) and the corresponding dual program D in

(5.7). Let P ′ be the linear program in standard form and equivalent to P given by

Maximize 〈d, z〉 subject to

Gz = b

z ≥ 0m+n where G =
[
A Im

]
∈ Rm×(m+n), d =

[
c

0m

]
∈ Rm+n

If P ′ has an optimal basic feasible solution, then there exist primal feasible solution x and
dual feasible solution y such that γxy = 0.

Proof.
The result directly follows from Lemma 5.3.6 and Lemma 5.3.9.

Now we are in a position to prove the strong duality theorem.

5.3.3.4 Proof of Strong Duality Theorem

Theorem 5.3.3. (Strong Duality Theorem)
Given primal program P in canonical form (5.6) and the corresponding dual program D in

(5.7). Then

1. If either P or D has a finite optimum, then so does the other.

2. The duality gap beween P and D with respect to the corresponding optimal solutions is
zero.

Proof.
Let P has a finite optimum. Consider the linear program P ′ which is in standard form and

equivalent to P given by

Maximize 〈d, z〉 subject to

Gz = b

z ≥ 0m+n where G =
[
A Im

]
∈ Rm×(m+n), d =

[
c

0m

]
∈ Rm+n

Since P is equivalent to P ′ and P has a finite optimum, we see that P ′ also has a finite
optimum. By Theorem 4.4.2 and Theorem 4.2.1, it follows that P ′ has an optimal basic feasible
solution. Hence by Corollary 5.3.4, it follows that there exist primal feasible solution x and
dual feasible solution y such that γxy = 0.
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Conversely let D has a finite optimum. Consider the linear programs D1 given by

D1:- Maximize 〈−b,y〉 subject to

−ATy ≤ −c

y ≥ 0m

(5.14)

The dual P1 of D1 is given by

P1:- Minimize 〈−c,x〉 subject to

−Ax ≥ −b

x ≥ 0n

(5.15)

It is not hard to see that P is equivalent to P1, D is equivalent to D1, F (D) = F (D1) and
F (P ) = F (P1). Since D has a finite optimum, we see that D1 also has finite optimumm. Taking
D1 as the primal program and proceeding as above, we see that there exist vectors x ∈ F (P1)
and y ∈ F (D1) such that 〈−c,x〉 = 〈−b,y〉. Since F (D) = F (D1) and F (P ) = F (P1), we see
that x is a primal feasible solution and y is a dual feasible solution. Since 〈−c,x〉 = 〈−b,y〉,
we see that 〈c,x〉 = 〈b,y〉 which implies that the duality gap between P and D with respect
to x and y is zero. Hence the Theorem.

5.4 Summary

In this chapter, we had presented the fundamentals of primal dual theory. In section 5.2, we
introduced the notions of primal and dual linear programs and established that dual of the
dual is the primal program itself. In Section 5.3.1, we proved the weak duality theorem and
introduced the notion of duality gap. We had seen that the existence of a primal feasible solution
and a dual feasible solution with zero duality gap shows that these solutions are optimal to
the concerned linear programs. In section 5.3.2, we had discussed the complementary slackness
conditions and established that the existence of a primal feasible solution and dual feasible
solution with zero duality gap is possible if and only if the primal feasible solution is orthogonal
to the dual surplus vector and the dual feasible solution is orthogonal to the primal slack vector.
In section 5.3.3, we proceeded to discuss the strong duality theorem. As a prerequisite to prove
this theorem, we had introduced the notions of basis matrix, degenerate and non-degenerate
basic feasible solutions with reference to a linear program in standard form and established
that in case a linear program in standard form that is equivalent to the primal program has an
optimal basic feasible solution, there exist a primal feasible solution and a dual feasible solution
with zero duality gap. The chapter was completed by giving a proof of strong duality theorem
using the results established in section 5.3.3.
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Chapter 6

Conclusion

6.1 Thesis Summary

In this thesis, we have presented the structural geometry of linear programming and used
it to derive the classical results like Caratheodory characterisation theorem and fundamental
theorem of linear programming and algebraic results for deriving the duality theorem in primal
dual theory. In chapter 2, we introduced the notions of recession directions and recession cones
and established that a polyhedral set is bounded if and only if it has no recession directions. In
this chapter, we have brought about the notions of vertices and extreme points in convex sets.
In chapter 3, we have formally defined linear programming problem and discussed the notions
of feasible linear programs, unbounded linear programs and equivalence of linear programs. We
had seen three different forms of linear programs and established that these three forms are
equivalent. In chapter 4, we introduced the notion of basic feasible solutions and established
that the two geometric notions - vertices and extreme points are equivalent to the algebraic
notion - basic feasible solutions. In this chapter, we introduced the notions of extreme directions
and normalised recession directions. It was shown that the feasible region of every linear
program has finite non-zero number of extreme points and finite number of extreme directions.
We had characterised the feasible region of a linear program using the extreme points and the
recession cone of the feasible region. We established that the recession cone of an unbounded
linear program can be characterised as the conic hull of the normalised extreme directions
of the feasile region. Using these structural properties of the feasible region, we proved the
Caratheodory characterisation theorem and the Fundamental theorem of linear programming.
Following these discussions, we presented a brute force algorithm for linear programming and
illustrated the way in which this algorithm can be executed graphically. In chapter 5, we have
explained the notion of dual of a linear program and derived the weak duality theorem and the
complementary slackness conditions. Our discussion is completed by giving a proof of strong
duality theorem based on some algebraic results formulated using the structural properties
investigated in the preceeding chapters.

6.2 Pros and Cons of the Work

Unlike the classical methods, the techniques and strategies used in this theis for deriving
various results give more emphasis to the underlying geometry. In our opinion, this geometric
approach to the subject gives better visual intuition. The classical approach to prove the duality
theorem are based on Theorem of Alternatives or methods from multivariable calculus, both
being somewhat mathematically sophisticated. In this work, core results like Caratheodory
characterisation theorem and Fundamental theorem of linear programming are derived essentially
on the basis of the geometric characterisation of polyhedral sets. This enables the reader to
form a strong foundation in linear optimization without having complicated mathematical
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prerequisites. Moreover the algebraic results derived to prove the strong duality theorem in
fact form the core results in the simplex method. This makes the reader to have a detailed
study of the simplex method with lesser effort.

The difficulty we face in this approach is the technicalities involved in surmounting the
notion of degeneracy. The effort to be taken to address this issue requires certain technical
results which are given in Appendix A. In fact degenracy does not need any kind of special
treatment in other methods of proving duality theorem.

We believe that the thesis may be used as a teaching material to cover a graduate level
course on the foundations of linear optimization.

6.3 Recommendations for Future Work

Even though the present work fullfills its objectives, it may be extended in several ways. Some
of these extensions are given below.

1. Devise new strategies for deriving the duality theorem without having a special treatment
on degenerate basic feasible solutions.

2. Investigate the geometry of primal dual relationship and derive the classical results like
Farkas Lemma and Theorem of Alternatives as its consequence.

3. Using the ideas in this thesis, establish the primal dual algorithm and its characteristics.
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Appendix A

Proof of Lemma 5.3.8

Before proving Lemma 5.3.8, we prove the following technical lemma [9].

Lemma A.0.1.

Let r =
[
r0 r1 r2 · · · rn

]T
∈ Rn+1 such that r 6= 0n+1. Let k be the least index in

{0, 1, 2, · · · , n} such that rk 6= 0. Let α = max{|rj|
∣∣∣∣rj 6= 0 and 0 ≤ j ≤ n} and β =

min{|rj|
∣∣∣∣rj 6= 0 and 0 ≤ j ≤ n}. Let ε be any real number such that 0 < ε < β

α+β
. Then

n∑
j=0

rjε
j > 0 if rk > 0 and

n∑
j=0

rjε
j < 0 if rk < 0.

Proof.

We have
n∑
j=0

rjε
j = rkε

k +
n∑

j=k+1

rjε
j = εk

(
rk +

n∑
j=k+1

rjε
j−k

)
. Now we shall consider the

following two cases.
Case 1:- rk > 0
In this case, we see that β ≤ rk. Since α = max{| rj | |rj 6= 0 and 0 ≤ j ≤ n}, we see that

−α ≤ rj for each j ∈ {0, 1, 2, · · · , n}. Hence we have

n∑
j=0

rjε
j = εk

(
rk +

n∑
j=k+1

rjε
j−k

)

≥ εk

(
β − α

n−k∑
j=1

εj

)

≥ εk

(
β − α

∞∑
j=1

εj

)

= εk
(
β − αε

1− ε

)
= εk

(
β − ε(α + β)

1− ε

)
> 0 (∵ 0 < ε <

β

α + β
)

Case 2:- rk < 0
In this case, we see that −β ≤ rk. Since α = max{| rj | |rj 6= 0 and 0 ≤ j ≤ n}, we see that
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α ≥ rj for each j ∈ {0, 1, 2, · · · , n}. Hence we have

n∑
j=0

rjε
j = εk

(
rk +

n∑
j=k+1

rjε
j−k

)

≤ εk

(
−β + α

n−k∑
j=1

εj

)

≤ εk

(
−β + α

∞∑
j=1

εj

)

= −εk
(
β − αε

1− ε

)
= −εk

(
β − ε(α + β)

1− ε

)
< 0 (∵ 0 < ε <

β

α + β
)

Hence the Lemma.

Remark A.0.1.

Lemma A.0.1 informally states that the sum
n∑
j=0

rjε
j is positive or negative according to

whether the first non zero component of the vector r is positive or negative.

Now we are going to prove Lemma 5.3.8. In this proof, we construct a new linear program
which will always have an optimal non-degenerate basic feasible solution by suitably perturbing
the given linear program. The existence of the non-degenerate optimal basic feasible solution
of the new linear program can be shown using Lemma A.0.1. While proving this lemma, we
follow the notations specified in Remark 5.3.6.

Lemma A.0.2.
Let P be the linear program in the standard form given by

Maximize 〈d, z〉 subject to

Gz = h

z ≥ 0n where

(A.1)

G ∈ Rm×n such that rank(G) = m, d ∈ Rn and h ∈ Rm. If P has an optimal degenerate
basic feasible solution, then there exists a basis matrix B of P such that dT −dB

TB−1G ≤ 0n
T

and B−1h ≥ 0m.

Proof.
Assume that P has an optimal degenerate basic feasible solution. Let HP be the set of all

basis matrices of P . Since P has a basic feasible solution, we see that HP is non-empty. Let

G =
[
g1 g2 g3 · · · gn

]
. Let B be any member of HP and u1,u2,u3, · · · ,um ∈ Rn+1 defined

by ui =
[
ui0 ui1 ui2 · · · uin

]
=
[
〈ei,B−1h〉 〈ei,B−1g1〉 〈ei,B−1g2〉 · · · 〈ei,B−1gn〉

]
for each i ∈ {1, 2, 3, · · · ,m}. It is easy to see that ui is the ith row of B−1G. Since B is a
submatrix of G, we see that BB−1 = Im will be a submatrix of B−1G and hence ui will have
at least one unity entry. Hence it follows that ui 6= 0n+1 for each i ∈ {1, 2, 3, · · · ,m}.

Let αi = max{|uij|
∣∣∣∣uij 6= 0 and 0 ≤ j ≤ n} and βi = max{|uij|

∣∣∣∣uij 6= 0 and 0 ≤ j ≤ n} for

each i ∈ {1, 2, 3 · · · ,m}. Let αB = max{αi | 1 ≤ i ≤ m} and βB = min{βi | 1 ≤ i ≤ m}.
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Let α = max{αB | B ∈ HB} and β = min{βB | B ∈ HB}. Let ε be a real number such that
0 < ε < β

α+β
.

Consider the linear program P ′ given by

Maximize 〈d, z〉 subject to

Gz = h +
n∑
j=1

gjε
j

z ≥ 0n

(A.2)

Claim.
P ′ has an optimal non-degenerate basic feasible solution.

Proof.
Let z be any feasible solution of P . Then we have Gz = h and z ≥ 0n. Let z′ =

z +
[
ε ε2 ε3 · · · εn

]T
. Since ε > 0 and z ≥ 0n, it follows that z′ > 0n. Furthermore

Gz′ = Gz +
n∑
j=1

gjε
j = h +

n∑
j=1

gjε
j. Thus we see that z′ is a feasible solution of P ′. Hence we

infer that P ′ is a feasible linear program. By Lemma 4.4.4, we see that P ′ has an optimal basic
feasible solution. By Lemma 5.3.1, it follows that there exists a basis matrix B of P ′ such that

z′B = B−1

(
h +

n∑
j=1

gjε
j

)
≥ 0m and z′N = 0n−m. Since the constraint matrix of both P and

P ′ are the same, we see that every basis matrix of P ′ is a basis matrix of P and hence B ∈ HP .

Let ri =
[
ri0 ri1 ri2 · · · rin

]
=
[
〈ei,B−1h〉 〈ei,B−1g1〉 〈ei,B−1g2〉 · · · 〈ei,B−1gn〉

]
for each i ∈ {1, 2, 3, · · · ,m}. Since B is a submatrix of G =

[
g1 g2 g3 · · · gn

]
, we see that

at least one of the entries in each row of the vector ri is unity. Hence it follows that ri 6= 0n+1

for each i ∈ {1, 2, 3, · · · ,m}.

By the choice of α and β, it follows that α = max{|rij|
∣∣∣∣rij 6= 0 and 0 ≤ j ≤ n} and

β = min{|rij|
∣∣∣∣rij 6= 0 and 0 ≤ j ≤ n}. Since z′B = B−1

(
h +

n∑
j=1

gjε
j

)
≥ 0m, we see that

〈ei, z′B〉 = 〈ei,B−1h〉 +
n∑
j=1

〈ei,B−1gj〉εj =
n∑
j=0

rijε
j ≥ 0 for each i ∈ {1, 2, 3, · · · ,m}. By

Lemma A.0.1, the following observations can be made.

1. Since 〈ei, z′B〉 ≥ 0 for each i ∈ {1, 2, 3, · · · ,m}, we see that the first non-zero component
of the vector ri is not negative and therefore positive for each i ∈ {1, 2, 3, · · · ,m}. This
implies that 〈ei, z′B〉 > 0 for each i ∈ {1, 2, 3, · · · ,m}. Thus z′B > 0.

2. Since 〈ei, z′B〉 ≥ 0 for each i ∈ {1, 2, 3, · · · ,m}, we see that the first component of the
vector ri is not negative for each i ∈ {1, 2, 3, · · · ,m}. This implies that 〈ei,B−1h〉 ≥ 0 for
each i ∈ {1, 2, 3, · · · ,m}. Thus we see that B−1h ≥ 0m.

To summarise, we see that there exists a basis matrix B of P such that z′B > 0m and
z′N = 0n−m. By Lemma 5.3.3, we see that z′ is a non degenerate basic feasible solution of
P ′.

By Corollary 5.3.3, we see that dT −dB
TB−1G ≤ 0n

T . Thus we conclude that there exists a
basis matrix B of P such that dT −dB

TB−1G ≤ 0n
T and B−1h ≥ 0m. Hence the Lemma.
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Appendix B

Linear Algebra Fundamentals

In this Appendix, we have outlined the notions and the results in Linear algebra which were
used in the preceeding chapters without including proofs [10] [11]. A detailed discussion on
these topics may be found in any standard textbook on linear algebra.

B.1 Vector Spaces

Definition B.1.1.
Let F be a Field whose elements are called scalars. Then a vector space S over F is triplet

S = (E,+, · ) where

(a) E is a non-empty set of elements called vectors.

(b) + is called the vector addition operator which operates on any two vectors in E and
produce some vector in E. The vector addition of any two vectors x and y in E is denoted
by x + y. Moreover the vector addition operation satisfies the following properties.

(a) Vector addition is Commutative. That is for any two vectors x,y ∈ E,x+y = y+x.

(b) Vector addition is associative. That is for any three vectors x,y, z ∈ E,x+ (y +z) =
(x + y) + z.

(c) There exists a zero vector 0S in E such that 0S + x = x for any vector x ∈ E.

(d) For each vector x ∈ E, there exists some vector −x called the additive inverse of x
in E such that x +−x = 0S.

(c) · is called scalar multiplication operator which takes some scalar from F and a vector from
E and produces some vector in E. The scalar multiplication of any scalar α in F and
vector x in E is denoted by αx. Moreover the scalar multiplication operation satisfies the
following properties.

(a) Scalar muliplication is distributive over vector addition. That is for any two vectors
x,y ∈ E and α ∈ F, α(x + y) = αx + αy.

(b) Scalar muliplication is distributive over scalar addition. That is for any α, β ∈ F and
x ∈ E, (α + β)x = αx + βy.

(c) Scalar mulitplication is compatible with multiplication of the field elements. That is
for α, β ∈ F and x ∈ E, (αβ)x = α(βx).

(d) For each x ∈ E, 1 · x = x where 1 is the multiplicative identity of F .

Example B.1.1.
Given m,n ∈ N. Then the set of all m×n matrices over the field R with usual definition of

matrix addition and scalar multiplication a vector space. This vector space is usually denoted
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by Rm×n. In particular Rm×1,m ≥ 2 is usually abreviated as Rm, which is nothing but the
vector spce of m× 1 column vectors over the field of real numbers.

Definition B.1.2.
Let S be a vector space over the field F and x1,x2,x3, · · · ,xk be vectors in S. Then a linear

combination of x1,x2,x3, · · · ,xk is an expression of the form
k∑
i=1

αixi where αi ∈ F, 1 ≤ i ≤ k.

Definition B.1.3.
Let S be a vector space over the field F and x1,x2,x3, · · · ,xk be vectors in S. Then the

span of {x1,x2,x3, · · · ,xk} is denoted by Span{x1,x2,x3, · · · ,xk} and is defined as the set of
vectors in S obtained by the linear combinations of x1,x2,x3, · · · ,xk.

Span{x1,x2,x3, · · · ,xk} =

{
k∑
i=1

αixi

∣∣∣ αi ∈ F, 1 ≤ i ≤ k

}
Definition B.1.4.

Let S be a vector space over the field F and x1,x2,x3, · · · ,xk be vectors in S. Then

these vectors are said to be linearly independent if
k∑
i=1

αixi = 0S, then we must have αi =

0,∀i such that 1 ≤ i ≤ k. Otherwise they are called linearly dependent .

Definition B.1.5.
Let S be a vector space over the field F and b1,b2,b3, · · · ,bk be vectors in S. Then the set

{b1,b2,b3, · · · ,bk} is said to be a basis of S if

(a) Span{b1,b2,b3, · · · ,bk} = S.

(b) b1,b2,b3, · · · ,bk are linearly independent.

Fact B.1.1. (Unique Representation Theorem)
Let S be a vector space over the field F and {b1,b2,b3, · · · ,bk} be a basis of V . Then any

vector in S can be expressed a linear combination of b1,b2,b3, · · · ,bk in exactly one way.

Definition B.1.6.
Let S be a vector space over the field F. Then S is said to be a finite dimensional vector

space if S has a finite basis. Otherwise S is called an infinite dimensional vector space.

Fact B.1.2.
All bases of a finite dimensional vector space have the same cardinality.

Definition B.1.7.
Let S be a vector space over the field F. Then the dimension of S is denoted by dim(S)

and is defined as the cardinality of its bases.

Fact B.1.3.
Let S be a vector space over the field F with dim(S) = n. Then any set of more than n

vectors in S is linearly dependent.

Definition B.1.8.
Let S = (E,+, · ) be a vector space over the field F. Then any vector space S ′ = (E ′,+, · )

where E ′ ⊆ E is called a subspace of S.

Definition B.1.9.
Let S be a vector space over the field F. Then the function 〈, 〉 : S × S → R is said to be

an inner product or dot product on S if it satisfies the following properties.
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(a) Symmetry Property:

〈x,y〉 = 〈y,x〉, for each x,y in S.

(b) Linearity Property:〈∑
i

αixi,y

〉
=
∑
i

〈xi,y〉 for each αi ∈ F and each xi,y in S〈
x,
∑
i

αiyi

〉
=
∑
i

〈x,yi〉 foreach αi ∈ F and yi,x in S

(c) Positive Definiteness Property: For each x ∈ S \ {0S}, 〈x,x〉 ≥ 0 and 〈0S,0S〉 = 0.

Definition B.1.10.
An inner product space is a pair (S, 〈, 〉) where S is a vector space and 〈, 〉 is an inner product

on S.

Example B.1.2.
The Eucledian Space (Rn, 〈, 〉) is an inner product space where the inner product of any

two vectors x =
[
x1 x2 x3 · · · xn

]T
and y =

[
y1 y2 y3 · · · yn

]T
∈ Rn is defined as

〈x,y〉 =
n∑
i=1

xiyi. This inner product is known as the standard inner product for Rn.

Definition B.1.11.
Let I = (S, 〈, 〉) be an inner product space. Then any two vectors x and y of I is said to be

orthogonal if and only if 〈x,y〉 = 0.

Definition B.1.12.
Let S be a vector space over the field F. Then the function ‖·‖ : S → R is said to be a

norm of S if it satisfies the following properties.

(a) For each x in S such that x 6= 0S, it must be the case that ‖x‖ ≥ 0 and ‖0S‖ = 0.

(b) For each x in S and α ∈ F, it must be the case that ‖αx‖ =| α | ‖x‖.

(c) For x1,x2,x3, · · · ,xk in S, it must be the case that

∥∥∥∥ k∑
i=1

xi

∥∥∥∥ ≤ k∑
i=1

‖xi‖.

Definition B.1.13.
A normed vector space is a pair (S, ‖·‖) where S is a vector space and ‖·‖ is a norm of S.

Example B.1.3.
(Rn, ‖·‖) is a normed vector space where the norm ‖·‖ can be defined in several ways.

(a) Let p be a finite positive integer. Then the lp norm or p-norm of any vector x =[
x1, x2, x3, · · · , xn

]T
∈ Rn is denoted by ‖x‖p and is defined as

‖x‖p = p

√√√√ n∑
i−1

| xi |p

(b) the ∞-norm is denoted by ‖x‖∞ and is defined as

‖x‖∞ = max{xi | 1 ≤ i ≤ n}.
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Among various norms of Rn, the usual choice of norm is the l2 norm. The l2 norm of any

vector x =
[
x1, x2, x3, · · · , xn

]T
∈ Rn is simply denoted by ‖x‖ and is given by

‖x‖ =

√√√√ n∑
i=1

x2i

This norm computes the magnitude of the vector x and is known as the standard norm on
Rn. It is easy to see that ‖x‖ =

√
〈x, x〉.

Facts B.1.1.

1. The l1 norm of any vector x ∈ Rn is the sum of the absolute values of the individual
components of x. In particular, if x is a non-negative vector, then l1 norm of x is the
sum of the individual components of x.

2. The l2 norm of any non-negative vector x ∈ Rn is at most the l1 norm of x.

3. All norms in Rn are equivalent. That is for any p, q ∈ N and x ∈ Rn, there exist positve
real numbers α and β such that α ‖x‖p ≤ ‖x‖q ≤ β ‖x‖p.

Definition B.1.14.
A metric space is a pair (S, d) where S is a vector space and d : S × S → R is a function

that satisfies the following properties.

(a) d(x,y) ≥ 0 for each x and y in S.

(b) d(x,y) = 0 if and only if x = y.

(c) d(x,y) = d(y,x) for each x,y and z in S.

(d) d(x,y) ≤ d(x, z) + d(z,y) for each x and y in S

Example B.1.4.
(R, d) is a metric space where d : R×R→ R is a function defined by d(x, y) =| x− y |. We

denote this matric space by the pair (R, | ˙ |)
(Rn, d) is a metric space where d : Rn×Rn → R is a function defined by d(x,y) = ‖x− y‖p

for some p ∈ N. If p = 1, then d(x,y) computes the manhattan distance between x and y. If
p = 2, then d(x,y) computes the eucledian distance between the vectors x and y.

B.2 Linear Transformations

Definition B.2.1.
Given vector spaces S1 and S2 over the field F. Then a function T : S1 → S2 is said to be

a linear transformation if for any vectors x1,x2,x3, · · · ,xk in S, we must have T

(
k∑
i=1

αixi

)
=

k∑
i=1

αiT (xi), αi ∈ F, 1 ≤ i ≤ k.

Example B.2.1.
The function T : Rn → Rm defined by T (x) = Ax for some A ∈ Rm×n is a linear

transformation.

Facts B.2.1.
For any m,n ∈ N, any linear transformation T : Rm → Rn is continuous.
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Definition B.2.2.
Given vector spaces S1 and S2 over the field F and linear transformation T : S1 → S2. Then

(a) the kernel or null space of T is denoted by Ker(T ) and is defined as the set

Ker(T ) = {x | x ∈ S1 and T (x) = 0S2

(b) the range of T and is denoted by Range(T ) and is defined as the set

Range(T ) = {y | y ∈ S2 such that y = T (x) for some x ∈ S1}

Facts B.2.2.
Given vector spaces S1 and S2 over the field F and a linear transformation T : S1 → S2.

Then

(a) 0S1 ∈ Ker(T ).

(b) Ker(T ) and Range(T ) are subspaces of S1 and S2 respectively.

Definition B.2.3.
Given vector spaces S1 and S2 over the field F and linear transformation T : S1 → S2. Then

the rank of T is denoted by rank(T ) and is defined as the dimension of the range of T . The
nullity of T is denoted by nullity(T ) and is defined as the dimension of the kernel of T . That
is rank(T ) = dim(Range(T )) and nullity(T ) = dim(ker(T )).

Fact B.2.1. (Rank-Nullity Theorem / Dimension Theorem)
Given finite dimensional vector spaces S1 and S2 over the field F and linear transformation

T : S1 → S2. Then we must have rank(T ) + nullity(T ) = dim(S1).
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Fundamentals of Real Analysis

In this Appendix, we outline the notions of closed sets, open sets, bounded sets and compact
sets. It also contains the theorems and results from real analysis which we used in the previous
chapters. These results are stated without any proofs and illustrative examples [4]. A detailed
discussion of these topics can be seen in any standard textbook on Topology such as the book
Introduction to Topology and Modern Analysis by G.F. Simmons.

C.1 Closed Sets, Open Sets and Bounded Sets

Definition C.1.1.
Let x be a point in a metric space (S, d) and δ ∈ R+. Then the δ - neighbourhood of x is

denoted by Nδ (x) and is defined as Nδ (x) = {y | y ∈ S and d(x,y) < δ}.

Definition C.1.2.
Let (S, d) be a metric space and T ⊆ S. Then a sequence in T is a mapping φ : N→ T and

is denoted by {xn}n∈N. If φ(k) = xk, we say that xk is the kth term of the sequence.

Definition C.1.3.
Let (S, d) be a metric space and T ⊆ S. Let {xn}n∈N be a sequence in {nk}k∈N be a sequence

of increasing natural numbers (i.e ni > nj ⇔ i > j). Then {xnk}k∈N is called a subsequence of
the sequence {xn}n∈N.

Definition C.1.4.
A sequence {xn}n∈N in the metric space (R, | ˙ |) is said to be non-decreasing if xn+1 ≥ xn∀n ∈

N. Similarly the sequence is said to be non-increasing if xn+1 ≤ xn∀n ∈ N. In particular, the
sequence is said to be strictly increasing if xn+1 > xn∀n ∈ N whereas the sequence is said to
be strictly decreasing if xn+1 < xn∀n ∈ N. A sequence is said to be monotonic if it is either
non-decreasing or non-increasing.

Definition C.1.5.
Let (S, d) be a metric space and T ⊆ S. Let {xn}n∈N be a sequence in T . Then any point

x0 ∈ T is said to be the limit of the sequence if for all δ > 0, there exists n0 > 0 such that
n ≥ n0 ⇒ xn ∈ Nδ (x0). If x0 is the limit of the sequence {xn}n∈N, we write limn→∞ xn = x0

or simply {xn} → x0.

Fact C.1.1.
Let (S, d) be a metric space and T ⊆ S. Let {xn}n∈N be a sequence in T such that {‖xn‖} →

∞. Then for any vector x ∈ S, the sequence {xn − x}n∈N belongs to S and {‖xn − x‖} → ∞.

Fact C.1.2.
Let {xn}n∈N be a sequence in Rn defined by xn = x + ny for some x,y in Rn. Then

{‖xn‖} → ∞.
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Definition C.1.6.
Let (S, d) be a metric space and T ⊆ S. Let {xn}n∈N be a sequence in T . Then the sequence

is said to be convergent if and only if there exists x in T such that {xn} → x. If there is no
such x in T , then the sequence is called divergent .

Fact C.1.3.
Let (S, d) be a metric space and T ⊆ S. Let {xn}n∈N be a sequence in T such that {xn} → x

for some x ∈ S. Then for every subsequence {yn}n∈N of {xn}n∈N, we must have {yn} → x.

Definition C.1.7.
Let (S, d) be a metric space and T ⊆ S. Then

(a) any point x ∈ S is said to be a limit point of T if for all δ > 0, there exists y in T such
that x 6= y and y ∈ Nδ(x).

(b) any point x ∈ S is said to be an isolated point of T if there exists δ > 0 such that
(Nδ(x) \ {x}) ∩ T = φ.

(c) any x ∈ S is said to be a closure point of T if for all δ > 0, there exists y ∈ T such that
y ∈ Nδ(x).

Definition C.1.8.
Let (S, d) be a metric space and T ⊆ S. Then

(a) any point x ∈ T is said to be an interior point of T if there exists some δ > 0 such that
Nδ(x) ⊆ T .

(b) any point x ∈ T is said to be a boundary point of T if for all δ > 0, it must be the case
that Nδ(x) ∩ T c 6= φ.

Definition C.1.9.
Let (S, d) be a metric space and T ⊆ S. Then the closure of T in S is denoted by T and is

defined as the set of all closure points of T .

Definition C.1.10.
Let (S, d) be a metric space and T ⊆ S. Then T is said to be closed if T contains all of its

limit points. T is said to be open if for all x in T , there exists δ > 0 such that Nδ(x) ⊆ T .

Fact C.1.4.
Let (S, d) be a metric space and T ⊆ S. Then the following statements are equivalent.

(a) T is closed.

(b) T = T .

(c) Corresponding to each sequence {xn}n∈N in T such that {xn} → x0, it must be the case
that x0 ∈ T .

(d) T c is open.

Fact C.1.5.
Let (S, d) be a metric space. Then

(a) the union of any number of open sets over S is open.

(b) the intersection of a finite number of open sets over S is open.

Fact C.1.6.
Let (S, d) be a metric space. Then
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(a) the union of a finite number of closed sets over S is closed.

(b) the intersection of any number of closed sets over S is closed.

Definition C.1.11.
Let (S, d) be a metric space. Let x be any point in S and r be a positive real number.Then

(a) the open ball with center x and radius r is denoted by Br(x) and is defined as

Br(x) = {y | y ∈ S and d(x,y) < r}.

(b) the closed ball with center x and radius r is denoted by Br(x) and is defined as

Br(x) = {y | y ∈ S and d(x,y) ≤ r}.

Definition C.1.12.
Let (S, d) be a metric space and T ⊆ S. Then T is said to be bounded if there exists some

x ∈ S and r > 0 such that T ⊆ Br(x). Otherwise T is said to be unbounded .

Fact C.1.7.
Let T ⊆ R. Then T is bounded if and only if T has finite supremum and finite infimum.

Fact C.1.8.
Let T ⊆ Rn. Then T is unbounded if and only if there exists a sequence {xn}n∈N in T such

that the sequence {‖xn‖}n∈N is a strictly increasing sequence in R and {‖xn‖} → ∞.

Definition C.1.13.
Let (S, d) be a metric space. Then a sequence {xn}n∈N in S is said to be bounded if the set

{xn | n ∈ N} is a bounded set in S.

Fact C.1.9. (Bolzano-Weistrass Theorem)
Every bounded sequence over Rn has a convergent subsequence.

C.2 Compact Sets

Definition C.2.1.
Let (S, d) be a metric space and T ⊆ S. Let I ⊆ N be an index set. Then the set

C = {Ci | Ci ∈ S and i ∈ I} of S is said to be a cover T if T ⊆
⋃
Ci∈C Ci. In particular, the

cover is said to be an open cover if each set in C is an open set.

Definition C.2.2.
Let (S, d) be a metric space and T ⊆ S. Let I ⊆ N be an index set and the set C ={

Ci
1 | i ∈ I

}
be a cover of T . Then C ′ ⊂ C is said to be a subcover of T if T ⊆

⋃
Ci∈C′ Ci. In

particular, the subover is said to be an open subcover if each set in C ′ is an open set.

Definition C.2.3.
Let (S, d) be a metric space and T ⊆ S. Then T is said to be compact if every open cover

of T has a finite open subcover.

Fact C.2.1. (Heine Borel Theorem)
Let T ⊆ Rn. Then T is compact if and only if T is closed and bounded. [12]

Fact C.2.2.
Let T be a compact subset of R. Then T has a finite maximum and finite minimum.

Fact C.2.3.
A continuous function maps compact sets to compact sets.
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Fact C.2.4. (Extreme Value Theorem)
Let (S, d) be a metric space and T be a compact subset of S. Let f : T → R be a continuous

function. Then there exists vectors a and b in T such that f(a) = max ({f(x) | x ∈ T}) and
f(b) = min ({f(x) | x ∈ T}). [12]
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