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Abstract

Finite state discrete time Markov chains are encountered in various con-

texts in computer science and communication theory. The objective of this

project is to derive an elementary proof for the ergodic theorem for Markov

chains that does not depend on any non-trivial results from Lebesgue’s theory

of integration.

A rigorous development of the probability space that models an infinite

Markov chain is given by the Kolmogorov extension theorem (KET). We

give a simple proof for Kolmogorov extension theorem when the underlying

spaces are finite and discrete using only standard topological facts and basic

measure theory. We employ the Kolmogorov extension theorem for finite dis-

crete spaces to formulate the probability space underlying finite state Markov

chains.

This is followed by a study of Markov chains using Markov shift transfor-

mations and standard apparatus from Ergodic theory. We give an elementary

proof for Birkhoff’s point-wise ergodic theorem for simple functions. The er-

godic theorem for Markov chains follows directly from the point-wise ergodic

theorem for simple functions.
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Chapter 1

Introduction

The objective of the thesis is to develop the theory of finite state discrete

time Markov chains including the ergodic theorem for Markov chains. In this

introductory chapter, we give an overview of the theory that we develop in

the rest of this document and also try to motivate the role of this theory,

especially in the context of theoretical computer science.

Modelling of sources of information in Data Compression is among the

many situations where one require probability spaces where each individual

element in the sample space is an infinite sequence of symbols.

Let us consider a typical situation. Consider an information source emit-

ting symbols from a finite alphabet Q = {0, 1, 2, . . . q − 1} in discrete time.

The sample space in this case is the set of all infinite sequences of alpha-

bets of the source. For instance, (0, 1, 2, 0, 1, 2 . . . ) would be an element in

this sample space. This source can be modelled as a discrete stochastic pro-

cess - essentially an infinite sequence of jointly distributed random variables

X0, X1, X2 . . . where each Xn, n ∈ N take values from {0, 1, . . . q − 1}. This

provides a mathematical framework using which certain useful properties of

the source, (like compressibility, see [8], [23], [28]) can be investigated.
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LetX0, X1, ... be a sequence of random variables defining a discrete stochas-

tic process over an alphabet Q = {0, 1, . . . q−1}We can think of each random

variable Xn as a function that takes as input an infinite sequence (a0, a1 . . . )

which is an element from the product space QN = Q × Q × Q × ..., and

yields as value the projection to the nth component, an. Stated formally, we

can model each Xn as a projection function from QN to Q. Intuitively, each

element in the sample space is a possible sequence of symbols that the source

can emit starting from time zero. The random variables captures the symbol

emitted by the source at each instant n ∈ N.

Discrete time finite state Markov chains are discrete stochastic processes

with some additional (simplifying) mathematical properties, one of which

is that at each instance of time the next state (or the symbol emitted by

the source) is dependent only the present state and independent of whatever

states had occured in the past. They are widely used for modelling many

practical information sources - for instance, texts in the English language.

(see [21],[17]). This is in particular due to the power of Markov chains to

capture correlation between the occurence of source symbols. For example,

the Markov chain in figure 1.1 having English alphabets as states can capture

the fact that a ’u’ is highly probable to occur after a ’q’. The circular

nodes represent the states/symbols and the probability of transition between

two states is indicated along an arrow connecting them. By considering

all possible combinations of k symbols together we can build more powerful

source models, as seen in figure 1.2 where we show a portion of Markov chain

model considering all combinations of 4 symbols together. This model can

express that a ’ques’ will most probably be followed by a ’tion’ and very less

probably followed by a ’gggg’. As suggested by figure 1.2, a kth order Markov

source can be reduced to a first order Markov source with exponential (in k)

2
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Figure 1.1: First order Markov source
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Figure 1.2: Fourth order Markov source
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explosion in the state space. A nice account on modelling sources using

Markov chains can be found in [21].

An initial concern is to define a probability function (on the product

sample space). The existence of such a probability function is considered

to be a black-box result in many texts (like [8]). More advanced texts take

a traditional path through concepts in Measure Theory (as in [2],[1]) The

latter approach culminates with proving Andrey Kolmogorov’s Extension

Theorem (also known as Kolmogorov Consistency Theorem) which proves

the existence of an appropriate measure on the product sample space.

The sample space in the case of discrete time finite state Markov chains

possess a simpler mathematical structure, of being a finite and discrete topo-

logical spaces. Exploiting this simple topological structure, we give a simple

proof (in comparison with the standard method as seen in [2]) of the Kol-

mogorov extension theorem using standard facts from topology and measure

Theory.

A Markov chain is called an ergodic Markov chain if it possess certain ho-

mogeneous mixing properties (see Chapters 2,7 and 8 for precise definitions).

The ergodic theorem for Markov chains is an important result in the theory

of Markov chains. The theorem can be proved using probabilistic arguments

(as in [20] and [6]). However, the theorem can be obtained as a corollary of

the Birkhoff’s pointwise ergodic theorem, a standard result in ergodic the-

ory. To obtain the ergodic theorem for finite state Markov chains, it suffice

to argue Birkhoff’s ergodic theorem in a restricted case, specifically when the

function on which the theorem is applied is a simple function (see Chapter

9).

We initially obtain an elementary proof for Birkhoff’s ergodic theorem for

simple functions in Chapter 9. From the Birkhoff’s ergodic theorem for sim-
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ple functions, we easily obtain ergodic theorem for finite state Markov chains

as a corollary in Chapter 10. We also demonstrate some applications of the

Poincare recurrence lemma to the theory of Markov chains in Chapter 10.

1.1 Motivation

As we had noted in the previous section, Markov chains find many appli-

cations in theoretical computer science among which an important one is

its use in the modelling of information sources. Ergodic processes exhibit

certain homogeneous mixing properties, for example a Markov chain with a

positive probability path between any two states defines an ergodic process

(as we will show in Chapters 6 and 8).

The properties possessed by Ergodic processes often leads to optimality

results in data compression. A notable one is the optimality of Lempel-Ziv

1978 compression algorithm when the underlying source is a binary stationary

stochastic process (see [8]).

The ergodic theorem for Markov chains is a statement about long time be-

haviour of ergodic Markov chains. This result in particular, has applications

in design and analysis fo Randomized algorithms (see [19]). A mathemat-

ically rigorous development of the theory of Markov chains including the

ergodic theorem for Markov chains involve significant use of measure theo-

retic machinery, which may not be accessible to majors in communication

theory and computer science.

Initially, we need to formulate the underlying probability space of finite

state Markov chains. As we noted in the previous section, an essential ingre-

dient in this process is the Kolmogorov extension theorem. However since

the Markov chain has only a finite set of states, we can employ the compact-

5



ness property from topology to obtain simplifications in the main argument

of the standard proof for Kolmogorov extension theorem (see [2]).

The ergodic theorem for Markov chains is intuitively a generalisation of

the strong law of large numbers (see [2]) to Markov processes. The ergodic

theorem for Markov chains can be proved using various methods. In this

thesis, we do this by venturing into ergodic theory, proving the Birkhoff’s

ergodic theorem and obtaining the ergodic theorem for Markov chains as a

corollary of Birkhoff’s ergodic theorem. We claim that this approach is more

fruitful than certain traditional approaches, since we derive the results using

a more general toolset of ergodic theory. This claim is rooted in our belief

that arriving at certain results from a more abstract mathematical point of

view could provide more insights into the results and also equip the reader

with tools that are applicable for processes more general than finite state

Markov chains.

Ergodic theory is the study of dynamical systems that vary over time un-

der predetermined rules of change over time. The parts of ergodic theory that

we are concerned about will deal with dynamical systems where these rules

of change does not vary over time. A classic example is the system of gas par-

ticles in a container. The rules of change may specify the change of position

of each particle in the next instant of time. Birkhoff’s (pointwise) ergodic

theorem is a seminal result in this field which was proved by G.D.Birkhoff in

[5]. Simple functions are functions which take values from a finite subset of

the range. We give an elementary proof for the Birkhoff’s ergodic theorem

for simple functions in Chapter 9. The proof uses only elementary facts from

Lebesgue’s theory of integration unlike most methods available in literature

(like [24],[26] and [18]) which uses results like the Dominated convergence

theorem and Monotone convergence theorem (see [10],[2]).
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Due to the simplifications outlined above, we believe that our study can

be used to introduce the theory of finite state Markov chains to graduates

or advanced undergraduates in CS and communication theory in a 20 lec-

ture course without assuming any previous knowledge in measure theory and

topology. We summarize the expected prerequisities in the next section.

1.2 Prerequisities

We expect the reader to be familiar with basic notions in Real Analysis

(including limits, sequence, series, convergence etc). All the necessary topics

can be found in [22].

We also expect the reader has encountered topics in undergraduate prob-

ability and linear algebra. Good references for probability include [9] and the

appendix on probability theory from [7]. The reader may acquire necessary

linear alegbraic prerequisities from [3] or [15].

Necessary topics from topology and measure theory will be completely

developed in the following chapters.

1.3 Outline of the report

In Chapter 2 we begin the development of the theory of Markov chains by

developing finite run Markov chains. Here we motivate the need for the Kol-

mogorov extension theorem for finite discrete spaces which we will state and

prove in Chapter 4. The necessary topological and measure theoretic prereq-

uisities will be developed in Chapter 3. All the necessary results are stated

in Chapter 3. But, some of the proofs are given in Appendices A and B.

In Chapter 5, we extend the theory of finite run Markov chains done in Chap-

7



ter 2 to infinite run Markov chains. We will also develop sufficient theory

to state the ergodic theorem for Markov chains, which will proved later in

Chapter 10.

In Chapter 6, we prove the Perron theorem for positive Markov chains and

later prove the important convergence to stationary distribution result for

positive Markov chains.

In Chapter 7, we develop basic Ergodic theory and also give a proof of the

Poincare recurrence lemma. The results from Chapters 6 and 7 find applica-

tion in Chapter 8 where use introduce the Markov shift transformations and

ultimately prove that the shift transformation is ergodic if the underlying

Markov chain is stationary.

We given an elementary proof of the Birkhoff’s pointwise ergodic theorem

after developing Lebesgue integration theory for simple functions in Chapter

9. The Birkhoff’s ergodic theorem is applied to Markov chains in Chapter

10 to obtain the ergodic theorem for Markov chains. In this chapter we also

give a simple application of Poincare recurrence lemma to Markov chains.

Appendices C to D contain certain results that were stated but left unproven

in the following Chapters. The reader will be asked to refer to appendices at

these points.
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Chapter 2

Finite run Markov Chains and

their consistency

In this chapter we first look into the process of setting up appropriate prob-

ability spaces for discrete stochastic process (of which Markov chains are

a special case) and try to motivate the need for the Kolmogorov extension

theorem in this context. In the first section we do this by considering an

independent and identically distributed discrete stochastic process. In the

later parts of chapter, we begin with the theory of Markov chains by devel-

oping finite run Markov chains. Extending this to infinite run Markov chains

will be done in Chapter 5

9



2.1 Consistency and extension of finite prob-

ability spaces

Let us consider a hypothetical machine acting as a source of information that

emits a symbol independently at random from the alphabet Q = {a, b, c} 1

each second after being switched on. Let probability that the machine emits

the symbols be pa = 1
5
, pb = 2

5
and pc = 2

5
.

We first consider finite time outputs of the machine. Specifically, let it

be the case that the machine is switched off after 5 seconds from starting. A

sample sequence emitted by the machine is shown in figure 2.1

Figure 2.1: Finite sequence emitted by the machine

Let us consider the set of all sequences that can be emitted by the machine

in this case, specifically Ω = {(x0, x1, . . . x4) : xi ∈ Q ∀i ∈ {0, 1, 2, . . . 4}} =

Q5. Using the probabilities of the alphabets, taking the power set 2Ω as the

set of events, we have the usual probability function P : 2Ω 7→ [0, 1] such

that for any element ω = (x0, x1, . . . x4) ∈ Ω we have P (ω) = px0px1 . . . px4 .

For example, the probability that 3 a’s occur in a sequence emitted by the

machine is found to be 5C3

(
1
5

)3 (4
5

)2
.

Now, consider the case when the machine be switched on at time zero

and emits symbols forever. A sample sequence emitted by the machine is

shown in figure 2.2

1We use a, b and c instead of Q = {0, 1, 2} for clarity

10



Figure 2.2: Infinite sequence emitted by the machine

Consider the set of all infinite sequences that can be emitted by the

machine, let Ω = {(x0, x1, x2 . . . ) : xi ∈ Q ∀i ∈ N} = QN. Now let us try to

construct a probability function P from set of events E = 2Ω to [0, 1]. Before

moving further we consider some desirable properties of P . These are some

of the possible questions we would like to answer using P:

• What is the probability that an infinite sequence begins with ‘a’ ?

• What is the probability that at times 10, 100 and 1000 the machine

does not emit a ’c’?

• What is the probability that in the range of time from 50 to 10000, the

machine emits b’s only?

Intuition suggests that the answer to these questions should be the same

as what we should obtain on considering the case when the machine emits

a symbol exactly at the finite set of times considered in the above questions

and remains switched off during other times. For example, consider the first

question, the set of sequences we are concerned about is intuitively 1
5

th
of the

sample space Ω. This is exactly the probability that the machine emits an

‘a’ at time 0 when it is switched off at time = 1. We observe that P should

be an extension of the usual probability functions we obtain on considering

a finite set of times.

Let [a, b] where a < b denote {n ∈ N : a ≤ n ≤ b}. Now, let us consider

the sample spaces Ω[0,5] = {(x0, x1, . . . x5) : xi ∈ Q ∀i ∈ {0, 1, . . . 5}} and

11



Ω[0,10] = {(x0, x1, . . . x10) : xi ∈ Q ∀i ∈ {0, 1, . . . 10}}. i.e, we consider the

resulting sample spaces when the machine switched on at time 0 is switched

off after times 5 and 10 respectively. We have the usual notion of probabilities

over these sample spaces. Let the probability functions be P[0,5] and P[0,10]

respectively.

Now consider the probability of machine emitting a ‘b’ at times 2,3 and

4 respectively. Both P[0,5] and P[0,10] are capable of providing the probability

we need and their answers are consistent with each other (it can be verified

that the answer is (2
5
)3 in both situations).

Before making a more general statement, the following notation is defined.

Let π denote the projection function from Ω[0,10] to Ω[0,5]. That when π is

applied on (x0, x1, . . . x10) ∈ Ω[0,10], the function outputs its coordinates from

time 0 to 5, (x0, x1, . . . x5) ∈ Ω[0,5]. The inverse π−1 when applied to any set

of elements A in Ω[0,5], outputs all possible elements in Ω[0,10] that can be ob-

tained by extending any a ∈ A by inserting any possible value in coordinates

6 to 10. For example, π−1 ({(a, a, b, a, c, a)}) = {(a, a, b, a, c, a, x6, x7 . . . x10) :

xi ∈ Q ∀i ∈ {6, 7, . . . 10}}

Generally, observe that for any event A ⊆ Ω[0,5], it is the case that

P[0,10] (π−1 (A)) = P[0,5] (A). i.e, probability of any event A ⊆ Ω[0,5] can

be consistently answered by P[0,10] on being applied to the inverse projection

of set A to Ω[0,10].

The above argument in case of [0, 5] and [0, 10] can be extended to any

X, Y ⊆ N such that X ⊆ Y . We will say in this case that, the set of proba-

bility functions we obtain on considering finite subsets of N are a consistent

family of probability functions.

Since we have seen the notions of extension and consistency, we are in

a position to see the relevance of Kolmogorov Extension Theorem. Let F

12



denote the set of all probability functions that can be constructed over finite

set of times (like P[0,5] and P[0,10] ). The existance of a probability function

P on Ω = {(x0, x1, x2 . . . ) : xi ∈ Q ∀i ∈ N} = QN which is an extension

of every probability function in F is not obvious at this stage. Its existance

should necessarily be argued before moving further into the study of random

processes.

This is where Kolmogorov Extension Theorem comes into picture. In-

tuitively speaking, in the case considered above, when the usual probability

functions over finite product sample spaces F is a consistent family of prob-

ability functions, the existance of P on Ω = {(x0, x1, x2 . . . ) : xi ∈ Q ∀i ∈

N} = QN which is an extension of any probability function in F is guarenteed

by Kolmogorov Extension Theorem.

In the next section, we begin with the theory of Markov chains and we try

to further motivate the use of Kolmogorov extension theorem in this context.

2.2 Finite run Markov chains

Markov chains are discrete stochastic processes (infinite sequence of random

variables X0, X1, . . . as defined in the Introduction) with certain dependency

among the random variables. In this chapter we study finite run Markov

chains. Through this we aim to motivate the relevance of the Kolmogorov

Extension Theorem in the context of Markov chains by investigating ’finite

run’ versions of general Markov chains. We also encounter certain sufficient

conditions for consistency of probability functions over finite indices.

Markov chains can be seen as a random walk (a finite walk in case of finite

run Markov chains as we define later in this chapter) over a state transition

system like the random traffic light given in the figure below.

13



Green Red
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0.35

0.6

0.5 0.1

0.3

0.350.35

0.15 0.
3

Figure 2.3: Random traffic light Markov chain

Let us examine two definitive properties of general Markov chains,

• When the process is in a state (say green as in the example above),

the next state the system can be in is totally dependent on the current

state and independent on the earlier states the system was in. (this is

referred to as the Markov property of Markov chains)

• The probability of transition between any two specific states does not

change with time. For example, when the traffic light Markov chain

is in state green at any point of time, the probability of making a

transition to the yellow state is always 0.15 (this is referred to as the

time invariance property)

We will make use of matrices to capture the state transition model with its

transition probabilities.

Definition 2.2.1. Let Q = {1, 2, 3, . . . q} be a finite set. A matrix M =

[pij]i,j∈Q is defined to be a stochastic matrix if 0 ≤ pij ≤ 1 and
∑

i∈Q pij = 1

for all i ∈ Q

14



We capture the essential ’ingredients’ for defining a Markov chain as a

Markov system

Definition 2.2.2 (Markov system). Let Q = {1, 2, 3, . . . q} be a finite set.

A matrix M = [pi,j]i,j∈Q be a stochastic matrix. let µ0 = [pi]i∈Q be a |Q|×1

column vector such that 0 ≤ pi ≤ 1 and
∑
i∈Q

pi = 1. We define the triple

(Q, µ,M) to be a Markov system. Q is the set of states, M is transition

matrix and µ is referred to as the initial distribution of the Markov system

(Q, µ,M).

The (i, j)th entry of the stochastic matrix M represent the probability

that the Markov system makes a transition from state i to state j.

We will consider the case when the Markov system ’starts’ at time 0 and

’runs’ upto some n ∈ N. In this chapter [0, n] for any n ∈ N will represent

the set {0, 1, . . . n}. Also. Q will represent a finite set {1, 2, 3, . . . q} for some

q ∈ N unless specified otherwise. Now we define a n-Run Markov chain.,

Definition 2.2.3. Given a Markov system (Q, µ,M), consider the sample

space Ω[0,n−1] = Qn and the set of events E[0,n−1] = 2Ω[0,n−1] . Let P[0,n−1]

be any probability function on E[0,n−1] (we specify necessary conditions on

P[0,n−1] shortly). Let X0, X1, . . . Xn−1 be a sequence of random variables

such that Xi = πi for each i ∈ {0, 1, . . . n− 1} where πi’s are the projection

functions from Ω[0,n−1] to the component spaces. X0, X1, . . . Xn−1 is defined

to be an n-Run Markov chain if the following holds:

1. P[0,n−1](X0 = a) = pa for any a ∈ Q

2. P[0,n−1](Xi = ai|Xi−1 = ai−1, . . . X0 = a0) = P[0,n−1](Xi = ai|Xi−1 =

ai−1) for all i ∈ {1, 2, . . . n− 1} when each ai ∈ Q

3. P[0,n−1](Xi = b|Xi−1 = a) = pba for all i ∈ {1, 2 . . . n − 1} and for all

a, b ∈ Q

15



(Ω[0,n−1], E[0,n−1], P[0,n−1]) is called the n-Run probability space for the

given Markov system (Q, µ,M)

It is to be noted that the Markov property and time invariance hold by

definition for n-run Markov chains.

The following is a direct consequence of the definition of n-Run Markov

chains,

P[0,n−1]({(a0, a1, . . . an−1)})

= P[0,n−1]({X0 = a0})P[0,n−1]({X1 = a1|X0 = a0}) . . .

. . . P[0,n−1]({Xn = an|X0 = a0, . . . Xn−1 = an−1})

= P[0,n−1]({X0 = a0})P[0,n−1]({X1 = a1|X0 = a0}) . . .

. . . P[0,n−1]({Xn = an|Xn−1 = an−1}) (using Markov prop.)

= pa0pa1a0 . . . pan−1an−2

for each (a0, a1, . . . an−1) ∈ Ω[0,n−1].

We obtained that,

P[0,n−1]({(a0, a1, . . . an−1)}) = pa0pa1a0 . . . pan−1an−2 (2.1)

for each (a0, a1, . . . an−1) ∈ Ω[0,n−1].

Conversely, given a Markov system (Q, µ,M), a probability function P[0,n−1]

with the desirable properties specified in the definition can be obtained by

defining P[0,n−1] as in equation 2.1. We verify the three conditions in definition

2.2.3m

1. For any a ∈ Q, P[0.n−1](X0 = a) = P[0.n−1] {(a)} = pa.
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2. If i ∈ {1, 2, . . . n− 1} and if ai ∈ Q for all i,

P[0,n−1](Xi = ai|Xi−1 = ai−1, . . . X0 = a0)

=
P[0,n−1](Xi = ai, Xi−1 = ai−1, . . . X0 = a0)

P[0,n−1](Xi−1 = ai, Xi−2 = ai−1, . . . X0 = a0)

=
pa0pa1a0 . . . paiai−1

pa0pa1a0 . . . pai−1ai−2

= paiai−1

3. For all i ∈ {1, 2 . . . n− 1} and for all a, b ∈ Q,

P[0,n−1](Xi = b|Xi−1 = a) =
P[0,n−1](Xi = b,Xi−1 = a)

P[0,n−1](Xi−1 = a)

=

∑
q0,q1,...qi−2∈Q

P[0,n−1]{(q0, q1, . . . qi−2, a, b)}∑
q0,q1,...qi−2∈Q

P[0,n−1]{(q0, q1, . . . qi−2, a)}

=

∑
q0,q1,...qi−2∈Q

pa0pq1q0 , . . . paqi−2
pba∑

q0,q1,...qi−2∈Q
pa0pq1q0 , . . . paqi−2

=

pba ×
∑

q0,q1,...qi−2∈Q
pa0pq1q0 , . . . paqi−2∑

q0,q1,...qi−2∈Q
pa0pq1q0 , . . . paqi−2

= pba

Thus, defining the probability function P[0,n−1] as in equation 2.1 is an

equivalent way of defining n-Run Markov chains.

At this point we obtain the following fact.

Lemma 2.2.1. Let X0, X1, X2, . . . be a n-run Markov chain corresponding to

a Markov system (Q, µ0,M) ,the vector of probabilities [P[0,n−1](Xi = b)]b∈Q =

M iµ0 for any i ∈ [0, n− 1]

Proof. The proof is by induction on i

The result is trivially true when i = 0.
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Assume the result of i = k− 1. We will prove the result for i = k (such that

0 ≤ k ≤ n− 1)

For any 0 ≤ i ≤ n− 1 and a ∈ Q, [M iµ0]a denote the entry in ath of M iµ0.

Using conditional probability, we get

P[0,n−1](Xk = b) =
∑
a∈Q

P[0,n−1](Xk = b|Xk−1 = a)P[0,n−1](Xk−1 = a)

=
∑
a∈Q

P[0,n−1](Xk = b|Xk−1 = a)
[
Mk−1µ0

]
a

(1)

=
∑
a∈Q

pba
[
Mk−1µ0

]
a

=
[
Mkµ0

]
a

We have used the induction hypothesis in obtaining equality in (1)

The above shows that [P[0,n−1](Xk = b)]b∈Q = Mkµ0 and hence the result

follows.

Thus, finding the set of probabilities that the Markov chain is in particular

states at any time i reduces to multiplying the transition matrix M , i times

with the initial distribution vector µ0.

We extend the notion of projection functions before moving further. Let

{Bi}i∈I (I arbitrary) be a any class of sets and
∏

i∈I Bi be the product of

Bi’s. Let F ⊆ I, πF :
∏

i∈I Bi 7→
∏

f∈F Bf will denote the projection function

to the product over the component spaces indexed with F . More precisely,

πF ((ai)i∈I) = ((af )f∈F ) for all (ai)i∈I ∈
∏

i∈I Bi . When F is a singleton,i.e,

F = {k}, then we use πk instead of π{k} (hence, the notation is consistent

with our earlier use of π).

We now prove the main result of this section,

Lemma 2.2.2. Given a Markov system (Q, µ0,M), the n-Run probability

spaces are consistent with each other. i.e, Suppose m,n ∈ N such that

n < m. Then for any A ∈ E[0,n−1], P[0,m−1](π
−1
[0,n−1]A) = P[0,n−1](A)
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Proof. P[0,m−1](π
−1
[0,n−1]A)

=
∑

(a0,a1,...an−1)∈A

∑
an+1∈Q

∑
an+2∈Q

. . .
∑

am−1∈Q

P[0,m−1] {(a0, a1, . . . am−1)}

=
∑

(a0,a1,...an−1)∈A

∑
an+1∈Q

∑
an+2∈Q

. . .
∑

am−1∈Q

pa0pa1a0 . . . pam−1am−2

=
∑

(a0,a1,...an−1)∈A

∑
an+1∈Q

∑
an+2∈Q

. . .
∑

am−2∈Q

pa0pa1a0 . . . pam−2am−3

∑
am−1∈Q

pam−1am−2

By using the property of stochastic matrices, the above sum reduces to,∑
(a0,a1,...an−1)∈A

∑
an+1∈Q

∑
an+2∈Q

. . .
∑

am−2∈Q

pa0pa1a0 . . . pam−2am−3

In successive steps, we get,

P[0,m−1](π
−1
[0,n−1]A) =

∑
(a0,a1,...an−1)∈A

pa0pa0,a1 . . . pan−2,an−1 = P[0,n−1](A)

We further extend the notion of projection functions to equip ourselves

with notation that can capture more general projections between spaces. Let

{Bi}i∈I (I arbitrary) be a any class of sets and
∏

i∈I Bi be the product of Bi’s.

Let F,G ⊆ I such that F ⊆ G, πG→F :
∏

g∈GBg 7→
∏

f∈F Bf will denote the

projection function from product over the component spaces indexed with G

to the product over the component spaces indexed with F . More precisely,

πG→F ((ai)g∈G) = ((af )f∈F ) for all (ag)g∈G ∈
∏

g∈GBg. The πF functions we

introduced before the definiton of n-Run Markov chains can be expressed in

this notation as πI→F .

n-Run Markov chains intuitively are ‘runs’ of the general Markov chain

from time 0 to n − 1. Now we generalize this to Finite run Markov chains

which are ‘runs’ of general Markov chains on any finite subset of time. It

turns out to be the case that consistency of n-Run Markov chains is sufficient

19



to have a well-defined notion of Finite run Markov chains. We define a finite

run Markov chain below,

Definition 2.2.4. Given F ⊆ N, F = {f0, f1, f2, . . . f|F |−1} finite (without

loss of generality, let f0 < f1 < f2, · · · < f|F |−1). Let (Q, µ,M) be a Markov

system. Consider the sample space ΩF = Q|F | and the set of events EF = 2ΩF .

LetXf0 , Xf1 , . . . Xf|F |−1
be a sequence of random variables such thatXfi = πfi

for each i ∈ {0, 1, . . . |F |−1}.

Let n ∈ N be any natural number such that F ⊆ [0, n− 1] (such an n exist

since F is finite). Define the probability function on the space, PF (A) =

P[0,n−1](π
−1
[0,n−1]→F (A)) for all A ∈ EF . With the above definition of PF ,

Xf0 , Xf1 , . . . Xf|F |−1
is defined to be a Finite run Markov chain.

(ΩF , EF , PF ) is said to be a Finite run probability space

Now we verify that the probability function is well defined,

Lemma 2.2.3. PF is well defined

Proof. Let m,n ∈ N, m < n be such that F ⊆ [0, n− 1] and F ⊆ [0,m− 1].

For any A ∈ EF , PF (A) = P[0,n−1](π
−1
[0,n−1]→F (A))

= P[0,n−1]

(
π−1

[0,n−1]→[0,m−1]

(
π−1

[0,m−1]→F (A)
))

= P[0,m−1]

(
π−1

[0,m−1]→F (A)
)

(due to the lemma 2.2.2)

For any n ∈ N , when F = [0, n− 1], it is easy to see that (ΩF , EF , PF ) =

(Ω[0,n−1], E[0,n−1], P[0,n−1]) (the n-run probability space which we defined ear-

lier). And thus the defintions of PF ’s are consistent with the earlier definition

of P[0,n−1]’s. As we indicated, the Finite run probability spaces happens to

be consistent, which we prove below,

Lemma 2.2.4. Finite run probability spaces are consistent with each other.

i.e, Suppose F ⊆ G ⊆ N. Then for any A ∈ EF , PG
(
π−1
G→F (A)

)
= PF (A)
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Proof. Let n ∈ N be any natural number such that F,G ⊆ [0, n− 1]. Now,

PG
(
π−1
G→F (A)

)
= P[0,n−1]

(
π−1

[0,n−1]→G
(
π−1
G→F (A)

))
= P[0,n−1]

(
π−1

[0,n−1]→F (A)
)

= PF (A)

We saw that the consistency of n-Run probability spaces lead to a defin-

tion of finite run probability spaces, such that they themselves turn out to

be consistent. Given any discrete stochastic process X0, X1, X2 . . . , having

consistency of the natural probability spaces on [0, n− 1] runs of the process

(i.e, X0, X1, . . . Xn−1), the above arguments can be extended to define and

prove the consistency of probability spaces on any finite F ⊆ N.

Now we consider running the Markov system from time 0 to infinity. We

thus obtain random variables sequence X0, X1, X2 . . . . The discrete stochas-

tic process we thus obtain is generally referred to as a Markov chain (see [8]).

The sample space Ω in this case is the set of all infinite sequences of symbols

from set of states Q.

The following are natural requirements on the infinite product probability

space that we aim to define,

• We require that the inverse projections of events in the finite run prob-

ability spaces are events in the infinite product probability space. If

E is the set of events in the infinite product space, then given finite

F ⊆ N, π−1
F (A) ∈ E where A ∈ EF .

• Furthermore, we require a probability function P on E such that P is

consistent with any finite run probability function PF . i.e, P
(
π−1
F (A)

)
=

PF (A) for any finite F ⊆ N and ∀A ∈ EF (in particular being consistent

with the n-Run probability spaces (Ω[0,n−1], E[0,n−1], P[0,n−1]))
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Similar to what we stated at the end of the Introduction section, given

the consistency of finite run probability spaces (as we proved in the above

lemma), the existance of a probability function P with the properties men-

tioned above, is guarenteed by the Kolmogorov Extension theorem. In the

next chapter we develop the mathematical prerequisites for proving the Kol-

mogorov extension theorem.

Using the Kolmogorov extension theorem, we will set up the probability

spaces of infinite run Markov chains in Chapter 5
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Chapter 3

Mathematical prerequisities

This chapter discusses the topological and measure theoretic prerequisities

for further discussion on the Kolmogorov Extension Theorem. Some standard

results from measure and topolgy are stated but not proved here. The reader

may refer to the sources indicated alongside.

3.1 Topological prerequisities

Topological spaces can be considered as abstract generalizations of metric

spaces (eg. Rn) and it comprises of any non-empty set X along with a class

of subsets of X (called open sets) satisfying certain closure properties.

Definition 3.1.1 (Topological Space). A set X along with T being a class

of subsets of X is a topological space if the following holds:

1. T is closed under arbitrary unions

2. T is closed under finite intersections

T is said to be a topology on X.The subsets in T are called open sets and

any subset of X is called a closed set if its complement is open. Topological
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spaces, say (X, T ) will be denoted as X when there is no confusion regarding

the underlying topology T .

A straightforward way to make any subset Y of X into a topological space

is by defining the topology on that subset to be the set comprising of inter-

section Y with sets in T . It is trivial to verify that this indeed is a topology

on Y . This topology on Y ⊆ X is termed as the relative topology on Y . The

following definition is thus made,

Definition 3.1.2 (Relative Topology). Let (X, T ) be a topological space.

Given any Y ⊆ X, (Y,
{
Y ∩ T̄ : T̄ ∈ T

}
) is a topological space and is called

the relative topology on Y .

The notion of continuity of functions can be generalized as follows. Con-

tinuity comes handy in understanding the intuition behind product spaces to

be defined soon.

Definition 3.1.3 (Continuous and Open Mapping). Let (X, T ) and

(Y,M) be a topological space. Let f : X → Y .

• f is a continuous mapping if f−1(B) ∈ T for all B ∈M

• f is an open mapping if f(C) ∈M for all C ∈ T

Intuitively, open mapping maps open sets in domain to open sets in image

and inverse of open sets in image are open sets in domain in case of continuous

mappings.

Open bases and subbases are to defined before defining the notion of product

spaces.

Definition 3.1.4 (Open Base). Let (X, T ) be a topological space. A class

of open sets {Di}i∈I is called an open base of (X, T ) if any set in T can be

written as union of sets in {Di}i∈I .
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Definition 3.1.5 (Open Base generated by Open Subbase). Let (X, T )

be a topological space. A class of open sets {Ci}i∈I is called an open subbase

if the set of all finite intersections of sets in {Ci}i∈I forms a open base for

(X, T ). Here the open base is termed as the open base generated by the open

subbase {Ci}i∈I

The following fact is trivial and thus left unproven,

Lemma 3.1.1. Let Y ⊆ 2X . Let D be the set of all finite intersections of

sets in Y. If T is the set of all unions of sets in D, T is a topology on X.

Or in other words, any subset of 2X can serve as the open subbase for some

topology of X. The topology is termed as the topology generated by Y ⊆ 2X

In the above lemma, D serves as an open base for the topology on X.

The following are certain terminologies regarding open bases and subbases.

Definition 3.1.6 (Subbasic and Basic Open Sets). Let (X, T ) be a

topological space. Let {Ci}i∈I be an open subbase of (X, T ). Let the gen-

erated open base be {Dj}j∈J . Sets in {Ci}i∈I are called subbasic open sets.

Any subset of X is said to be a subbasic closed set if its complement is a

subbasic open set. Sets in {Dj}j∈J are called basic open sets. Any subset of

X is said to be a basic closed set if its complement is a basic open set.

If {(Xi, Ti)}i∈I is a non-empty set of topological spaces. Consider the set

X =
∏
i∈I
Xi. Among other topologies which could be defined on X, a topology

of particular interest in the one in which all projections functions from X

to the coordinate spaces are continuous. Lemma 3.1.1 suggests the following

definition for product topology on X

Definition 3.1.7 (Product topology). Let {(Xi, Ti)}i∈I is a non-empty

set of topological spaces and X =
∏
i∈I
Xi. Let

Y =
{
π−1
i (Gi) : Gi ∈ Ti, i ∈ I

}
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The topology generated by Y on X is called the product topology on X

We now consider a property of topological spaces called compactness and

study the product of compact topological spaces. When it is stated that a

class of subsets of a set X cover X it signifies that their union is equal to

X. The following definitions have to be made before defining the notion of

compactness,

Definition 3.1.8 (Open cover). An open cover in topological space (X, T )

is a set of open sets that cover X

Definition 3.1.9 (Basic open cover). A basic open cover in topological

space (X, T ) is a set of basic open sets that cover X

Definition 3.1.10 (Subbasic open cover). A subbasic open cover in topo-

logical space (X, T ) is a set of subbasic open sets that cover X

Definition 3.1.11 (Subcover). A subcover of any class of sets that cover

a set X, is a subclass which itself is a cover of X.

Now we define compactness of topological spaces,

Definition 3.1.12 (Compact topological spaces). A topological space

(X, T ) is compact ⇔ every open cover has a finite subcover.

The following definitions can simplify many arguments to follow,

Definition 3.1.13. A class of sets have intersection property (IP) if they

have non-empty intersection

Definition 3.1.14. A class of subsets of set X has finite intersection

property (FIP) if any finite subclass has non-empty intersection

The following fact is a consequence of the definition of compactness,

26



Lemma 3.1.2. A topological space (X, T ) is compact⇔ every class of closed

sets with FIP has IP

Now we state an important theorem about compact topological spaces,

Theorem 3.1.3. Let (X, T ) be a topological space. (X, T ) is compact ⇔

Every subbasic open cover has a finite subcover ⇔ Any class of subbasic

closed sets with finite intersection property has intersection property.

Now we are in a position to state an important result by Andrey Niko-

layevich Tikhonov,

Theorem 3.1.4 (Tychonoff’s theorem). Product of non-empty class of

compact topological spaces is compact

A proof of the theorem can be found in Theorem A.2.2

The following definitions will be useful at a later stage,

Definition 3.1.15 (Second countable topological space). Topological

space (X, T ) is second countable if it has a countable open base {Bn}n∈N

Definition 3.1.16 (Hausdorff topological space). Topological space (X, T )

is Hausdorff if for any x, y ∈ X there exists A,B ∈ T such that x ∈ A, y ∈ B

and A ∩B = φ

A proof for the following can be found in Chapter 5 of [25]. We do not

include the proof since we do not make use of the below anywhere in the

exposition.

Theorem 3.1.5. {(Xi, Ti)}i∈I is any family of Hausdorff spaces, then
∏

i∈I Xi

with the product topology is a Hausdorff space
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3.2 Measure Theoretic prerequisities

Now we introduce necessary definitions and results from Measure Theory.

We begin with defining an algebra of sets.

Definition 3.2.1 (Algebra of sets). Let X be an arbitrary set. A ⊆ 2X is

defined to be an algebra of subsets of X if the following holds

• X ∈ A

• If A ∈ A then Ac ∈ A

• If A1, A2, . . . An ∈ A, then
⋃n
i=1 Ai ∈ A

An algebra by definition, is closed under finite unions. If an algebra is

closed under countable unions, we define it to be a σ-algebra of sets.

Definition 3.2.2 (Sigma algebra of sets). Let X be an arbitrary set.

A ⊆ 2X is defined to be an σ-algebra of subsets of X if the following holds

• X ∈ A

• If A ∈ A then Ac ∈ A

• If A1, A2, A3 . . . ∈ A, then
⋃∞
i=1 Ai ∈ A

The following fact can be easily verified,

Lemma 3.2.1. Let I be an arbitrary index set. If {A1}i∈I are σ-algebras of

subsets of X, then
⋂
i∈I Ai is also a σ-algebra of subsets of X

And now we define σ-algebra generated by a collection of subsets,

Definition 3.2.3 (Generated sigma algebra). Let A be a collection of

subsets of X. Consider the set S =
{
H ⊆ 2X : H is a σ-algebra and A ⊆ H

}
Then we define σ-algebra generated by A, σ(A) =

⋂
H∈S S
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By Lemma 3.2.1, σ (A) is a σ-algebra. It is easy to verify that σ (A) is

the smallest sigma algebra containing A (in terms of containment). More

precisely, if M is a σ-algebra such that A ⊆M then σ (A) ⊆M.

We make few important definitions,

Definition 3.2.4 (Borel sigma algebra). If (X, T ) is a topological space,

we define the Borel σ-algebra BX over X to be σ (T )

We are in a position to define measurable spaces and measure spaces

Definition 3.2.5 (Measurable space). If X is an arbitrary set, A a σ-

algebra over X then (X,A) is called a measurable space

Definition 3.2.6 (Measure). If X is an arbitrary set, A an algebra over X

then µ : A 7→ [0,∞]] is defined to be a measure on A, if the following holds:

• µ(φ) = 0

• If A0, A2, A3 . . . ∈ A are a collection of pairwise disjoint sets in A, i.e,

Ai∩Aj = φ if i 6= j and if
⋃∞
i=0 Ai ∈ A, then µ (

⋃∞
i=0 Ai) =

∑∞
i=0 µ(Ai)

If A is a σ-algebra , the tuple (X,A, µ) will be referred to as a measure space

At this stage the above definitions can be motivated by looking back to

our original intention of proving the existance of a probability measure over

infinite product space with certain desirable properties. While approaching

probability theory using measure theoretic tools, we define the set of events

E over a sample space Ω as a sigma-algebra over Ω. Notice that certain prop-

erties we may require for the set of events are guarenteed by the definition of

a σ-algebra (like countable union of events should be an event by itself etc).

If a measure P is defined on E with range [0, 1] such that P (Ω) = 1, then P

can behave similar to our intuitive notion of a probability function. Usual
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properties of the probability function such as the probability of disjoint set

of events being the sum of their probabilities is guarenteed by the definition

of a measure.

The following are some properties of measures. Proof of the following can

be found in the appendix concerning Caratheodory theorem (refer lemma

B.1.3 and lemma B.1.4)

Lemma 3.2.2 (Continuity from below). (X,M, µ) be a measure space.

If {An}n∈N be collection of sets from M such that A0 ⊆ A1 ⊆ A2 ⊆ . . . , then

µ (
⋃∞
n=0An) = limn→∞ µ(An)

Lemma 3.2.3 (Continuity from above). (X,M, µ) be a measure space.

If {An}n∈N be collection of sets from M such that A0 ⊇ A1 ⊇ A2 ⊇ . . . and

µ(X) <∞, then µ (
⋂∞
n=0An) = limn→∞ µ(An)

The following is a major result which helps in extending a countable

additive measure defined on an algebra to the generated sigma algebra

Theorem 3.2.4 (Caratheodory’s Extension Theorem). Let µ : A 7→

[0,∞) be a finite measure on an algebra of sets A. Then µ can be uniquely

extended to a measure on the generated sigma algebra B = σ(A)

A proof of the above can be found in appendix on Caratheodory extension

theorem (see theorem B.5.2).

Now we consider defining a σ-algebra over
∏

i∈I Xi when we are given a family

of measurable spaces {(Xi,Mi)}i∈I . The product σ-algebra over
∏

i∈I Xi is

defined below,

Definition 3.2.7 (Product sigma algebra). Given {(Xi,Mi)}i∈I , a family

of measurable spaces. We define the product σ -algebra
⊗
i∈I
BXi

over
∏

i∈I Xi

as σ(
{
π−1
i (E) : E ∈Mi, i ∈ I

}
)
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For any i ∈ I the set
{
π−1
i (E) : E ∈Mi

}
is called the set of cylinder sets

with base i. Hence the product σ-algebra is the σ-algebra generated by the

set of cylinder sets over all i ∈ I.

If we consider a family of measure spaces {(Xi,Mi, µi)}i∈I where (Xi, Ti)

are topological spaces for each i ∈ I. Let X =
∏

i∈I Xi, in general
⊗
i∈I
BXi
6=

BX (where BX is the σ-algebra generated by the product topology over X =∏
i∈I Xi).

However, it is easy to see that BX will be atleast as big as
⊗
i∈I
BXi

in the

general case

Lemma 3.2.5. Let {(Xi,Mi, µi)}i∈I be any family of measure spaces where

(Xi, Ti) are topological spaces for each i ∈ I. Let (X =
∏

i∈I Xi,T =
∏

i∈I Ti)

be the product space with the product topology. We have,
⊗
i∈I
BXi
⊆ BX

But in a special situation the converse holds and these σ-algebras coincide

as we prove in the next theorem,

Now we prove some necessary lemmae,

Lemma 3.2.6. Let (X, T ) be a topological space. (X, T ) has a countable

subbase ⇔ (X, T ) has a countable base

Proof. The converse is trivial since a countable base is also a countable sub-

base.

Let C be a countable subbase. The base D generated by C is countable, since

it is the set of all finite intersections of sets in C. Hence the result follows.

We immediately obtain the following result,

Corollary 3.2.7. Let (X, T ) be a topological space. (X, T ) is second count-

able ⇔ (X, T ) has a countable subbase
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Lemma 3.2.8. Let (X, T ) be a second countable topological space. If C is a

countable subbase, then BX = σ(C)

Proof. It is trivial to see that σ(C) ⊆ BX . Let D be the countable base

generated by C. Since σ(C) is closed under finite intersections, we have

D ⊆ σ(C). Let G be any open set in (X, T ). G =
⋃
i∈I Di where Di ∈ Di.

Since D is countable, I is countable. Since σ(C) is closed under countable

unions, G ∈ σ(C). We obtain T ⊆ σ(C), proving that BX ⊆ σ(C). Hence the

result follows.

Now we prove the coincidence of BX and
⊗
i∈I
BXi

when the component

spaces are second countable,

Theorem 3.2.9. If {(Xi, Ti)}i∈I are family of measurable spaces, I is count-

able and (Xi, Ti) are second countable topological spaces, then
⊗
i∈I
Ti = BX

where X =
∏

i∈I Xi

Proof. Since
⊗
i∈I
BXi
⊆ BX by Lemma 3.2.5, it is enough to show that BX ⊆⊗

i∈I
BXi

. Let Ci denote the countable subbase for (Xi, Ti). Consider the set

C =
{
π−1
i (A) : i ∈ I, A ∈ Ci

}
. Since each Ci is a subbase for (Xi, Ti) and using Lemma 3.1.1, it is easy to

see that C is a subbase for the product topology,
∏

i∈I Ti. Furthermore since

each Ci is countable, C is a countable subbase for the product topology.

By definition, C ⊆
⊗
i∈I
σ (Ci). Now by Lemma 3.2.8 we have Ci = BXi

for each

i ∈ I. i.e, C ⊆
⊗
i∈I
BXi

.

We observe that a countable subbase for the product topology (specifically

C) happens to be inside the product sigma algebra. Let D be the open base

generated by C. Since
⊗
i∈I
BXi

is closed under finite intersections, D ⊆
⊗
i∈I
BXi

.

Take any open set G ∈ T . We have G =
⋃
j∈J Dj where Dj ∈ D for
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each j ∈ J . Since D is countable, J is countable. Since
⊗
i∈I
BXi

is closed

under countable intersections, G ∈
⊗
i∈I
BXi

. This proves T ⊆
⊗
i∈I
BXi

. Since

BX = σ(T ), the theorem follows.

There exist counter examples to the above theorem when the underlying

spaces are not second countable. One of them is the Nedoma’s pathology,

which can be found in appendix E.

The following fact is directly employed in the proof for Kolmogorov Ex-

tension Theorem.

Theorem 3.2.10 (Continuity from above at the empty set). Let A

be an algebra of subsets of X, and µ : A 7→ R+ a finite valued set function.

And if {A0, A1, . . . Ak} is collection of pairwise disjoint sets from A implies

µ(
⋃k
i=0 Ai) =

∑k
i=0 µ(Ai). Then the following are equivalent

• µ is countable additive on A

• {An}n∈N is collection of sets from A such that A0 ⊇ A1 ⊇ A2 ⊇ . . .

and
⋂∞
n=1An = φ then limn→∞ µ(An) = 0

Proof. The forward implication is direct from the ’Continuity from above

property’ of finite measures (Theorem B.1.4).

Let B0, B1, B2, . . . be a sequence of sets where Bn ∈ A for all n ∈ N, such that

Bi ∩ Bj = φ for all i, j ∈ N. Let B =
⋃∞
n=0 Bn. The backward implication

follows if we show that µ(B) =
∑∞

n=0 µ(Bn).

Let Cn =
⋃n
i=0 Bi. And let An = B − Cn. Observe that A0 = B ⊇ A1 ⊇

A2 ⊇ . . . and
⋂∞
n=1An = φ. Hence from our assumption, limn→∞ µ(An) = 0.

By finite additivity we have µ(Cn) =
∑n

i=0 µ(Bi). Also finite additivity

implies, µ(B) = µ(An) + µ(Cn) for all n ∈ N. Thus, limn→∞ µ(B) = µ(B) =

limn→∞ µ(An) + µ(Cn) = limn→∞
∑n

i=0 µ(Bi) =
∑∞

i=0 µ(Bi).
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Chapter 4

Kolmogorov Extension

Theorem for finite discrete

spaces

Before taking up the case of finite discrete spaces, we look into the Kol-

mogorov Extension Theorem for compact, Hausdorff and second countable

spaces. Let {(Xi, Ti)}i∈I be a family of topological spaces which are com-

pact,second countable and Hausdorff. The general version of the theorem is

attributed to the Russian mathematician Andrey Kolmogorov.

4.1 KET for product of compact, Hausdorff,

second countable spaces

Let {(Xi,Bi)}i∈I be a family of measurable spaces on Xi, where each Bi =

BXi
, the Borel sigma algebra over (Xi, Ti). If F ⊆ I is finite, then πF :∏

i∈I Xi 7→
∏

f∈F Xf will denote the usual projection function from
∏

i∈I Xi
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to
∏

f∈F Xf . More precisely, πF ((ai)i∈I) = ((af )f∈F ) for all (ai)i∈I ∈
∏

i∈I Xi

. When F is a singleton,i.e, F = {k}, then we use πk instead of π{k} (hence,

the notation is consistent with our earlier use of π). Let FI be the set of all

finite subsets of I.

We make a few definitions before proceeding further. Let B denote the

product σ-algebra over {(Xi,Bi)}i∈I . i.e, B =
⊗
i∈I
Bi

Definition 4.1.1. For each F ∈ FI , define BF = {π−1
F (E) : E ∈

⊗
i∈F
Bi}

BF thus consist of all cylinder sets on base F ∈ FI . An immediate

observation is,

Lemma 4.1.1. For each F ∈ FI , BF is a σ-algebra

Now consider the set obtained by collecting all possible finite base cylinder

set together,
⋃
F∈FI

BF . Let this be denoted as A. We establish certain

elementary facts about the entities defined above,

Lemma 4.1.2. If F,G ⊆ FI and F ⊆ G then BF ⊆ BG

Proof. Consider the set P = {A : A ∈
⊗
i∈F
Bi and π−1

F (A) ∈ BG}. Since

F ⊆ G, all the generating rectangles of
⊗
i∈F
Bi belongs to P . If A ∈ P ,

π−1
F (Ac) = (π−1

F (A))c ∈ BG. Hence P is closed under complementation. If

{Ai}∞i=0 is a collection of sets from P , then π−1
F (

∞⋃
i=0

Ai) =
∞⋃
i=0

π−1
F (Ai) ∈ BG.

Hence P is closed under countable union. This shows that P is a σ-algebra.

We obtain,
⊗
i∈F
Bi ∈ P =⇒

⊗
i∈F
Bi = P . We have shown that if A ∈

⊗
i∈F
Bi

then, π−1
F (A) ∈ BG, the lemma directly follows from this statement

Corollary 4.1.3. A is an algebra of subsets of X

Proof. Let {Ai}ni=0 be a finite collection of sets from A. Let {Ei}ni=0 be sets

from FI such that Ai ∈ BEi
. Let E =

n⋃
i=0

Ei. Now, from the above lemma,

Ai ∈ BE for i ∈ {0, 1, . . . n}. Since BE is a σ-algebra, the lemma follows.
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Lemma 4.1.4. For any F ∈ FI , BF ⊆ B

Proof. Consider the set P = {A : A ∈
⊗
i∈F
Bi and π−1

F (A) ∈ B}. Obviously,

all the generating rectangles of
⊗
i∈F
Bi belongs to P . If A ∈ P , π−1

F (Ac) =

(π−1
F (A))c ∈ B. Hence P is closed under complementation. If {Ai}∞i=0 is a

collection of sets from P , then π−1
F (

∞⋃
i=0

Ai) =
∞⋃
i=0

π−1
F (Ai) ∈ B. Hence P is

closed under countable union. This shows that P is a σ-algebra. We obtain,⊗
i∈F
Bi ∈ P =⇒

⊗
i∈F
Bi = P . We have shown that if A ∈

⊗
i∈F
Bi then,

π−1
F (A) ∈ B, the lemma directly follows from this statement.

Lemma 4.1.5. σ (A) = B

Proof. The generating set of B is
⋃
i∈I
{π−1

i (A) : A ∈ Bi}. This is trivially a

subset of the generating set of σ(A). Hence we easily obtain B ⊆ σ(A).

We have A =
⋃

F∈FI

BF . From the above lemma, BF ⊆ B for each F ∈ FI .

Hence we get A ⊆ B =⇒ σ(A) ⊆ B

We have shown that σ (A) = B

Let X =
∏

i∈I Xi. Now we state Kolmogorov Extension Theorem for

product of compact,Hausdorff and second countable topological spaces. If

f is any function from arbitrary set A to arbitrary set Y . If C ⊆ A, f |C
denotes the restriction of f to C ⊆ A. i.e, f |C(d) = f(d) for d ∈ C.

Theorem 4.1.6 (KET for product of compact, Hausdorff, second

countable spaces). Let PF be a probability measure on (Xi, BF ) for each

F ∈ FI . If the family of probability measures {PF}F∈FI
are ‘consistent’, i.e,

if F,G ∈ FI such that F ⊆ G then PG|BF = PF , then there exist a unique

probability measure P on (X,B) such that P |BF = PF for any F ∈ FI

Sketch of the proof. Define P̃ on A as P̃ (A) = PF (A) when A ∈ A and

F ∈ FI . This is well defined due to consistency conditions on the fam-

ily {PF}F∈FI
. It is easy to argue that P̃ is a finitely additive set function

36



on algebra A. The traditional approach for proving Kolmogorov Exten-

sion Theorem starts by considering a collection of sets from A such that

A0 ⊇ A1 ⊇ A2 ⊇ . . . and
⋂∞
n=1An = φ. Then by proving limn→∞ P (An) = 0,

Lemma 3.2.10 can be used to argue countable additivity of P on the algebra.

Now Caratheodory’s Extension Theorem (see theorem B.5.2) can be used to

prove that P̃ defined on the algebra A can be extended uniquely to obtain

a measure P on B which is an extension of the initial family of probability

measures as required by the theorem. A proof for KET for a very similar

case can be found in Chapter 4 in [2].

We are concerned about proving the theorem for formulating the under-

lying probability space of discrete time finite state Markov Chains, where the

individual spaces are mathematically much simpler. These are in fact finite

and discrete spaces.

4.2 KET for product of finite discrete spaces

Now we consider a special case of discussions in Section 4.1, i.e, when {(Xi, Ti)}i∈I
are finite discrete. First let us recall the notation from Section 4.1. {(Xi,Bi)}i∈I
denotes a family of measurable spaces on Xi, where each Bi = BXi

, the

Borel sigma algebra over (Xi, Ti). We will denote
∏
i∈I
Xi by Ω. Now we

consider the case when (Xi, Ti) are finite discrete for each i ∈ I. B de-

notes the product σ-algebra over {(Xi,Bi)}i∈I . i.e, B =
⊗
i∈I
Bi. We de-

fined BF = {π−1
F (E) : E ∈

⊗
i∈F
Bi} for each F ∈ FI . We further defined

A =
⋃
F∈FI

BF . We observed (in Corollary 4.1.3) that A is an algebra. Fur-

thermore due to Lemma 4.1.5, σ (A) = B. Let (X, T ) denote the product

space of {(Xi, Ti)}i∈I .

For simplicity we assume that I = N. The general case can be argued without
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much difficulty.

We observe some elementary facts about the generating algebra A =

σ(
⋃

F∈FN

BF ). By a rectangle, we mean a set of the form E = π−1
F (A) (where

A ∈
⊗
f∈F

Bf ) which is precisely the set of all elements in A. Now we define

elementary rectangles,

Definition 4.2.1 (Elementary rectangle). Any set E = π−1
F (A) ∈ A (for

any n,m ∈ N and A = (af )f∈F is a singleton such that A ∈
⊗
f∈F

Bf ) is called

an elementary rectangle

The following lemma is a direct consequence of the finiteness of the com-

ponent spaces

Lemma 4.2.1. Let E ∈ A be any rectangle. E =
k⋃
i=1

Ei where each Ei is an

elementary rectangle

Proof. Let {ai}ki=1 be an arbitrary indexing of
⊗
f∈F

Bf . We can get such a

finite indexing only becuase each Bi = P(Xi) is a finite set. Hence we can

guarentee that the number of distinct elements k ≤
∏
f∈F
|Xf |. Now, notice

that E =
k⋃
i=1

π−1
F (ai). The lemma follows by observing that each π−1

F (ai) is

an elementary rectangle.

Now, we note down a corollary of lemma 4.1.2,

Corollary 4.2.2. Let F ∈ FN, then BF ⊆ B[m,n] for some m ≤ n

Proof. A direct consequence of lemma 4.1.2 since for any finite set F , there

exist m,n ∈ N,m ≤ n such that F ∈ [m,n].

Now, we make few important topological observations regarding A before

proving KET for product of finite discrete spaces,
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Lemma 4.2.3. Any elementary rectangle E = π−1
F (A) ∈ A (for any n,m ∈

N and A = (af )f∈F is a singleton such that A ∈
⊗
f∈F

Bf) is a closed set in

the product topology

Proof. Notice that that for any n ∈ N and an ∈ Xn, π−1
n (an) is a closed set

(since an is closed in the discrete topolgy on Xn). Since E =
⋂
f∈F

π−1
f (af ), it

immediately follows that E is closed (closed sets are closed under arbitrary

intersection, we only have a finite intersection here).

We get the following as a corollary,

Corollary 4.2.4. Any E ∈ A is a closed set.

Proof. From lemma 4.2.1, we get that E =
k⋃
i=1

Ei where each Ei is an el-

ementary rectangle. Each Ei is closed due to lemma 4.2.3 and since finite

union of closed sets are closed, the result follows.

Theorem 4.2.5 (KET for product of finite discrete spaces). Let the

Topological spaces in the family {(Xi, Ti)}i∈I be finite discrete spaces. Let

PF be a probability measure on (X,BF ) for each F ∈ FI . If the family of

probability measures {PF}F∈FI
are ‘consistent’, i.e, if F,G ∈ FI such that

F ⊆ G then PG|BF = PF , then there exist a unique probability measure P on

(X,B) such that P |BF = PF for any F ∈ FI

Proof. Define P on A as P (A) = PF (A) when A ∈ A and F ∈ FI where

F is any finite subset of I such that A ∈ BF . This is well defined due to

consistency conditions on the family {PF}F∈FI
. It is easy to observe that

P is a finitely additive set function on algebra A. We will prove that P is

countable additive on A. If {An}∞n=1 be decreasing sequence of sets in A such

that
⋂∞
n=1An = φ, to prove countable additivity of P , by Lemma 3.2.10 it

is enough to prove that if P (A1) ≥ P (A2) ≥ . . . and P (An) ≥ ε for some
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ε > 0, then
⋂∞
n=1An 6= φ. Since the spaces are finite and discrete, each set

An ∈ A is a closed set (due to corollary 4.2.4). Now, we have that {An}∞n=1

is a decreasing sequence of non-empty closed sets . Since (X, T ) is compact

due to Tychonoff’s theorem, we have
⋂∞
n=1An 6= φ.

Thus we obtained a countably additive probability measure on A which can

be uniquely extended to B by using the Caratheodory’s Extension Theorem

(see theorem B.5.2)

To conclude, we will consider the example of the hypothetical machine in

section 2.1 where I = N. We have natural probability functions P̃F on each

measurable space of the form (
∏
i∈F

Xi, E) where E is the power set of
∏
i∈F

Xi

and F is a finite subset of N. Now, we can define measures on (
∏
i∈N

Xi,BF )

(for all F finite subset of N) as PF = P̃F ◦ πF . It can be argued that this

family of probability measures satisfy the consistency conditions required

in KET. The individual spaces are ({a, b, c}, 2{a,b,c}), are discrete and thus

they are finite discrete spaces. Now Theorem 4.2.5 proves the existance of

probability measure as we claimed at the end of section 2.1.
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Chapter 5

Markov chains

In this chapter we extend the study of finite run Markov chains that was

done in Chapter 2 to infinite run Markov chains.

5.1 Setting up Markov chains

At this stage we have in our hands, the Kolmogorov Extension theorem for

product of finite discrete spaces. Now, we are in a position to complete

the defintion of general finite state Markov chains. Given a Markov sys-

tem (Q, µ0,M), we are trying to define an appropriate set of events and a

probability function on the infinite product space QN.

On any finite set of indices F ⊆ N, we had defined finite run probability

spaces (ΩF , EF , PF ). We had also shown that the finite run probability spaces

are consistent with each other. i.e, Suppose F ⊆ G ⊆ N. Then for any

A ∈ EF , PG
(
π−1
G→F (A)

)
= PF (A).

Let us recall the requirements for the infinite product probability space,

that we had listed out at the end of Chapter 2.

• We require that the inverse projections of events in the finite run prob-
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ability spaces are events in the infinite product probability space. If

E is the set of events in the infinite product space, then given finite

F ⊆ N, π−1
F (A) ∈ E where A ∈ EF .

• Furthermore, we require a probability function P on E such that P is

consistent with any finite run probability function PF . i.e, P
(
π−1
F (A)

)
=

PF (A) for any finite F ⊆ N and ∀A ∈ EF (in particular being consistent

with the n-Run probability spaces (Ω[0,n−1], E[0,n−1], P[0,n−1]))

At this point, recall the notation developed in Chapter 4, FI is the set of all

finite subsets of I, BF = {π−1
F (E) : E ∈

⊗
f∈F

Bf}, the algebra of cylindrical

sets A =
⋃

F∈FI

BF and the product σ-algebra B = σ(A).

Theorem 5.1.1 (KET for product of finite Discrete spaces). Let

{(Xi, Ti)}i∈I be a family of finite discrete topological spaces. Let PF be a

probability measure on (X,BF ) for each F ∈ FI . If the family of probability

measures {PF}F∈FI
are ‘consistent’, i.e, if F,G ∈ FI such that F ⊆ G then

PG|BF = PF , then there exist a unique probability measure P on (X,B) such

that P |BF = PF for any F ∈ FI

The first requirement prompts us to define the σ-algebra to be σ({A :

A ∈ EF for some finite F ⊆ N}). This is precisely the product sigma algebra

B =
⊗
i∈I
Bi =

⊗
i∈I
E{i} = σ({A : A ∈ EF for some finite F ⊆ N}).

Now using the the family of finite run probability functions, we will see how

we can obtain a family of consistent probability functions as required by the

Kolmogorov extension theorem on (QN, BF ) for F ∈ FN.

Consider some F ∈ FN, On (X,BF = {π−1
F (A) : A ∈ EF}), when E =

π−1
F (A), define P̃F (E) = PF (A). We will immediately prove why this family

of probability functions so defined on (QN, BF ) for F ∈ FN is a consistent

family,
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Lemma 5.1.2.
{
P̃F

}
F∈FN

is a consistent family of probability functions.

Proof. We need to show when F ⊆ G, P̃G|BF = P̃F .

Let E ∈ BF such that E = π−1
F (A) where A ∈ EF . Now,

P̃G(E) = P̃G(π−1
F (A))

= P̃G(π−1
G (π−1

G→F (A)))

= PG(π−1
G→F (A))

= PF (A) (by lemma 2.2.4)

= P̃F (π−1
F (A))

= P̃F (E)

Since choice of E was arbitrary, the lemma follows.

Now, the Kolmogorov Extension theorem for finite discrete spaces guar-

entees the existance of a probability function P̃ on (X,B =
⊗
i∈I
Bi) such that

P̃ |BF = P̃F for any F ∈ FN. This shows that the probability function given

by KET meets the requirements specified by the aims we hoped to acheive

on defining a probability space for infinite ’run’ of a Markov system.

We thus obtained a probability space, (QN,B, P̃ ) that satisifies the two

requirements specified above. The infinite sequence of random variables

X0, X1, X2, . . . , which are infact the projection functions to each coordinate

of the inifnite product (i.e, Xi = πi) will be referred to as a general Markov

chain or a Markov chain in our further discussions. The probability func-

tion P̃ will be replaced with P since we will no longer be concerned about

finite run probability functions in the rest of the document.
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5.2 Ergodic theorem for Markov chains

A important concept in the theory of Markov chains is that of a stationary

distribution,

Definition 5.2.1 (Stationary distribution). Let (Q, µ0, P = [pij]) be a

Markov system with associated probability space (Ω = QN,B, P ) and as-

sociated Markov chain X0, X1, X2, . . . . A probability distribution vector

µ = [µi]i∈Q is a said to be a stationary distribution if Pµ = µ (or in lin-

ear algebraic terms, µ is an eigenvector of P with eigenvalue 1). If µ0 is a

stationary distribution, then the corresponding Markov chain is said to be a

stationary Markov chain.

We obtain an equivalent way of expressing the stationarity of a Markov

chain,

Lemma 5.2.1. Let (Q, µ0, P = [pij]) be a Markov system with associated

probability space (Ω = QN,B, P ) and associated Markov chain X0, X1, X2, . . . .

The Markov chain is stationary if and only if for any event of the form

{ω ∈ Ω : Xn(ω) = q0, Xn+m1(ω) = q2, . . . Xn+mk
(ω) = qk−1} (for any

n, k ∈ N, sequence of states q0, q1, . . . qk−1 and sequence of natural numbers

m1 < m2 < · · · < mk−1),

P
(
{ω ∈ Ω : Xn(ω) = q0, Xn+m1(ω) = q1, . . . Xn+mk−1

(ω) = qk−1}
)

= P
(
{ω ∈ Ω : X0(ω) = q0, Xm1(ω) = q1, . . . Xmk−1

(ω) = qk−1}
)

Proof. Consider the forward implication. Since µ0 = [µij] is a stationary

distribution, we get

P
(
{ω ∈ Ω : Xn(ω) = q0, Xn+m1(ω) = q1, . . . Xn+mk−1

(ω) = qk−1}
)

= µq0P
m1 [q1, q0]Pm2−m1 [q2, q1] . . . Pmk−1−mk−2 [qk−1, qk−2]
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Similarly,

P
(
{ω ∈ Ω : X0(ω) = q0, Xm1(ω) = q1, . . . Xmk−1

(ω) = qk−1}
)

= µq0P
m1 [q1, q0]Pm2−m1 [q2, q1] . . . Pmk−1−mk−2 [qk−1, qk−2]

Hence we obtain,

P
(
{ω ∈ Ω : Xn(ω) = q0, Xn+m1(ω) = q1, . . . Xn+mk−1

(ω) = qk−1}
)

= P
(
{ω ∈ Ω : X0(ω) = q0, Xm1(ω) = q1, . . . Xmk−1

(ω) = qk−1}
)

Consider the backward implication. Applying the conditions in hypothesis

to events of the form P (ω ∈ Ω : Xi = q) (for any state q and i ∈ N), we get

P ({ω ∈ Ω : Xi(ω) = q}) = P ({ω ∈ Ω : X0(ω) = q})

The above in particular implies that,

P ({ω ∈ Ω : X1(ω) = q}) = P ({ω ∈ Ω : X0(ω) = q})

for any state q ∈ Q. This implies Pµ0 = µ0, or in other words the chain is a

stationary Markov chain.

Our study will mostly focus on finite state ergodic Markov chains. We

will define an ergodic Markov chain at this point.

Definition 5.2.2. Let (Q, µ0, P = [pij]) be a given Markov system. We use

the notation P n[i, j] to refer to the entry in ith row, jth column of P n

We also set up notation for the path probability over some finite sequence

of states q1q2q3 . . . qk as,

Definition 5.2.3. Let (Q, µ0, P = [pij]) be a given Markov system.

We define P [q1q2q3 . . . qk] = pq2q1pq3q2pq4q3 . . . pqkqk−1
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P [q1q2q3 . . . qk] gives the possibility that the Markov chain moves along

the path q1 → q2 → q3 . . . qk−1 → qk in the successive steps.

Definition 5.2.4 (Ergodic Markov chain). Let (Q, µ0, P = [pij]) be a

Markov system with associated probability space (Ω = QN,B, P ) and asso-

ciated Markov chain X0, X1, X2, . . . . X0, X1, X2, . . . is an ergodic Markov

chain if there exist a probability distribution vector p = [pi] such that

P n[i, j]→ pi as n→∞

The following lemma demonstrates the important convergence to station-

ary distribution property of ergodic Markov chains,

Lemma 5.2.2. Let (Q, µ0, P = [pij]) be a Markov system with stationary

distribution µ = [µi]i∈Q. Then,

• If P n[i, j]→ µi as n→∞ then P nµ0 → µ as n→∞

• For all µ0 if P nµ0 → µ as n→∞ then P n[i, j]→ µi as n→∞

Proof. First implication is immediate on taking µ0 having 1 in its jth row

and 0 in ith row for all i 6= j.

Now let us consider the second implication. Let P n[i, j] → pi as n → ∞.

This precisely says that P n → Q where Q = [qij] such that qij = pi for all

i, j ∈ Q. Hence, P nµ0 → Qµ0 as n→∞. Since qij = µi for all i, j ∈ Q and

using the fact that µ0 is a probability distribution, we get that Qµ0 = µ.

The above also shows that an ergodic Markov chain has a unique station-

ary distribution

Lemma 5.2.3. Let (Q, µ0, P = [pij]) be a Markov system with associated

probability space (Ω = QN,B, P ) and associated Markov chain X0, X1, X2, . . . .
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X0, X1, X2, . . . be an ergodic Markov chain (there exist a probability distri-

bution vector p = [pi] such that P n[i, j] → pi as n → ∞). The chain has a

unique stationary distribution.

Proof. Lemma 5.2.2 shows that p = [pi] is indeed a stationary distribution.

We will address the uniqueness now. Suppose ν = [νi] is a stationary distri-

bution, we have Pν = ν, furthermore P nν = ν. Set µ0 = ν. From lemma

5.2.2, we get that P nν → p as n→∞. We get, ν = p, since P nν = ν.

One of the major objectives of this study would be to establish the result

stated below, the ergodic theorem for Markov chains. Let N(q, t) denote the

number of times the Markov chain visits the state q before time t.

Definition 5.2.5 (Nq,t). Let (Q, µ0, P = [pij]) be a Markov system with

associated probability space (Ω = QN,B, P ). For any q ∈ Q and t ∈ N+, let

Nq,t : Ω 7→ R be such that for any ω = (ω0, ω1, ω2, ω3, . . . ) ∈ Ω, Nq,t(ω) =

|{0 ≤ i < t : ωi = q}|

We are now in a position to state the ergodic theorem for stationary

Markov chains,

Theorem 5.2.4 (Ergodic theorem for stationary Markov chains). Let

(Q, µ0 = [pi], P = [pij]) be a Markov system with associated probability space

(Ω = QN,B, P ) defining a stationary Markov chain. Suppose the underlying

Markov chain satisfies P n[i, j]→ pi as n→∞ for all i, j ∈ Q, then for any

q ∈ Q

lim
t→∞

Nq,t

t
= pq almost everywhere

The ergodic theorem for Markov chains, intuitively provides a method to

estimate the fraction of time that the stationary ergodic Markov chain has

spent in a particular state q upto a particular time n. pq - is an estimate for
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this fraction - Nq,t

t
which converges to pq as t→∞. After developing basics

of ergodic theory and Markov shift transformations, we give a proof of the

ergodic theorem for Markov chains in Chapter 10
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Chapter 6

Positive Markov chains

In this chapter we establish the fundamental result that positive Markov

chains always have a stationary distribution and furthermore starting from

any probability distribution, positive Markov chains (i.e a Markov chain hav-

ing all entries in its transition matrix > 0) converge to the stationary distri-

bution. An equivalent way to state this is that for all states i, j, P n[i, j]→ pi

as n→∞ (we will see why this is the case later).

Initially we venture into linear algebra and prove the Perron theorem for

positive matrices. The above claims about positive Markov chains will easily

follow from Perron theorem, as will be shown in this chapter.

6.1 Perron theorem for positive matrices

Perron’s theorem for positive matrices is a specific case of the much more gen-

eral Perron-Frobenius theorem which proves analogous statements for non-

negative matrices. Given two real vectors x =

[
x1
x2
...
xn

]
, y =

[
y1
y2
...
yn

]
∈ Rn, we say

x ≥ y if xi ≥ yi for all i. Similar conditions hold for >,≤ and <.

By a positive (non-negative) matrix or vector, we mean a matrix or vector
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with all its entries positive (non-negative).

Let us define the dominant eigenvalue of a matrix,

Definition 6.1.1 (Dominant eigenvalue). Let An×n = [aij]1≤i,j≤n be a

real matrix. λ ∈ C is a dominant eigenvalue of A if for any eigenvalue λ̃, the

following holds,

|λ̃|≤ |λ|

We will state the Perron theorem for positive matrices before further

discussion,

Theorem 6.1.1 (Perron theorem). Let An×n = [aij]1≤i,j≤n be a real posi-

tive matrix. A has an eigenvalue λ(A) such that,

1. λ(A) has a positive eigenvector h > 0

2. If x ∈ Cn is an eigenvector with eigenvalue λ(A), then x = ch for

c ∈ C. Or in other words, the dimension of the eigenspace of λ(A) is

1.

3. If λ is any other eigenvalue of A, then |λ|< λ(A)

4. If λ 6= λ(A) is an eigenvalue of A, then λ has no non-negative eigen-

vector (and thus, no non-positive eigenvectors)

Perron theorem says that if A is a positive matrix, then A has a positive

dominant eigenvalue λ(A) and the the four conditions given in the theorem

are true.

Before proving the result in the general case, we prove Perron theorem for

positive symmetric matrices. In this special case, the proof is much simpler

and helps in obtaining intuitions before dealing with the general case.
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6.2 Perron theorem for positive symmetric

matrices

We begin with the following elementary linear algebraic facts,

Lemma 6.2.1. If M is a n× n real symmetric matrix, then all eigenvalues

of M are real.

Proof. Let λ be an eigenvalue with eigenvector x, i.e Mx = λx. Now since

MT = M , λ < x, x >=< λx, x >=< Mx, x >=< x,MTx >=< x,Mx >=<

x, λx >= λ < x, x >. We get that < x, x > (λ− λ) = 0. Since x 6= 0, we get

λ = λ. This implies that λ is real.

Lemma 6.2.2. If λ1 and λ2 are two non-conjugate eigenvalues (i.e λ1 6= λ2)

of an n × n real matrix M , x1 is an eigenvector of M corresponding to λ1

and x2 is an eigenvector of MT corresponding to λ2, then < x1, x2 >= 0

Proof. Since M is real, < Mx1, x2 >=< x1,M
Tx2 >. Since λ1 and λ2 are

real, we obtain λ1 < x1, x2 >= λ2 < x1, x2 >. i.e, (λ1 − λ2) < x1, x2 >= 0.

Since λ1 6= λ2, the lemma follows

We also define doubly stochastic matrices,

Definition 6.2.1 (Doubly stochastic matrix). A real matrix An×n = [aij]

is defined to be a doubly stochastic matrix if 0 ≤ pij ≤ 1 for all i, j ∈

{1, 2, . . . n},
∑

1≤i≤n aij = 1 for all 1 ≤ j ≤ n and
∑

1≤j≤n aij = 1 for all

1 ≤ i ≤ n

Doubly stochastic matrices are thus stochastic matrices with row sums

= 1. Now we state and prove the Perron theorem for positive symmetric

stochastic matrices,
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Theorem 6.2.3 (Perron theorem for positive symmetric stochastic

matrices). Let P be a positive symmetric stochastic n× n matrix. Then,

1. 1 is an eigenvalue for P with positive eigenvector h = [1, 1, 1, . . . 1] ∈ Rn

2. The dimension of eigenspace of 1 is 1. i.e if y is any eigenvector with

eigenvalue 1, then y = ch where c ∈ C

3. If λ is any other eigenvalue of P , then |λ|< 1

4. No other eigenvalue has a non-negative eigenvector

Proof. We consider each of the conclusions one-by-one

1. Since symmetric stochastic matrices are doubly stochastic, we have∑
j

pij = 1 for all j. This precisely says that h = [1, 1, 1, . . . 1] is an

eigenvector with eigenvalue = 1.

2. Let y be a real eigenvector with eigenvalue 1. Let i be such that yi is the

coordinate in y having the largest absolute value. We have
∑
j

pijyj = yi.

Now

∣∣∣∣∣∑j pijyj
∣∣∣∣∣ ≤ ∑

j

|pijyj| ≤
∑
j

|pij| |yi| = |yi|
∑
j

pij = |yi|. Since∑
j

pijyj = yi, the triangle inequality holds with equality. This implies

all yi are either non-negative or non-positive. Now from
∑
j

pijyj = yi

and
∑
j

pij = 1 we conclude that yj = yi for all j since yi has the

maximum absolute value among all the coordinates. Hence y is a real

multiple of h = [1, 1, 1, . . . 1]. If y was a complex eigenvector with eigen-

value 1. We can write y = a + ib where a and b are real eigenvectors.

From the previous argument we get a = ch and b = dh where c, d ∈ R.

Hence y = (c+ id)h. The proof for this part is complete.
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3. Let y be be an eigenvector with eigenvalue λ. Let i be such that yi is the

coordinate in y having the largest absolute value. We have
∑
j

pijyj =

λyi. Now |λ| |yi| =

∣∣∣∣∣∑j pijyj
∣∣∣∣∣ ≤ ∑j |pijyj| ≤ ∑j |pij| |yi| = |yi|

∑
j

pij =

|yi|. Hence we get that |λ| ≤ 1. Since, all the eigenvalues of P are real

(by lemma 6.2.1), all that is left is to rule out the possibility that −1

is an eigenvalue. Let y be be an eigenvector with eigenvalue −1. Let i

be such that yi is the coordinate in y having the largest absolute value.

Without loss of generality we can assume yi > 0 (else, we will consider

−y instead) We have
∑
j

pijyj = −yi. We have for all j, −yi ≤ yj ≤ yi.

Since yi, pii > 0,
∑
j

pijyj ≥
∑
j 6=i

pijyj ≥ (−yi)
∑
j 6=i

pij = (−yi)(1 − pii).

We get −yi ≥ (−yi)(1 − pii). Since yi > 0, we get (1 − pii) ≥ 1 which

implies pii ≤ 0 which is a contradiction.

4. Since P T is also a positive symmetric stochastic matrix, 1 is an eigen-

value of P T with eigenvector h = [1, 1, 1, . . . 1]. Let λ 6= 1 be an eigen-

value of P with eigenvector y having non-negative entries. By lemma

6.2.2, we have < h, y >=
∑
i

yi = 0. But since y is non-negative, this is

impossible and hence if λ 6= 1 is an eigenvalue, then it cannot have a

non-negative eigenvector.

Note: It should noticed that the above proof does not use the positivity

of all the matrix entries, but only of those along the diagonal. Hence the

theorem remains true if P has positive diagonal entires.
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6.3 Proof of Perron theorem for positive ma-

trices

The following function is used in the proof of the Perron theorem in the

general case,

Definition 6.3.1 (Coordinate sum function). Define coordinate sum

function σ : Rn 7→ R to be the function that sums up the coordinates of

any vector in Rn. i.e, σ(

[
x1
x2
...
xn

]
) =

n∑
i=1

xi.

We will begin with the proof of Perron theorem for positive matrices. We

restate the theorem here,

Theorem 6.3.1 (Perron theorem). Let An×n = [aij]1≤i,j≤n be a real posi-

tive matrix. A has an eigenvalue λ(A) such that,

1. λ(A) has a positive eigenvector h > 0

2. If x ∈ Cn is an eigenvector with eigenvalue λ(A), then x = ch for

c ∈ C. Or in other words, the dimension of the eigenspace of λ(A) is

1.

3. If λ is any other eigenvalue of A, then |λ|< λ(A)

4. If λ 6= λ(A) is an eigenvalue of A, then λ has no non-negative eigen-

vector (and thus, no non-positive eigenvectors)

The following proof is taken from [15]

Proof. We prove the four statements one by one,

1. We define the setE = {λ ∈ R : there exist x ∈ Rn, x ≥ 0 such that Ax ≥

λx}. Since A is positive, for any x ≥ 0, Ax > 0 and hence Ax ≥ λx
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holds for sufficiently small λ > 0. Hence E is non-empty and contains

positive elements. We also show that E is a closed and bounded subset

of R.

Let {λi}∞i=0 be a sequence from E such that λi → λ. There exist a

sequence {yi}∞i=0 such that yi ∈ Rn, yi ≥ 0 and Ayi ≥ λiyi. By dividing

Ayi ≥ λiyi by the sum of its coordinates, say si, we see that the con-

dition 1
si
Ayi ≥ 1

si
λyi holds. Hence, we can without loss of generality

assume that for each yi, the sum of its coordinates, si is equal to 1.

Under the usual Euclidian norm, C = {x ∈ Rn :
n∑
i=1

xi = 1} is a closed

and bounded set subset of Rn. Now by using the Heine Borel theo-

rem for Rn (theorem D.1.2), we get that C is a compact subset of Rn.

Hence there exist a convergent subsequence for {yi}∞i=0, {yk}k⊆N such

that yk → ỹ ∈ C as k →∞. For each k, we have Ayk ≥ λkyk. Applying

limit as k →∞ on both sides, we get Aỹ ≥ λỹ. Hence ỹ ∈ E.

Let λ ∈ E and let x be the corresponding non-negative vector such

that Ax ≥ λx. Let k be such that xk is the largest vector of x. Let

amax = max
1≤i,j≤n

{aij}. Now, the kth coordinate of Ax is
n∑
j=1

akjxj ≤
n∑
j=1

amaxxj
n∑
j=1

amaxxk = namaxxk. Since Ax ≥ λx, we get λxk ≤

namaxxk =⇒ λ ≤ namax. Since λ was arbitrary, we have shown

that E is a bounded set.

Since, closed and bounded subsets of R has a maximum, we have shown

that E has a maximum. Let this be denoted by λ(A). Since E has pos-

itive elements, we get that λ(A) > 0

Next, we have to show that λ(A) is an eigenvalue of A. Let h =[
h1
h2
...
hn

]
∈ Rn be such that Ah ≥ λ(A)h. We have to show that for no

k ∈ {1, 2, . . . n},
n∑
j=1

akjhj > λ(A)hk is a possibility. If so we obtain
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n∑
j=1

aijhj = λ(A)hi for all i ∈ {1, 2, . . . n}, hence proving that λ(A) is

an eigenvalue. Assume the contrary for some k, i.e
n∑
j=1

akjhj > λ(A)hk.

Let ek ∈ Rn such that the kth coordinate of ek is 1 and every other

coordinate is 0. For some real ε > 0, consider y = h+ εek. Considering

Ay, We get
n∑
j=1

aijyj > λ(A)yi for every i 6= k. Furthermore, by choos-

ing ε small enough we get
n∑
j=1

akjyj > λ(A)yi. i.e Ay > λ(A)y. But this

means we can choose δ > 0 small enough such that Ay > (λ(A) + δ)y

. Since y is a non-negative vector, this contradicts the maximality of

λ(A).

Hence we have shown that λ(A) is an eigenvalue of A

Finally, we will show that h > 0. Since A is positive and h is non-

negative, we get that Ah > 0. Since Ah = λ(A)h and λ(A) > 0, we get

h > 0. The proof of the first assertion is complete.

2. We argue that it is enough to show the second assertion when x is a

real vector with atleast one positive entry, i.e if x is an eigenvector cor-

responding to λ(A) having atleast one coordinate positive, then x = rh

for r ∈ R. This trivially shows x = rh when x has all positive entries.

When x has all negative entries, we get −x = rh for some r ∈ R and

hence x = −rh. When x is a complex eigenvector x = a + ib (where

a, b ∈ Rn), since λ(A) is real, we get that a and b are real eigenvectors

with eigenvalue λ(A). Applying the previous argument to a and b, we

get a = r1h and b = r2h. Hence, we obtain x = (r1 + ir2)h. Hence,

in general we get that if x is an eigenvector with eigenvalue λ(A), then

x = ch for c ∈ C.

All that is left is to show that when x is an eigenvector corresponding

to λ(A) having atleast one coordinate positive, then x = rh for r ∈ R.
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Assume the contrary. Now, let r = min
1≤i≤n

{
hi
xi

: xi > 0
}

. Now by our

assumtion, h + rx is non-zero and hence is an eigenvector with eigen-

value λ(A) and atleast one entry = 0. But, we have earlier shown that

any non-negative eigenvector corresponding to λ(A) should in fact be a

positive eigenvector. Hence our assumption must be false. This implies

the existance of r ∈ R such that x = rh.

Now, we show that λ(A) has no generalized eigenvector. Let x be

an mth order generalized eigenvector. Let y1, y2, . . . ym−1 be the in-

termediate eigenvectors and let m ≥ 2. From the above we get that

ym−1 = ch for c ∈ C. This implies the existance of a y ∈ Cn such

that Ay = λ(A)y + ch (since y = ym−2 works). We can without loss

of generality assume that c > 0 (since this holds by taking either y

or −y in the equation). Now since λ(A) is real, in case y is complex,

we can seperate out the real parts on both sides and obtain that there

exist z ∈ Rn such that Az = λ(A)z + ch. Without loss of generality

we can assume that z ≥ 0, else we can replace z with z + rh for large

enough real r > 0. This implies Az > λ(A)z (since c > 0 and h is

a positive vector). Now we can choose δ > 0 small enough such that

Ay > (λ(A) + δ)y. Since z is non-negative, we get that λ(A) + δ ∈ E

contradicting the maximality of λ(A). Hence our assumption that there

exist a generalized eigenvector must be false.

3. Let κ ∈ C, y ∈ Cn be such that Ay = κy. Applying triangle inequality

for complex numbers, we get

n∑
j=1

aij |yj| ≥

∣∣∣∣∣
n∑
j=1

aijyj

∣∣∣∣∣
= |κ| |yi|
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This says that |κ| ∈ E since

[
|y1|
|y2|
...
|yn|

]
is a non-negative vector satisfying

the necessary condition. This shows that |κ| ≤ λ(A).

All that is left is rule out the possibility that κ 6= λ(A) and |κ|=

λ(A). Now, if |κ|= λ(A), since
n∑
j=1

aij |yj| ≥ |κ| |yi|, using a verbatim

argument as in proof of assertion 1, we can show that

[
|y1|
|y2|
...
|yn|

]
is infact

an eigenvector with eigenvalue |κ|= λ(A). From assertion 2, we also

get that |yi|= rhi for some fixed r ∈ R This implies that equality holds

in the application of triangle inequality above. Equality holds in the

triangle inequality involving complex numbers if and only if all the

complex numbers have the same complex argument. Hence for each

i, we get yi = |yi|eiθ for some fixed argument θ. Since |yi|= rhi, we

get that y = (reiθ)h. Now this precisely says that κ = λ(A). Hence

κ 6= λ(A) and |κ|= λ(A) is impossible.

The proof of assertion 3 is thus complete.

4. Since A is positive, we get that AT is also positive. We get that λ(A)

is the dominant eigenvector of AT and applying the first statement of

Perron theorem, we get that AT has a positive eigenvector y > 0 with

eigenvalue λ(A). Let λ 6= λ(A) since λ(A) is real. From lemma 6.2.2,

we know that eigenvectors of A and AT corresponding to λ and λ(A)

annihilate each other. If λ has a non-negative eigenvector x, we get

that < y, x >= 0. But since y > 0 and x ≥ 0, x 6= 0, we get that

< y, x >> 0. This is a contradiction. Hence if λ 6= λ(A) then λ cannot

have a non-negative eigenvector.
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6.4 Generalized eigenvectors and spectral the-

orem

Before looking at the application of Perron theorem for stochastic matrices,

we develop the theory of generalized eigenvectors and the spectral theorem,

both of which are critical to the proofs we do in section 6.5.

Let us recall that given a complex linear transformation matrix An×n, λ ∈

C is said to be an eigenvalue if there exist x 6= 0 such that (A− λI)x = 0 or

equivalently when a non-negative vector x is a member of the null space of the

transformation A− λI. The non-negative vectors that satisfy (A− λI)x = 0

are called eigenvectors of A corresponding to λ. Given a matrix An×n, it is not

always necessary that there exist an eigenvector decomposition for Cn. For

example, such a decomposition is guarenteed when the matrix is symmetric

(See more in [15]). Now, we extend our usual notion of an eigenvector into

generalized eigenvectors. By the end of the chapter we will state the spectral

theorem which argues that a decomposition into generalized eigenvectors is

always possible given any linear transformation matrix An×n.

Definition 6.4.1 (Generalized eigenvalues and eigenvectors). LetAn×n

be a complex matrix. λ ∈ C is said to be a generalized eigenvalue of A when

there exist a positive m ∈ N and x ∈ Cn such that (A−λI)mx = 0. x is said

to be a generalized eigenvector corresponding to generalized eigenvalue λ.

Also, λ is said to be a mth order eigenvalue and x, a mth order eigenvector

of A

Let us further inquire into the above definition. When x is an mth order

eigenvector, we have (A − λI)mx = 0. What happens when we take lower

powers of (A− λI) and apply it on x?. We note that we obtain a hierarchy

of generalized eigenvectors h1, h2, . . . hm−1,
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(A− λI)x = h1

(A− λI)2x = h2

(A− λI)3x = h3

. . .

(A− λI)ix = hi

. . .

(A− λI)m−1x = hm−1

(A− λI)mx = (A− λI)hm−1 = 0

From the above, we notice that hm−1 is infact an eigenvector of A (equiva-

lently a first order generalized eigenvector) and h1, h2 . . . hm−2 are generalized

eigenvectors of order m− 1, m− 2 etc . . . 2 respectively.

We prove a useful technical lemma about the behavior of a mth order eigen-

vector x under successive applications of A. This lemma is employed in

proving the convergence theorem of positive stochastic matrices in Chapter

6.

Lemma 6.4.1. Let x be an mth order generalized eigenvector. Let h1, h2 . . . hm−1

be the intermediate eigenvectors. Then Anx = λnx+
(
n
1

)
λn−1h1 +

(
n
2

)
λn−2h2 +

. . .
(

n
m−1

)
λn−(m−1)hm−1

Proof. Proof proceeds by induction on n

When n = 1, A1x = λx+ h1. This proves the base case.

Assume the result for n, we will prove it for n+ 1.

We have Anx = λnx+
(
n
1

)
λn−1h1 +

(
n
2

)
λn−2h2 + . . .

(
n

m−1

)
λn−(m−1)hm−1
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Now,

An+1x = λnAx+

(
n

1

)
λn−1Ah1 +

(
n

2

)
λn−2Ah2 + . . .

(
n

m− 1

)
λn−(m−1)Ahm−1

= λn(λx+ h1) +

(
n

1

)
λn−1(λh1 + h2) +

(
n

2

)
λn−2(λh2 + h3) + . . .

· · ·+
(
n

i

)
λn−i(λhi + hi+1) + . . .

(
n

m− 1

)
λn−(m−1)(λhm−1)

= λn+1x+ (n+ 1)λnh1 + · · ·+
((

n

i− 1

)
+

(
n

i

))
λn+1−ihm−i + . . .

+

((
n

m− 2

)
+

(
n

m− 1

))
λn+1−(m−1)hm−1

= λn+1x+

(
n+ 1

1

)
λn+1−1h1 + · · ·+

(
n+ 1

i

)
λn+1−ihm−i + . . .

+

(
n+ 1

m− 1

)
λn+1−(m−1)hm−1

Above we have used the fact that
(
n
i−1

)
+
(
n
i

)
=
(
n+1
i

)
. The lemma follows.

We have developed sufficient theory to state the spectral theorem

Theorem 6.4.2 (Spectral Theorem). Let An×n be a complex matrix. Ev-

ery vector x ∈ Cn has a decomposition into generalized eigenvectors of A.

i.e, x = x1 +x2 + · · ·+xm (for some m ∈ N,m ≤ n) where xi are generalized

eigenvectors of A.

We do not prove the spectral theorem here. A proof of the spectral

theorem can be found in appendix F (see theorem F.1.1).

In the next section, we proceed to a major objective of the chapter, the

application of Perron theorem for positive matrices to prove the convergence

theorem for stochastic matrices.
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6.5 Stochastic matrices

Recall the definition of stochastic matrices, a matrix S = [sij]1≤i,j≤n is said

to be a stochastic matrix if
n∑
i=1

sij = 1 for all 1 ≤ j ≤ n.

In earlier chapters, the transition matrix of a Markov chain was found to be

a stochastic matrix. We prove an important result about the convergence of

Snx when x ∈ Rn is a non-negative vector.

The following lemma will be employed in the proof of the convergence the-

orem. But the reader may defer this lemma till the convergence theorem

refers back to it.

Lemma 6.5.1. Let x be an mth order generalized eigenvector. Then Anf → 0

as n→∞ if the corresponding eigenvalue λ is such that |λ|< 1

Proof. From the lemma 6.4.1,

Anx = λnx+
(
n
1

)
λn−1h1 +

(
n
2

)
λn−2h2 + . . .

(
n

m−1

)
λn−(m−1)hm−1.

The lemma follows by taking limit as n→∞.

We prove a fundamental fact about stochastic matrices,

Lemma 6.5.2. Let S = [sij]1≤i,j≤n be a stochastic matrix . Then, λ(S) = 1

Proof. Since
n∑
i=1

sij = 1, we observe that

[
1
1
...
1

]
is an eigenvector of S. Since, 1

has a non-negative eigenvector, by assertion 4 of theorem 6.3.1, we get that

λ(S) = 1.

Now, we prove the Snx convergence theorem.

Theorem 6.5.3. Let S = [sij]1≤i,j≤n be a stochastic matrix and x ∈ Rn be

any non-negative vector.

Then, Sn(x)→ ch as n→∞ where c is a positive real number and h is the

eigenvector corresponding to λ(S)
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Proof. Using the spectral theorem (theorem F.1.1), we get a decomposition

of x as sum of generalized eigenvectors. i.e x =
n∑
i=1

cihi (without loss of gener-

ality, ci ∈ R for all i since x is a real vector). Let λi denote the corresponding

eigenvalues. From lemma 6.5.2, λ1 = 1. We will assume that the dominant

eigenvector is h1. We will refer to c1 as c . Now since the dimension of the

eigenspace of λ(S) is 1 and its has no generalized eigenvectors, we get that

|λi|< λ1 = λ(S) = 1 (all conclusions made using theorem 6.3.1).

Now

Snx = cSnh+
n∑
i=2

ciS
nhi

= ch+
n∑
i=2

ciS
nhi

(6.1)

If i > 1 and hi is an ordinary eigenvector, then Snhi = λni hi → 0 as n→∞

since |λi|< 1.

If i > 1 and hi is a generalized eigenvector, then Snhi = 0 as n → ∞ since

|λi|< 1 and using lemma 6.5.1.

Hence, we obtain that Snx→ ch as n→∞.

Now we will show that c > 0.

Sx =



s11x1 + s12x2 + s13x3 + · · ·+ s1nxn

s21x1 + s22x2 + s13x3 + · · ·+ s2nxn

s31x1 + s32x2 + s33x3 + · · ·+ s3nxn

. . .

sn1x1 + sn2x2 + sn3x3 + · · ·+ snnxn



Since
n∑
i=1

sij = 1, observe that σ(Sx) = σ(x). This in turn implies σ(Sn(x)) =

σ(x).

Now, as n → ∞, σ(x) = σ(Snx) → σ(ch) = cσ(h). Since σ(x) > 0 and
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σ(h) > 0 (x being non-negative non-zero and h being positive), we get c =

σ(x)
σ(h)

> 0. The proof is complete.

6.6 Application to positive Markov chains

We will conclude the chapter by proving the fundmental results about pos-

itive Markov chains as we said in the beginning. Recall that if (Q, µ0, P =

[pij]) is a Markov system, we denote by P n[i, j], the (i, j)th entry in P n. We

intially define a positive Markov chain,

Definition 6.6.1 (Positive Markov system/chain). Let (Q, µ0, P =

[pij]) be a Markov system with associated probability space (Ω = QN,B, P )

and associated Markov chain X0, X1, X2, . . . . The Markov system (chain) is

said to be positive, if pij > 0 for all i, j ∈ Q

We assemble the results in the following lemma,

Lemma 6.6.1. Let (Q, µ0, P = [pij]) be a positive Markov system with asso-

ciated probability space (Ω = QN,B, P ) and associated positive Markov chain

X0, X1, X2, . . . . The following are true,

1. (Q, µ0, P = [pij]) has a unique stationary distribution p = [pij]

2. P nµ0 → p as n→∞

Proof. We will prove the assertions one by one,

1. Applying Perron theorem for positive matrices (theorem 6.3.1) and

lemma 6.5.2 on the transition matrix (which is positive and stochastic

by definition) P , we get that P has a 1 as the dominant eigenvalue.

From Perron theorem, we also conclude that 1 has a positive eigenvec-

tor. This implies that there exist p ∈ R|Q| such that Pp = p. Without
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loss of generality, we can assume that the σ(p) = 1 (see definition 6.3.1),

otherwise replace p by 1
σ(p)

p. This indeed shows that p is a stationary

distribution. Uniquness follows directly from assertion 4 of theorem

6.3.1

2. Applying theorem 6.5.3 to P and initial distribution µ0, we get that

P nµ0 → cp as n → ∞ where c > 0. From the proof of theorem 6.5.3,

we know that c = σ(µ0)
σ(p)

. Since p and µ0 are probability distributions,

we get that σ(p) = 1 and σ(µ0) = 1 and hence c = 1. The claim is thus

proved.

In lemma 5.2.2, we had already shown that P n[i, j]→ pi as n→∞ is an

equivalent to the second claim in lemma 6.6.1.
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Chapter 7

Introduction to ergodic theory

7.1 Introduction to Ergodic Theory

By transformations we mean functions mapping a measure space to itself.

Hereafter whenever we refer to a measure space (X,M, µ), we assume it is

a finite measure space. i.e, µ(X) < ∞. We begin with defining measurable

transformations.

Definition 7.1.1 (Measureable transformation). Let T : (X,M, µ) →

(X,M, µ) be a transformation. T is measureable transformation if ∀A ∈M,

T−1(A) ∈M

Any transformation that we use in the following sections is assumed to

be a measurable transformation unless specified otherwise. In the parts of

ergodic theory discussed here, we primarily discuss measure preserving trans-

formations.

Definition 7.1.2 (Measure preserving transformation). Let T : (X,M, µ)→

(X,M, µ) be a measurable transformation. T is measure preserving if ∀A ∈

M, µ(T−1(A)) = µ(A)
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On successive application of the transformation T , a point x ∈ X gets

mapped to a sequence of points in X. We define the orbit of a point x ∈ X

as {T n(x)}∞n=0 (where we assume T 0(x) = x). Now, we define few terms

that deals with the way sets and functions from the space ’interact’ with the

transformation under consideration

Definition 7.1.3 (T-invariant sets and T-invariant functions). Let

T : (X,M, µ) → (X,M, µ) be a transformation. A ⊆ X is said to be a

T-invariant set if T−1(A) = A. A function f : X → Y where Y is an

arbitrary set is a T-invariant function if f ◦ T (x) = f(x) for all x ∈ X

We next discuss the various levels of ’mixing’ activity a transformation

can perform. We are interested in Mixing transformations and Ergodic trans-

formations. In the rest of the section, we define these notions and eventually

prove that mixing transformations are ergodic transformations too.

Ergodic transformations are those measure preserving transformations in

which the only T -invariant sets are of measure 0 or µ(X)

Definition 7.1.4 (Ergodic transformation). Let T : (X,M, µ)→ (X,M, µ)

be a measure preserving transformation. T is an ergodic transformation if

A ⊆ X and T−1(A) = A implies µ(A) = 0 or µ(A) = µ(X)

Now we define mixing transformations,

Definition 7.1.5 (Mixing transformation). Let T : (X,M, µ)→ (X,M, µ)

be a measure preserving transformation. T is an mixing transformation if

for any A,B ⊆ X , lim
n→∞

µ(T−n(A) ∩B)µ(A) = µ(A)µ(B)
µ(X)

When µ(A) > 0, an equivalent formulation is lim
n→∞

µ(T−n(A)∩B)
µ(A)

= µ(B)
µ(X)

Intuitively, mixing transformations are those in the ’local propotion’ of points

in A that reach B after n applications of T (i.e, µ(T−n(A)∩B)
µ(A)

) converges to
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the ’global propotion’ of B (i.e, µ(B)
µ(X)

). This suggests that the transformation

’mixes’ the points in a ’homogenous way’. We note that, when the underlying

measure space is in fact a probability space, then the condition for mixing

translates to lim
n→∞

µ(T−n(A) ∩ B) = µ(A)µ(B) for all A,B ∈ M. Now we

finally note that mixing implies ergodicity when T is any measure preserving

transformation.

Lemma 7.1.1. Let T : (X,M, µ) → (X,M, µ) be a measure preserving

transformation. If T is a mixing transformation then T is an ergodic trans-

formation.

Proof. Let A ⊆ X satisfy T−1(A) = A. It is enough to show that µ(A) ∈

{0, µ(X)}.

Since T is mixing, lim
n→∞

µ(T−n(A) ∩ A) = µ(A)2

µ(X)
. Since T−n(A) = A, we

get lim
n→∞

µ(A ∩ A) = lim
n→∞

µ(A) = µ(A) = µ(A)2

µ(X)
. We obtain the equation

µ(A)(µ(A)− µ(X)) = 0. This precisely implies µ(A) ∈ {0, µ(X)}

7.2 Recurrence

A measure preserving transformation is recurrent if for any positive measure

set in the σ-algebra, almost all the points in it returns to the set after some

applications of the transformation function. We define a recurrent transfor-

mation,

Definition 7.2.1. Let T : (X,M, µ)→ (X,M, µ) be a measure preserving

transformation. If for all positive measure set A ∈ M, there exist N ⊆ A,

µ(N) = 0 such that ∀x ∈ A − N , there exist n(x) such that T n(x)(x) ∈ A,

then T is a recurrent transformation.

We note that the following is an equivalent way to define recurrence,

A measure preserving transformation T is recurrent if and only if for A ∈M
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such that µ(A) > 0,

µ(A−
∞⋃
n=1

T−n(A)) = 0

The set
∞⋃
n=1

T−n(A) is the set of all points in the space which can reach

A at some point of time on application of T . Now the condition µ(A −
∞⋃
n=1

T−n(A)) = 0 precisely says that outside a null set N = A−
∞⋃
n=1

T−n(A),

all remaining points in A return to A at some point of time.

Now we give another equivant formulation for recurrence,

Lemma 7.2.1. Let T : (X,M, µ) → (X,M, µ) be a measure preserving

transformation.T is recurrent if and only if for all positive measure set A ∈

M, there exist n ∈ N such that µ(T−n(A) ∩ A) > 0

Proof. Consider the forward implication. Since, µ(A−
∞⋃
n=1

T−n(A)) = µ(A−
∞⋃
n=1

(T−n(A)∩A)) = 0 for anyA ∈M such that µ(A) > 0, we get µ(
∞⋃
n=1

(T−n(A)∩

A)) > 0. This implies there exits n ∈ N such that µ((T−n(A) ∩ A)) > 0.

Now we prove the backward implication. Consider the setN = A−
∞⋃
n=1

T−n(A).

If µ(N) > 0, there exist m ∈ N such that µ((T−m(N)∩N)) > 0. This implies

(T−m(N) ∩ N) 6= φ. As we noted above
∞⋃
n=1

T−n(A) is the set of all points

in the space which can reach A at some point of time on application of T .

This implies N = A−
∞⋃
n=1

T−n(A) is the set of all points in A that can never

return to A on any number of applications of T . But then since N ⊆ A,

(T−m(N) ∩ N) 6= φ is a contradiction to the fact that N consists of points

x ∈ A that do not satisfy Tm(x) ∈ A for any m ∈ N. Hence our assumption

that µ(N) > 0 must be false. We get µ(N) = 0.

Before moving to the main result of the section, we prove an useful mea-

sure theoretic fact

69



Lemma 7.2.2. Let (X,M, µ) be a measure space. If {Ai}∞i=0 ⊆M such that

µ(Ai ∩ Aj) = 0 if i 6= j for all i, j ∈ N, then µ(
∞⋃
i=0

Ai) =
∞∑
i=0

µ(Ai).

Given a collection of measurable sets {Ai}∞i=0, we say {Ai}∞i=0 is an almost

pairwise disjoint collection of sets if µ(Ai ∩ Aj) = 0 for all i 6= j. We know

that if Ai were pairwise disjoint sets then µ(
∞⋃
i=0

Ai) =
∞∑
i=0

µ(Ai). Hence, the

above lemma states that with respect to this summation, almost pairwise

disjoint collections are identical to disjoint collection of sets

Proof. Consider the disjointification of {Ai}∞i=0, {Ei}∞i=0 such that Ei = Ai−
i−1⋃
j=0

Aj = Ai −
i−1⋃
j=0

(Ai ∩ Aj). Since µ(Ai ∩ Aj) = 0 for all i 6= j, we get

µ(
i−1⋃
j=0

(Ai ∩ Aj)) = 0. Hence µ(Ei) = µ(Ai). Finally, µ(
∞⋃
i=0

Ai) = µ(
∞⋃
i=0

Ei) =

∞∑
i=0

µ(Ei) =
∞∑
i=0

µ(Ai).

Now we prove the Poincare recurrence lemma which says that all measure

preserving transformations on finite measure spaces are in fact recurrent

transformations. The following proof is taken from [24].

Lemma 7.2.3 (Poincare recurrence lemma). Let T : (X,M, µ) →

(X,M, µ) be a measure preserving transformation such that µ(X) < ∞.

Then, T is a recurrent transformation.

Proof. Let A ∈M be a set of positive measure. By lemma 7.2.1, it is enough

to show that for some n ∈ N, µ(T−n(A)∩A) > 0. Let us assume the contrary,

i.e, for all n ∈ N, µ(T−n(A) ∩ A) = 0.

Consider T−i(A) and T−j(A) for i, j > 0 and i 6= j. Without loss of general-

ity, let i > j and i = j+ k. Let us consider the measure of T−i(A)∩T−j(A),

µ(T−i(A)∩ T−j(A)) = µ(T−j−k(A)∩ T−j(A)) = µ(T−j(T−k(A)∩A)). Using

the fact that T is measure preserving, µ(T−j(T−k(A)∩A)) = µ(T−k(A)∩A) =

0. This proves that {T−i(Ai)}∞i=1 are almost pairwise disjoint sets. Hence,
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using lemma 7.2.2, µ(
∞⋃
i=1

T−iA) =
∞∑
i=1

µ(T−iA) =
∞∑
i=1

µ(A) = ∞, since A

has positive measure. This contradicts the fact that the measure space is

a finite measure space. Hence it must be the case that for some n ∈ N,

µ(T−n(A) ∩ A) > 0.
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Chapter 8

Markov shift transformation

In this chapter we define an appropriate transformation on the probability

space for Markov chains that was set up in Chapter 2 with the intention to

explore Markov chains using the toolset of ergodic theory.

8.1 Markov shift transformation

We define the Markov shift transformation on the probability space of Markov

chains (which is the set of all infinite sequences consisting states of the

Markov chains with an appropriate σ-algebra and probability measure de-

fined on it).

Definition 8.1.1 (Markov shift transformation). Let (Q, µ0, P = [pij])

be a Markov system with associated probability space (Ω = QN,B, P ).

Define the Markov shift transformation T : (Ω,B, P ) → (Ω,B, P ) such

that T (q0, q1, q2, . . . ) = (q1, q2, q3, . . . )

The shift transformation does a ’left-shift’ of any infinite sequence given

as input to it. Now we start correlating properties of Markov chains with

properties of transformations in ergodic theory developed in Chapter 7. First,
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we notice that the Markov shift transformation is measure preserving if and

only if the underlying Markov chain is stationary (see definition 5.2.1).

We prove a useful lemma before proceeding further,

Lemma 8.1.1. T : (Ω,F , P )→ (Ω,F , P ) be any measurable transformation

on probability spaces and let M = σ(A), where A is an algebra. Then, T is

measure preserving if and only if P (T−1(A)) = P (A) for all A ∈ A

Proof. The forward implication is trivial. Suppose P (T−1(A)) = P (A) for

all A ∈ A, we consider the collection of sets C ⊆ M such that P (T−1(E)) =

P (E) for any E ∈ A. This contains the sets in the generating algebra A.

Suppose E ∈ C, we have P (T−1(Ec)) = 1−P (T−1(E)) = 1−P (E) = P (Ec).

Hence Ec ∈ C. Suppose {Ei}i∈N ⊆ C. Assume that Ei’s are disjoint.

This means T−1(Ei)’s are also disjoint. P (T−1(
⋃
i∈N

Ei)) = P (
⋃
i∈N

T−1(Ei)) =∑
i∈N

P (T−1(Ei)) =
∑
i∈N

P (Ei) = P (
⋃
i∈N

Ei). The existance of the infinite series

is guarenteed since the sets are disjoint and the space is having finite measure.

This proves
⋃
i∈N

Ei ∈ C. Now if Ei’s are not disjoint, consider the ’disjointifi-

cation’ of {Ei}i∈N, {Fi}i∈N where Fi = Ei −
i−1⋃
j=0

Ej. Since,
⋃
i∈N

Ei =
⋃
i∈N

Fi,

using the previous argument on {Fi}i∈N, the result follows.

Now we prove the main result of this section,

Theorem 8.1.2. Let (Q, µ0, P = [pij]) be a Markov system with associated

probability space (Ω = QN,B, P ). Let T be the Markov shift operation. Then,

T is measure preserving if and only if the Markov chain is stationary

Proof. If T is measure preserving, we have P (T−1(A)) = P (A), or in general

P (T−n(A)) = P (A), for any n when A ∈ B. Consider any event of the form

X0 = q0, X1 = q1, . . . Xk = qk. {x ∈ Ω : X0(x) = q0, X1(x) = q1, . . . Xk(x) =

qk} = π−1
k] (q0, q1, . . . qk). Now T−n(π−1

k] (q0, q1, . . . qk)) = (π−1
[n,n+k](q0, q1, . . . qk)).
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Hence we get P ({x ∈ Ω : Xn(x) = q0, Xn+1(x) = q1, . . . Xn+k(x) = qk} =

P ({x ∈ Ω : X0(x) = q0, X1(x) = q1, . . . Xk(x) = qk} for any n ∈ N. This

condition implies stationarity due to 5.2.1.

This proves the forward implication.

We first verify P (T−1(A)) = P (A) for all A ∈ A where A is the generating

algebra. We consider elementary rectangles in the algebra, i.e, sets of the

form A = π−1
[m,n](qm, qm+1, qm+2 . . . qn). We have,

P (T−1(A)) = P (π−1
[m+1,n+1](qm, qm+1, qm+2 . . . qn))

By stationarity we have,

P (π−1
[m+1,n+1](qm, qm+1, qm+2 . . . qn)) = P (π−1

[0,n−m](qm, qm+1, qm+2 . . . qn))

= P (π−1
[m,n](qm, qm+1, qm+2 . . . qn))

= P (A)

Consider any set A ∈ A. We know by definition of A, A ∈ BF for

some F ∈ FN. As a consequence of corollary 4.2.2, we can without loss of

generality assume that A ∈ B[m,n] for some [m,n]. Now since any set in B[m,n]

is a disjoint union of elementary rectangles (due to lemma 4.2.1), it follows

that P (T−1(A)) = P (A) for all A ∈ A. Now using lemma 8.1.1, we get that

P (T−1(A)) = P (A) for all A ∈ B. This proves the backward implication

8.2 Ergodicity of Markov shift transforma-

tion

We now turn into conditions for ergodicity of the Markov shift transforma-

tions. We proved in lemma 6.6.1 that in positive Markov chains P n[i, j]→ pi

as n → ∞. Now through the following arguments we prove that if for a
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stationary Markov system (Q, µ0, P = [pij]), P
n[i, j] → pi as n → ∞ then

the Markov shift transformation defined on its underlying probability space

is a mixing transformation. Since mixing transformations are ergodic, we

argue that under this condition, Markov shift is an ergodic transformation.

We initially prove a useful measure theoretic fact. It says that any set in an

σ-algebra can be approximated in measure by sets in the generating algebra,

Lemma 8.2.1. Let (X,M, µ) be a finite measure space such thatM = σ(A)

where A is an algebra. Then,given ε > 0 for all A ∈ M, there exist Ã ∈ A

such that µ(A∆Ã) < ε

Proof. Consider the collection C of all sets inM having the required property.

Trivially, A ⊆ C. Let A ∈ C such that µ(A∆Ã) < ε where Ã ∈ A. Since

Ac∆Ãc = A∆Ã we have µ(Ac∆Ãc) = µ(A∆Ã). Since Ãc ∈ A, we get

Ac ∈ C. Let {Ai}∞i=0 ⊆ C. Assume {Ai}∞i=0 is a disjoint collection of sets.

There exists {Ai}∞i=0 ⊆ A such that for all i, µ(Ai∆Ãi) < ε2−i+2. Since

the measure space is finite and Ai’s are disjoint, there exists n ∈ N, such

that µ(
∞⋃
i=n

Ai) =
∞∑
i=n

µ(Ai) <
ε
2
. Notice,

∞⋃
i=0

Ai∆
n−1⋃
i=0

Ãi ⊆
n−1⋃
i=0

(Ai∆Ãi)
⋃ ∞⋃

i=n

Ai

Now,

µ(
∞⋃
i=0

Ai∆
n−1⋃
i=0

Ãi) ≤
n−1∑
i=0

P (Ai∆Ãi) +
∞∑
i=n

Ai

≤
n−1∑
i=0

ε2i+2 +
ε

2

≤ ε

∞∑
i=0

2i+2 +
ε

2

≤ ε

2
+
ε

2

= ε

This proves C is a σ-algebra and hence C =M.
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Now we prove that given a measure preserving transformation over a

measure space, the mixing condition holds for the sets in the generating

algebra of the measure space if and only if the transformation is mixing. The

following proof is taken from [26].

Theorem 8.2.2. Let T : (X,M, µ) → (X,M, µ) be a measurable trans-

formation and let M = σ(A), where A is an algebra. Then, T is a mix-

ing transformation if and only if lim
n→∞

µ(T−n(Ã) ∩ B̃) = µ(Ã)µ(B̃) for all

A,B ∈ A

Proof. The forward implication is trivial.

Consider the backward implication. Fix arbitrary ε > 0. Let A,B ∈ M,

Let Ã, B̃ be sets in the generating algebra such that µ(A∆Ã) < ε
5µ(B)

and

µ(B∆B̃) < ε

5µ(Ã)
. Such sets in the algebra are guarenteed by lemma 8.2.1.

It is enough to show that there exist m ∈ N such that ∀n ≥ m, |µ(T−n(A)∩

B)− µ(A)µ(B)|< ε.

Let m ∈ N be such that |µ(T−n(Ã)∩ B̃)− µ(Ã)µ(B̃)|< ε
5

for all n ≥ m, this

is guarenteed by the hypothesis of the theorem.

Using the triangle inequality,

|µ(A)µ(B)− µ(T−n(A) ∩B)| ≤ |µ(A)µ(B)− µ(Ã)µ(B)|

+ |µ(Ã)µ(B)− µ(Ã)µ(B̃)|

+ |µ(Ã)µ(B̃)− µ(T−n(Ã) ∩ B̃)|

+ |µ(T−n(Ã) ∩ B̃)− µ(T−n(A) ∩B)|

Notice that,

(T−n(Ã) ∩ B̃)− (T−n(A) ∩B) ⊆ (T−n(Ã) ∩ B̃)∆(T−n(A) ∩B)

⊆ (T−n(Ã)∆T−n(A))
⋃

(B̃ ∩B)
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Hence.

|µ(T−n(Ã) ∩ B̃)− µ(T−n(A) ∩B)| ≤ µ(T−n(Ã)∆T−n(A)) + µ(B̃ ∩B)

≤ µ(T−n(Ã∆A)) + µ(B̃ ∩B)

= µ(Ã∆A) + µ(B̃ ∩B)

<
ε

5
+
ε

5
=

2ε

5

where the second inequality follows due to the fact that T is measure pre-

serving

Now,

|µ(A)µ(B)− µ(Ã)µ(B)| ≤ |µ(B)||µ(A)− µ(Ã)|

≤ µ(B)
ε

5µ(B)

=
ε

5

and,

|µ(Ã)µ(B)− µ(Ã)µ(B̃)| ≤ |µ(Ã)||µ(B)− µ(B̃)|

≤ |µ(Ã)| ε

5µ(Ã)

=
ε

5

Hence we obtain, |µ(A)µ(B)− µ(T−n(A) ∩B)|< ε for all n ≥ m.

We have developed sufficient theory to prove that if P n[i, j] → pi for all

states i, j in a stationary Markov system, then the corresponding Markov

shift transformation is a mixing transformation. The proof of this theorem

is based on the approach taken in [26].

Theorem 8.2.3. Let (Q, µ0, P = [pij]) be a Markov system with associated

probability space (Ω = QN,B, P ). Let T be the Markov shift operation. If

P n[i, j]→ pi as n→∞ for all states i, j, then the Markov shift transforma-

tion is a mixing transformation.
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We first verify the mixing condition for elementary rectangles which are

of the form π−1
[m,n](qm, qm+1, . . . qn), for some m ≤ n

Lemma 8.2.4. Let (Q, µ0, P = [pij]) be a Markov system with associated

probability space (Ω = QN,B, P ). Let T be the Markov shift operation. If

P n[i, j] → pi as n → ∞ for all states i, j, for elementary rectangles of the

form A = π−1
[m,n](qm, qm+1, . . . qn) and B = π−1

[l,p](ql, ql+1, . . . qp), the following

holds

lim
n→∞

P (T−n(A) ∩B) = P (A)P (B)

Proof. Consider any n > p−m, since the Markov chain is stationary, we have

P (T−n(A) ∩ B) = pqlP [qlql+1 . . . qp]P
n−p+m[qm, qp]P [qmqm+1 . . . qn]. Since,

lim
n→∞

P n−p+m[qm, qp] = pqm , we get

lim
n→∞

P (T−n(A) ∩B) = pqlP [qlql+1 . . . qp]pqmP [qmqm+1 . . . qn]

= P (A)P (B)

The result is thus verified for elementary rectangles.

Now we prove theorem 8.2.3,

Proof. From theorem 8.2.2, it is enough to verify the condition for mixing

transformations on the sets in the generating algebra. Let A,B ∈ A. From

corollary 4.2.2, we know that A ∈ B[m,n] for some m,n ∈ N. Hence we can as-

sume that A is of the form A =
∏∞

i=0Ai where Ai = Q for all i ∈ N−{m,m+

1, . . . n}. Similarly, we can argue that B =
∏∞

i=0Bi where Bi = Q for all

i ∈ N− {l, l + 1, . . . p} for some l, p ∈ N. Now using lemma 4.2.1, A =
k⋃
i=1

Ei

where Ei is an elementary rectangle of the form Ei = π−1
[m,n](qm, qm+1, . . . qn).

Similarly, B =
h⋃
j=1

Fj where Fj’s are elementary rectangles of the form

Fj = π−1
[l,p](ql, ql+1, . . . qp). Now, lim

n→∞
P (T−n(A) ∩ B) = lim

n→∞
P (T−n(

k⋃
i=1

Ei) ∩

78



h⋃
j=1

Fj) = lim
n→∞

P (
k⋃
i=1

T−n(Ei) ∩
h⋃
j=1

Fj) = lim
n→∞

P (
⋃
i,j

(T−n(Ei) ∩ Fj)) (where i

ranges from 1 to k and j ranges from 1 to h). Since (T−n(Ei1) ∩ Fj1) ∩

(T−n(Ei2) ∩ Fj2) = φ when (i1, j1) 6= (i2, j2), we get,

lim
n→∞

P (
⋃
i,j

(T−n(Ei) ∩ Fj)) = lim
n→∞

∑
i,j

P (T−n(Ei) ∩ Fj)

=
∑
i,j

lim
n→∞

P (T−n(Ei) ∩ Fj)

=
∑
i,j

P (T−n(Ei))P (Fj)

=
k∑
i=1

P (T−n(Ei))
h∑
j=1

P (Fj)

= P (A)P (B)

Along with lemma 6.6.1, we get the following corollary

Corollary 8.2.5. Let (Q, µ0, P = [pij]) be a positive Markov system with

associated probability space (Ω = QN,B, P ). Let T be the Markov shift oper-

ation. Then the Markov shift transformation is a mixing transformation.

Proof. Direct consequence of lemma 6.6.1 and theorem 8.2.3.
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Chapter 9

Birkhoff’s pointwise ergodic

theorem

Here we give an elementary proof of the Birkhoff’s ergodic theorem for sim-

ple functions from a probability space (Ω,F , P ) to the real line which uses

minimal measure theoretic machinery. In the following section we develop

the basics of Lebesgue integration theory. Necessary results from integration

theory for simple functions are developed. We however do not extend the

theory to general class of functions like L1 or Lp functions. Interested readers

may find more on Lebesgue integration theory in [10] or [2].

In this study, we obtain the ergodic theorem for Markov chains as a con-

sequence of the Birkhoff’s (pointwise) ergodic theorem (see Chapter 10), a

standard result in Ergodic theory. Ergodic theory initially grew out of re-

search in statistical mechanics and later found applications in diverse fields

including number theory, information theory etc. The pointwise ergodic the-

orem for L1 spaces (see more in [10] or [2]) was proved by G.D.Birkhoff in

[5]. A generalied version of the pointwise ergodic theorem is the Birkhoff-

Khinchin ergodic theorem (statement and proofs of which can be found in
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[14]).

Many different approaches to proving the Birkhoff’s ergodic theorem were

published after the publication of Birkhoff’s rather long original paper. Kaku-

tani and Yosida introduced the technique of obtaining the theorem using the

maximal ergodic theorem in [27]. A proof using nostandard analysis was

given by Kamae in [12]. A very short proof of the Birkhoff ergodic theo-

rem was given by Garsia (this can be found in the book by Peter Walters

[26]). The core idea of the proof that we give in this chapter is based on the

approach taken by Katznelson and Weiss in [13].

9.1 Integration of simple functions

Let f : (Ω,F , P )→ R be a simple function, f =
n∑
i=1

aiχEi
where ai ∈ R, Ei ⊆

Ω. All functions used hereafter in this document are simple functions unless

specified otherwise.

We define the integral of f over Ω to be
∫

Ω
fdP =

n∑
i=1

aiP (Ei).

If A ⊆ Ω, then we define integral of f over A as
∫
A
fdP =

∫
Ω
fχAdP =

n∑
i=1

aiP (A ∩ Ei)

Now we state and prove few basic laws of integration for simple functions

Lemma 9.1.1. Let f, g be simple functions (Ω,F , P ) to R. Then,

1. If f ≥ 0 then
∫

Ω
fdP ≥ 0

2.
∫

Ω
(αf + g)dP = α

∫
Ω
fdP +

∫
Ω
gdP when α ∈ R

3. If f ≤ g, then
∫

Ω
fdP ≤

∫
Ω
gdP

4. If A and B are disjoint, then
∫
A∪B fdP =

∫
A
fdP +

∫
B
fdP
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Proof. 1. If f =
n∑
i=1

aiχEi
, we have ai ≥ 0 for all i.Hence,

∫
Ω
fdP =

n∑
i=1

aiP (Ei) ≥ 0

2. If f =
n∑
i=1

aiχEi
, we αf =

n∑
i=1

−αaiχEi
. Hence

∫
Ω
αfdP = α

n∑
i=1

aiP (Ei) =

α
∫

Ω
fdP .

When f =
n∑
i=1

aiχEi
and g =

m∑
j=1

bjχFj
, we have f + g =

n∑
i=1

m∑
j=1

(ai +

bj)χEi∩Fj
. Now,∫

Ω

(f + g)dP =
n∑
i=1

m∑
j=1

(ai + bj)P (Ei ∩ Fj)

=
n∑
i=1

m∑
j=1

aiP (Ei ∩ Fj) +
n∑
i=1

m∑
j=1

bjP (Ei ∩ Fj)

=
n∑
i=1

aiP (Ei) +
m∑
j=1

bjP (Fj)

=

∫
Ω

fdP +

∫
Ω

gdP

From the above two arguments we get,
∫

Ω
(αf + g)dP = α

∫
Ω
fdP +∫

Ω
gdP when α ∈ R.

3. If f ≤ g, we get g − f ≥ 0. Now from (1) we get,
∫

Ω
(g − f)dP =∫

Ω
gdP −

∫
Ω
fdP ≥ 0. The result follows
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4. ∫
A∪B

fdP =

∫
Ω

fχA∪BdP

=
n∑
i=1

aiP ((A ∪B) ∩ Ei)

=
n∑
i=1

aiP (A ∩ Ei) + P (B ∩ Ei)

=
n∑
i=1

aiP (A ∩ Ei) +
n∑
i=1

aiP (B ∩ Ei)

=

∫
Ω

fχAdP +

∫
Ω

fχBdP

=

∫
A

fdP +

∫
B

fdP

We end this section with a useful fact about measure preserving transfor-

mations,

Lemma 9.1.2. Let T : (Ω,F , P )→ (Ω,F , P ) be a measure preserving trans-

formation and f : (Ω,F , P ) → R be a simple function. Then
∫

Ω
fdP =∫

Ω
f ◦ TdP

Proof. It is enough to prove the lemma for characteristic functions. Since

simple functions are linear combinations of characteristic functions, the result

follows from lemma 9.1.1. Consider characteristic function χE of E ⊆ Ω.

Observe that χE ◦ T = χT−1(E). Applying integral and using the fact that T

is measure preserving, we get
∫

Ω
χE ◦ TdP =

∫
Ω
χT−1(E)dP = P (T−1(E)) =

P (E) =
∫

Ω
χEdP
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9.2 Maximal ergodic theorem

There are many formulations of the maximal ergodic theorem. Here we

prove one of them which suffice to prove the Birkhoff’s ergodic theorem

for simple functions in the next section. If T : (Ω,F , P ) → (Ω,F , P ) is

a measure preserving transformation. Let fn(x) denote the summation of

function over the orbit of x ∈ Ω upto the the first n applications of T . i.e,

fn(x) = f(x) + f(T (x)) + · · · + f(T n−1(x)). fn(x) will be referred to as the

nth orbit sum of f on x. We intially prove a weak form of the maximal ergodic

theorem. Proving the stronger version requires incremental effort only. The

core idea of the proof is based on the approaches used in [18] and [13].

Theorem 9.2.1 (Weak maximal ergodic theorem). Let T : (Ω,F , P )→

(Ω,F , P ) be a measure preserving transformation and f : (Ω,F , P )→ R be a

simple function. If for all x ∈ Ω, there exist n(x) ∈ N such that fn(x)(x) ≤ 0,

then
∫

Ω
fdP ≤ 0

We will prove the result first in a stronger case. We state it below,

Lemma 9.2.2. Let T : (Ω,F , P )→ (Ω,F , P ) be a measure preserving trans-

formation and f : (Ω,F , P ) → R be a simple function. If there exist k ∈ N

such that ∀x ∈ Ω, fn(x)(x) ≤ 0 for some 1 ≤ n ≤ k, then
∫

Ω
fdP ≤ 0

Proof. Consider the nth orbit sum of f on x for arbitrary x ∈ Ω.

fn(x) = f(x) + f(T (x)) + · · · + f(T n−1(x)). Suppose n ≥ k, then us-

ing the condition that holds across the space, a first few terms can be

dropped to get fn(x) ≤ f(T i1x) + f(T i1+1(x)) + · · · + f(T n−1(x)) where

i1 ≤ k. Now considering the RHS as an orbit sum of f over T i1(x), we

can find i2 > i1 (provided n − (i1) ≥ k) such that fn(x) ≤ f(T i2x) +

f(T i2+1(x)) + · · · + f(T n−1(x)). The process continues till we get im such
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that fn(x) ≤ f(T imx) + f(T im+1(x)) + · · ·+ f(T n−1(x)) where n− (im) < k.

In general we can say that fn(x) = f(x) + f(T (x)) + · · · + f(T n−1(x)) ≤

|f(T n−k−1x)|+|f(T n−k(x))|+|f(T n−k+1(x))|+ · · · + |f(T n−1(x))|. Applying

integral on the both sides and due to the third assertion of lemma 9.1.1,∫
Ω

(
f(x) + f(T (x)) + · · ·+ f(T n−1(x))

)
dP

≤
∫

Ω

(
|f(T n−k−1x)|+|f(T n−k(x))|+|f(T n−k+1(x))|+ · · ·+ |f(T n−1(x))|

)
From the second assertion of lemma 9.1.1,∫

Ω

f(x)dP +

∫
Ω

f(T (x))dP + · · ·+
∫

Ω

f(T n−1(x))dP

≤
∫

Ω

|f(T n−k−1x)|dP +

∫
Ω

|f(T n−k(x))|dP +

∫
Ω

|f(T n−k+1(x))|dP+

· · ·+
∫

Ω

|f(T n−1(x))|dP

We rewrite the above,∫
Ω

f(x)dP +

∫
Ω

f(T (x))dP + · · ·+
∫

Ω

f(T n−1(x))dP

≤
∫

Ω

|f |◦(T n−k−1x)dP +

∫
Ω

|f |◦(T n−k(x))dP +

∫
Ω

|f |◦(T n−k+1(x))dP+

· · ·+
∫

Ω

|f |◦(T n−1(x))dP

Using the fact that T is measure preserving and lemma 9.1.2 the above

becomes,∫
Ω

f(x)dP +

∫
Ω

f(x)dP + · · ·+
∫

Ω

f(x)dP

≤
∫

Ω

|f |(x)dP +

∫
Ω

|f |(x)dP +

∫
Ω

|f |(x)dP + · · ·+
∫

Ω

|f |(x)dP

From the above, we get n
∫

Ω
fdP ≤ k

∫
Ω
|f |dP . Dividing by n,

∫
Ω
fdP ≤

k
∫
Ω|f |dP
n

. Applying limit as n→∞ we obtain the maximal ergodic theorem,∫
Ω
fdP ≤ 0.
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Now, using the above lemma, we prove the weak maximal ergodic theorem

(theorem 9.2.1)

Proof. The idea is to define a sequence of functions ψk such that ψk → f

and the stronger condition applied above holds for each ψk. We will obtain∫
Ω
ψkdP ≤ 0. Then a limiting argument can prove the maximal ergodic the-

orem for f .

Define ψk(x) =

f(x), if ∃n ∈ {1, 2, . . . k} such that fn(x) ≤ 0

0, otherwise

Consider ψk, we observe that ∀x ∈ Ω (ψk)n(x) ≤ 0 for some 1 ≤ n ≤ k. The

range of values each ψk can take is a subset of the set of values that f can

take. Hence each ψk is a simple function. Using lemma 9.2.2,
∫

Ω
ψkdP ≤ 0

for all k ∈ N.

Now let f =
l∑

i=1

aiχEi
. We note that ψk =

l∑
i=1

aiχEki
for each k where Eki =

{x : ψk(x) = ai} = {x : f(x) = ai and ∃n(x) ∈ {1, 2, . . . k} such that fn(x)(x) ≤

0}. Notice E1i ⊆ E2i ⊆ E3i ⊆ . . . for all i. Since for all x ∈ Ω, there

exist n(x) ∈ N such that fn(x)(x) ≤ 0, we observe
∞⋃
k=1

Eki = Ei. By con-

tinuity of measure from below (see lemma B.1.3), we get P (Eki) → P (Ei)

as k → ∞. Now
∫

Ω
ψkdP =

l∑
i=1

aiP (Eki). Applying limit, lim
k→∞

∫
Ω
ψkdP =

lim
k→∞

l∑
i=1

aiP (Eki) =
l∑

i=1

ai lim
k→∞

P (Eki) =
l∑

i=1

aiP (Ei) =
∫

Ω
fdP . Hence

∫
Ω
fdP ≤

0.

We finally prove a generalization of the above which we will employ in

the proof of the pointwise ergodic theorem,

Theorem 9.2.3 (Maximal ergodic theorem). Let T : (Ω,F , P )→ (Ω,F , P )

be a measure preserving transformation and f : (Ω,F , P ) → R be a sim-

ple function. Let A = {x ∈ Ω : ∃n(x) ∈ N such that fn(x)(x) ≤ 0}, then∫
A
fdP ≤ 0
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Proof. Consider fχA. For all x ∈ Ω, there exist some n(x) ∈ N such that

(fχA)n(x)(x) ≤ 0. Applying the previous theorem, we get
∫

Ω
fχAdP ≤ 0.

Since
∫

Ω
fχAdP =

∫
A
fdP , the theorem follows.

9.3 Birkhoff’s pointwise ergodic theorem

Here we prove the Birkhoff’s ergodic theorem for the case when the function

is a simple function. Birkhoff’s pointwise ergodic theorem states that if

f : (Ω,F , P ) → R is a simple function and T : (Ω,F , P ) → (Ω,F , P ) an

ergodic transformation, then the time average of the function
n−1∑
i=0

f(T i(x))

converges to the space average
∫

Ω
fdP as n→∞.

Theorem 9.3.1 (Birkhoff’s pointwise ergodic theorem). Let T : (Ω,F , P )→

(Ω,F , P ) be an ergodic transformation and f : (Ω,F , P ) → R be a simple

function.Then

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
Ω

fdP almost everywhere

Before we provide a proof, we explore some auxiliary facts. In the follow-

ing discussion, f∗ = lim inf
n→∞

fn(x)
n

and f ∗ = lim sup
n→∞

fn(x)
n

Lemma 9.3.2. Let T : (Ω,F , P ) → (Ω,F , P ) be any transformation and

f : (Ω,F , P ) → R be a simple function. If lim
n→∞

fn(x)
n

exists, it is a T-

invariant function.

Proof. If lim
n→∞

fn(x)
n

exists, lim
n→∞

fn(x)
n

= f∗(x) = f ∗(x). Hence it is enough to

show that f∗ and f ∗ are invariant functions.

From its definition, fn(T (x)) = fn+1(x) − f(x). Dividing by n, fn(T (x))
n

=

fn+1(x)
n+1

n+1
n
− f(x)

n
. Applying lim inf on both sides, we get, f∗(x) = f∗(T (x)).

The proof goes in similar lines for f ∗.
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Now we are in a position to prove the main result of the section - Birkhoff’s

pointwise ergodic theorem for simple functions. Certain arguments in the

proof below are sourced from [24]

Proof. It is enough to prove that f∗ ≥
∫

Ω
fdP almost everywhere. If this

could be argued, since −f is a simple function, we get (−f)∗ ≥
∫

Ω
−fdP .

From properties of lim inf and lemma 9.1.1, we get −f ∗ ≥ −
∫

Ω
fdP =⇒

f ∗ ≤
∫

Ω
fdP . Hence we get

∫
Ω
fdP ≤ f∗ ≤ f ∗ ≤

∫
Ω
fdP . This proves

the existance of the limit and we get, lim
n→∞

1
n

n−1∑
i=0

f(T i(x)) =
∫

Ω
fdP almost

everywhere.

Let B = {x ∈ Ω : f∗(x) <
∫

Ω
fdP}. It is enough to show that P (B) = 0.

Assume otherwise. i.e, P (B) > 0

Now, B =
⋃
q∈Q
{x ∈ Ω : f∗(x) < q <

∫
Ω
fdP}

Let Cq = {x ∈ Ω : f∗(x) < q <
∫

Ω
fdP}. Since P (B) > 0, we get P (Cq) > 0

for some q ∈ Q.

Notice due to T-invariance of f∗, T
−1(Cq) = {x ∈ Ω : f∗(T (x)) < q <∫

Ω
fdP} = {x ∈ Ω : f∗(x) < q <

∫
Ω
fdP} = Cq. Since Cq is a T-invariant

set, condition of ergodicity implies P (Cq) ∈ {0, 1}. The only possibility is

P (Cq) = 1. This means P ({x ∈ Ω : f∗(x) < q <
∫

Ω
fdP}) = 1. Let

N = Ω− Cq. Clearly, P (N) = 0.

Notice Cq = {x ∈ Ω : f∗(x) < q}. This implies if x ∈ Cq, there exists

n(x) ∈ N such that
fn(x)(x)

n
< q (in-fact an infinite sequence of such n(x)’s

exist for each x). This happens if and only if (f − q)n(x)(x) < 0. This implies

if x ∈ Cq there exists n(x) ∈ N such that (f − q)n(x)(x) ≤ 0.

Let A = {x ∈ Ω : ∃n(x) ∈ N such that (f − q)n(x)(x) ≤ 0}. We observe that

Cq ⊆ A and P (A) = P (Cq) = 1. Applying the maximal ergodic theorem, we

get
∫
A

(f − q)dP ≤ 0. Since P (A − Cq) = 0 and
∫
A

(f − q)dP =
∫
A−Cq

(f −

q)dP +
∫
Cq

(f − q)dP , using assertion 4 of lemma 9.1.1, we get
∫
A−Cq

(f −
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q)dP = 0 and
∫
Cq

(f − q)dP ≤ 0.

Also observe that P (Ω) = 1 and P (Ω− Cq) = 0. Using a similar argument,

we get
∫

Ω
(f − q)dP =

∫
Cq

(f − q)dP ≤ 0 =⇒
∫

Ω
fdP ≤ qP (Ω) = q which

contradicts the choice of q

Hence our assumption that P (B) > 0 must be false. We obtain P (B) = 0

and the theorem follows.
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Chapter 10

Application of ergodic theory

to Markov chains

The results that were established in the previous chapters now enables us to

attain a major objective of this exposition, to state and prove the ergodic

theorem for Markov chains.

10.1 Ergodic theorem for Markov chains

We are interested in proving that the propotion of time spend in a specific

state by a stationary Markov chain satisfying pnij → pi as n → ∞ converges

to pi. We will formalize this intuition using the following function, (the below

notation is taken from [19])

We have defined Nq,t in Chapter 2 (see definition 5.2.5). N(q, t) gives the

number of times the Markov chain visits the state q before time t. With this

intuition in mind, let us discuss the ergodic theorem for Markov chains

Theorem 10.1.1 (Ergodic theorem for Markov chains). Let (Q, µ0, P =

[pij]) be a Markov system with associated probability space (Ω = QN,B, P ).
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Let P = [pij] be the stationary distribution. Suppose the underlying Markov

chain satisfies pnij → pi as n→∞ for all i, j ∈ Q, then,

lim
t→∞

Nq,t

t
= pq almost everywhere

We see that the theorem precisely captures the intuition of convergence

of the propotion of time spend in a specific state as we mentioned at the

beginning of the current section. Let χq : Q 7→ {0, 1} be the characteristic

function associated with some state q ∈ Q. i.e,

χq(x) =

1 x = q

0 otherwise

We can naturally extend χq as a function mapping Ω = QN 7→ {0, 1} as

χq(ω0, ω1, ω2, ω3, . . . ) = χq(ω0) for all ω = (ω0, ω1, ω2, ω3, . . . ) ∈ Ω (for sim-

plicity we do not introduce new notation for the map from Ω = QN). In the

defintion of χq : Ω 7→ {0, 1}, the χq the function on LHS is the characteristic

function defined earlier from Q 7→ {0, 1}. The proof of the ergodic theorem

for Markov chains is direct from Birkhoff’s pointwise ergodic theorem (see

9.3.1) once we find an alternate way to express Nq,t as we do below,

Proof. Observe that, Nq,t(ω) = χq(ω) +χqT (ω) +χqT
2(ω) + · · ·+χqT

t−1(ω),

for all ω ∈ Ω.

Since pnij → pi as n→∞ for all i, j ∈ Q, from theorem 8.2.3, we get that the

underlying Markov shift transformation T is a mixing transformation. Since

mixing transformations are ergodic (by lemma 7.1.1) and χq being a simple

function, we apply the Birkhoff’s pointwise ergodic theorem (see 9.3.1) to

get,

lim
t→∞

Nq,t

t
= lim

t→∞

χq(x) + χqT (x) + χqT
2(x) + · · ·+ +χqT

t−1(x)

n

=

∫
Ω

χqdP almost everywhere
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By definition,
∫

Ω
χqdP = 0×P ((π−1

0 (q))c) + 1×P (π−1
0 (q)) = P (π−1

0 (q)) = pq

(the last equality holds since the initial distribution is stationary). Hence we

get,

lim
t→∞

Nq,t

t
= pq almost everywhere

10.2 Application of Poincare Recurrence Lemma

In this section, we derive a simple result in the theory of stationary Markov

chains using the Poincare recurrence lemma.

First we obtain an equivalent statement for recurrence of a transformation.

Lemma 10.2.1. T : (X,M, µ) 7→ (X,M, µ) be a recurrent transformation

if and only if ∀A ∈M such that µ(A) > 0,

µ

(
A ∩

∞⋃
n=1

T−n(A)

)
= µ(A)

Proof. Notice that
∞⋃
n=1

T−n(A) are those elements in x ∈ A that can return

to A after some number (say n(x)) applications of the transformation T .

Consider the forward implication. The set of all points in A that can never

return to A on any number of applications of T is N = A∩
(
∞⋃
n=1

T−n(A))

)c
.

Since T is recurrent, µ(N) = 0 (see definition 7.2.1). Now

µ(A) = µ

(
A ∩

(
∞⋃
n=1

T−n(A)

))
+ µ

(
A ∩

(
∞⋃
n=1

T−n(A)

)c)

= µ

(
A ∩

(
∞⋃
n=1

T−n(A)

))
+ 0

= µ

(
A ∩

(
∞⋃
n=1

T−n(A)

))
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The forward implication is hence true.

Consider the backward implication. An equivalent statement is,

µ

(
A−

(
A ∩

∞⋃
n=1

T−n(A)

))
= 0

This precisely says that there exist a null subset of A, i.e

N = A−

(
A ∩

∞⋃
n=1

T−n(A)

)

such that all elements in x ∈ A−N =

(
A ∩

∞⋃
n=1

T−n(A)

)
returns to A after

some n(x) applications of T . This is in fact, the definition of recurrence (see

definition 7.2.1). Hence T is a recurrent transformation.

Let (Q, µ0, P = [pij]) be a Markov system with associated probability

space (Ω = QN,B, P ). We will now apply the above theorem for Markov

shift transformations when the set A = π−1
0 (q) where q ∈ Q is any state such

that pq > 0. Notice that for all n ∈ N, n > 0, we have T−n(π−1
0 (q)) = π−1

n (q).

Lemma 10.2.2. Let (Q, µ0, P = [pij]) be a Markov system with associated

probability space (Ω = QN,B, P ). Let µ0 be the stationary distribution. Let

T be the associated Markov shift transformation. For any state q ∈ Q such

that pq > 0,

P

(
π−1

0 (q) ∩
∞⋃
n=1

π−1
n (q)

)
pq

= 1

The lemma intuitively says that if the Markov chain starts in the state q

at time = 0, then almost surely the chain returns to state q at some point in

the future along its run.

Proof. Since µ0 is stationary, from lemma we know that T is a measure

preserving transformation. From, Poincare recurrence lemma (lemma 7.2.3),
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we can conclude that T is recurrent. We will apply lemma 10.2.1 for T and

A = π−1
0 (q).

We get the following,

P

(
π−1

0 (q) ∩
∞⋃
n=1

π−1
n (q)

)
= P

(
π−1

0 (q) ∩
∞⋃
n=1

T−n(π−1
0 (q))

)
= P (π−1

0 (q)) = pq

Dividing by pq (since pq > 0), we get the desired equality.

We have in-fact shown that all states with initial probability > 0 are

recurrent states when the Markov chain is stationary. The standard defini-

tion of recurrent states is however different from the notion presented above

(reader may find more on this in Chapter 6 of [2])
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Chapter 11

Conclusion and future work

11.1 Conclusion

The existence theorem for the probability space underlying discrete time fi-

nite state Markov chains presented in this report was the Kolmogorov exten-

sion theorem, for which a simple proof could be obtained when the underlying

spaces were finite and discrete. Thereafter, Markov chains were studied using

the toolset of ergodic theory, where we were able to give an elementary proof

for Birkhoff’s ergodic theorem for simple functions. Using this theorem, one

immediately obtains the ergodic theorem for Markov chains, the Borel’s nor-

mal number theorem and the strong law of large numbers.

We summarize the essential idea used in simplifying the proofs of the major

theorems.

• While formulating the probability space underlying finite state Markov

chains, the component spaces of the infinite product measure are finite

and hence are compact topological spaces. Using Tychonoff’s theorem,

the compactness carries over to the infinite product space. Compact-

ness of the product space played a crutial role in simplifing certain
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arguments at the heart of the Kolmogorov extension theorem. The

reader may wish to compare the proof we obtained in this restricted

case with the proof in the general case (see [2]) for a clear picture of

the simplifications involved.

• The observation that the ergodic theorem for Markov chains could es-

sentially be obtained from Birkhoff’s point-wise ergodic theorem for

simple functions resulted in an elementary proof given in Chapter 9.

Proofs of the theorem for more general classes of functions (see [26],[24])

requires application Lebesgue’s dominated convergence and the mono-

tone convergence theorems (see [10],[2]).

11.2 Future work

While simplifications to the core arguments leading to the Kolmogorov ex-

tension theorem for discrete and finite spaces could be achieved using the

compactness of the underlying topology, the proof still had to make use of

the Caratheodory extension theorem (see theorem B.5.2). We believe that

further simplifcations could be made by proving a version of Kolmogorov

extension theorem that is sufficient for the purposes of developing the er-

godic theory for Markov chains without resorting to the use of Caratheodory

extension theorem. This, in our opinion is the direction in which further

investigation needs to be conducted.
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Appendix A

Tychonoff’s theorem

We had given basic definitions in topology earlier in Chapter 3. Here, we

prove some results that we had left unproven in Chapter 3 including the

Tychonoff’s theorem.

A.1 More on compactness

The Zorn’s lemma will be employed in certain proofs to follow. We do not

prove Zorn’s Lemma here. The reader may find a proof in [11].

Lemma A.1.1 (Zorn’s Lemma). If (P,≤) is a partially ordered set in

which every chain has an upperbound, then (P,≤) has atleast one maximal

element

Now, we define finite union property of class of sets (FUP),

Definition A.1.1. A class of subsets of set X has finite union property

(FUP) if any finite subclass does not cover X

We had noted the following observation in Chapter 3,
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Lemma A.1.2. A topological space (X,T ) is compact⇔ every class of closed

sets with FIP has IP

The following result is employed in two of the theorems that follows,

Theorem A.1.3. Let (X,T ) be a topological space. (X,T ) is compact ⇔

Every basic open cover has a finite subcover ⇔ Any class of basic open sets

with finite union property does not cover X.

Proof. The equivalence of the second and third statements is trivial. All that

is left to obtain the result is to prove that the second condition implies the

compactness of the topological space.

Let {Bi}i∈I be an open base for (X,T ). Assume that every basic open

cover has a finite subcover. It is enough to show that any open cover has

a finite subcover. Let {Sj}j∈J be an open cover for X. Observe that each

Sj =
⋃

k∈K(j)

Dk where each Dk ∈ {Bi}i∈I (by definition of open base).

Consider the class D =
⋃
j∈J
{Dk}k∈K(j) which is an basic open cover for X.

Thus it has a finite subcover, {Dm}m∈M where M ⊆
⋃
j∈J

K(j) and M is finite.

For each Dm let S̄m ∈ {Sj}j∈J such that Dm ⊆ S̄m. Now,
{
S̄m
}
m∈M is a

fjnite subcover of {Sj}j∈J . The result follows.

The following theorem is insightful and thus being proved here, though

a different result equivalent to the below result is used in proving the Ty-

chonoff’s Theorem.

Theorem A.1.4. Let (X,T ) be a topological space. (X,T ) is compact ⇔

Every subbasic open cover has a finite subcover ⇔ Any class of subbasic open

sets with finite union property does not cover X.

Proof. The equivalence of the second and third statements is trivial. All that

is left to obtain the result is to prove that the third condition implies the
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compactness of the topological space.

Let an open subbase of the topological space be {Si}i∈I . Let the open base

generated by {Si}i∈I be denoted as {Bj}j∈J .

Let {Ck}k∈K be any class of basic open sets with finite union property. It is

enough to prove that
⋃
k∈K Ck 6= X.

First, the following fact is to be proved: {Ck}k∈K has a superclass {Cl}l∈L
which is maximal with respect to having finite union property. i.e, any proper

superclass of {Cl}l∈L does not have finite union property.

Consider the set of all superclasses of {Ck}k∈K having finite union property.

Along with the set inclusion relation, this set is a poset. By Zorn’s Lemma ,

it is enough to prove that any chain in this poset has a upper bound. Con-

sider any chain in this poset. The union of all elements in the chain (say U)

has finite union property (Any finite class of sets from the U does not cover

X since these sets are together present in some element of the chain, and

this element of the chain have finite union property by definition). Hence

the chain has an upper bound. Applying Zorn’s Lemma, the existence of a

maximal superclass (w.r.t having FUP) {Cl}l∈L is proved. It is trivial that

{Cl}l∈L is a maximal element even if the poset consisted of all classes of basic

closed sets with FUP.

If
⋃
l∈L

Cl 6= X then we are done. Notice that each Cl =
N(l)⋂
m=1

Dm where each

Dm is a subbasic open set.

Now if it can be proved that for each Cl, atleast one Dm (where m ∈

{1, 2, . . . N(l)}) is in {Cl}l∈L (let us denote such a set corresponding to each

Cl by DN̄(l)), then being subbasic open sets (and from our initial assump-

tion),
{
DN̄(l)

}
l∈L cannot cover X. Now observe,

⋃
l∈L

Cl ⊆
⋃
l∈L

DN̄(l) (since

Cl ⊆
⋃
l∈L

DN̄(l) for each l) hence proving the theorem.
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All that is left is to argue that for each Cl =
N(l)⋂
m=1

Dm, Dm 6∈ {Cl}l∈L ∀m ∈

{1, 2, . . . N(l)} cannot be the case. We will assume there exist Ci, i ∈ L

such that Dm 6∈ {Cl}l∈L ∀m ∈ {1, 2, . . . N(i)} and arrive at a contradiction.

By maximality of {Cl}l∈L, {Cl}l∈L ∪ {Dm} does not have FUP for all m ∈

{1, 2, . . . N(i)}. This implies the existence of finite class of basic open sets

from {Cl}l∈L, {Ep}p∈{1,2,...P (m)} for each m such that
⋃

p∈{1,2,...P (m)}
Ep
⋃
Sm =

X.

Now,

( ⋃
m∈{1,2,...N(i)}

{Ep}p∈{1,2,...P (m)}
⋃
{Ci}

)
being a finite subclass of {Cl}l∈L

covers X. Hence obtaining a contradiction.

A.2 Tychonoff theorem

Another result (stated below) which is equivalent to theorem A.1.4 can be

directly employed in proving the major result in this section. The following

proofs are taken from [25].

Theorem A.2.1. Let (X,T ) be a topological space. (X,T ) is compact ⇔

Every subbasic open cover has a finite subcover ⇔ Any class of subbasic

closed sets with finite intersection property has intersection property.

Proof. The equivalence of the second and third statements is trivial. All that

is left to obtain the result is to prove that the third condition implies the

compactness of the topological space.

Let a closed subbase of the topological space be {Si}i∈I . Let the closed base

generated by {Si}i∈I be denoted as {Bj}j∈J .

Let {Ck}k∈K be any class of basic closed sets with FIP. It is enough to prove

that
⋂
k∈K Ck 6= φ.

First, the following fact is to be proved: {Ck}k∈K has a superclass {Cl}l∈L
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which is maximal with respect to having finite intersection property. i.e, any

proper superclass of {Cl}l∈L does not have finite intersection property.

Consider the set of all superclasses of {Ck}k∈K having finite intersection

property. Along with the set inclusion relation, this set is a poset. By Zorn’s

Lemma , it is enough to prove that any chain in this poset has a upper bound.

Consider any chain in this poset. The union of all elements in the chain (say

U) has finite intersection property (Any finite class of sets from the U has IP

since these sets are together present in some element of the chain, and this

element of the chain have finite intersection property by definition). Hence

the chain has an upper bound. Applying Zorn’s Lemma, the existence of a

maximal superclass (w.r.t having FIP) {Cl}l∈L is proved. It is trivial that

{Cl}l∈L is a maximal element even if the poset consisted of all classes of basic

closed sets with FIP.

If
⋂
l∈L

Cl 6= φ then the result follows. Notice that each Cl =
N(l)⋃
m=1

Dm where

each Dm is a subbasic closed set.

Now if it can be proved that for each Cl, atleast one Dm (where m ∈

{1, 2, . . . N(l)}) is in {Cl}l∈L (let us denote such a set corresponding to each

Cl by DN̄(l)), then being subbasic closed sets (and from our initial assump-

tion),
{
DN̄(l)

}
l∈L has IP. Now observe,

⋂
l∈L

DN̄(l) ⊆
⋂
l∈L

Cl (since
⋂
l∈L

DN̄(l) ⊆ Cl

for each l) hence proving the theorem.

All that is left is to argue that for each Cl =
N(l)⋃
m=1

Dm, Dm 6∈ {Cl}l∈L ∀m ∈

{1, 2, . . . N(l)} cannot be the case. We will assume there exist Ci, i ∈ L

such that Dm 6∈ {Cl}l∈L ∀m ∈ {1, 2, . . . N(i)} and arrive at a contradiction.

By maximality of {Cl}l∈L, {Cl}l∈L ∪ {Dm} does not have FIP for all m ∈

{1, 2, . . . N(i)}. This implies the existence of finite class of basic closed sets

from {Cl}l∈L, {Ep}p∈{1,2,...P (m)} for each m such that
⋂

p∈{1,2,...P (m)}
Ep
⋂
Sm =

φ.
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Now,

( ⋃
m∈{1,2,...N(i)}

{Ep}p∈{1,2,...P (m)}
⋃
{Ci}

)
being a finite subclass of {Cl}l∈L

has empty intersection. Hence obtaining a contradiction.

Now we are in a position to state and prove an important result by Andrey

Nikolayevich Tikhonov,

Theorem A.2.2. Tychonoff’s Theorem: Product of non-empty class of

compact topological spaces is compact

Proof. Let {(Xi, Ti)}i∈I be a non-empty class of compact topological spaces.

The claim is that
∏
i∈I
Xi with the product topology is a compact topological

space (let this space be denoted as X).

It is enough to show that if {Fj}j∈J is a class of subbasic closed sets in X

with FIP in , then it has non-empty intersection (or IP).

Now, each Fj =
∏
i∈I
Fij where each Fij = Xi except for one, say Fkj where

Fkj is a closed set in Xk (from the construction of the product topology).

Consider the sets Si = {Fij}j∈J obtained by fixing i and varying over j.

Each Si is a class of closed sets in Xi with finite intersection property (Since

{Fj}j∈J has FIP). EachXi being compact, each Si has non-empty intersection

(
⋂
j∈J

Fij 6= φ for all i).

Observe,
⋂
j∈J

Fj =
∏
i∈I

⋂
j∈J

Fij. By Axiom of Choice,
⋂
j∈J

Fj is non-empty. The

result follows.
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Appendix B

Caratheodory extension

theorem

B.1 Basic measure theoretic results

We had developed basic measure theoretic notions in Chapter 3. Here, we

prove some results that we had left unproven in Chapter 3 including the

Caratheodory extension theorem.

If {Ai}∞j=0 is a collection of sets, then by the disjointification of {Ai}∞i=0,

we mean the countable collection of sets {Fi}∞i=0 where F0 = A0 and Fi =

Ai−
i−1⋃
j=0

Aj. By definition, we have that {Fi}∞i=0 is a pairwise disjoint collection

of sets such that
∞⋃
i=0

Ai =
∞⋃
i=0

Fi

Lemma B.1.1 (Monotonicity of measure). Let (X,M, µ) be a measure

space. If A,B ∈M such that A ⊆ B, then µ(A) ≤ µ(B)

Proof. Using countable additivity of measure over disjoint sets, we get µ(B) =

µ(A) + µ(B − A). The lemma follows.
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Lemma B.1.2 (Countable subadditivity of measure). Let (X,M, µ)

be a measure space. If {Ai}∞j=0 is a collection of sets from M, µ

(
∞⋃
i=0

Ai

)
≤

∞∑
i=0

µ(Ai)

Proof. Consider the disjointification of {Ai}∞j=0, i.e {Fi}∞i=0. We have µ

(
∞⋃
i=0

Ai

)
=

µ

(
∞⋃
i=0

Fi

)
=
∞∑
i=0

µ(Fi) (due to countable additivty over disjoint sets). By def-

inition of the disjointification, we have Fi ⊆ Ai for all i. Hence using lemma

B.1.1, we get
∞∑
i=0

µ(Fi) ≤
∞∑
i=0

µ(Ai). The lemma follows.

Lemma B.1.3 (Continuity of measure from below). Let (X,M, µ)

be a measure space. If {Ai}∞j=0 is a collection of sets from M such that

A0 ⊆ A1 ⊆ A2 ⊆ . . . , then µ

(
∞⋃
i=0

Ai

)
= lim

i→∞
µ(Ai)

Proof. Consider the disjointification of {Ai}∞j=0, i.e {Fi}∞i=0. We have µ

(
∞⋃
i=0

Ai

)
=

µ

(
∞⋃
i=0

Fi

)
=
∞∑
i=0

µ(Fi) (due to countable additivty over disjoint sets). From

the definition of disjointification, we observe the following µ(An) =
n∑
i=0

µ(Fi)

for all n ≥ 0. Now,
∞∑
i=0

µ(Fi) = lim
n→∞

n∑
i=0

µ(Fi) = limn→∞ µ(An) = limi→∞ µ(Ai).

Lemma B.1.4 (Continuity of measure from above). (X,M, µ) be a

measure space. If {An}n∈N be collection of sets from M such that A0 ⊇

A1 ⊇ A2 ⊇ . . . and µ(X) <∞, then µ (
⋂∞
n=0An) = limn→∞ µ(An)

Proof. Since µ(X) <∞, for any A ⊆ X, we have µ(A) <∞. We have A0 ⊇

A1 ⊇ A2 ⊇ . . . , consider their complements, we obtain Ac0 ⊆ Ac1 ⊆ Ac2 ⊆ . . . .

Using continuity from below (lemma B.1.3), we get lim
n→∞

µ(Aci) = µ

(
∞⋃
n=0

Acn

)
.

For any An, we have µ(An) + µ(Acn) = µ(X). Since µ(Acn) is finite, it is
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meaningful to subtract µ(Acn) on both sides to obtain µ(An) = µ(X)−µ(Acn).

Applying limits on both sides,

lim
n→∞

µ(An) = lim
n→∞

µ(X)− lim
n→∞

µ(Acn)

= µ(X)− lim
n→∞

µ(Acn)

= µ(X)− µ

(
∞⋃
n=0

Acn

)

= µ

((
∞⋃
n=0

Acn

)c)

= µ

(
∞⋂
n=0

An

)

B.2 Caratheodory extension theorem

The very useful Caratheodory extension theorem addresses the question of

meaningfully extending the measure defined on an algebra to the σ-algebra

generated by the algebra. We will show that this is indeed possible and fur-

thermore in the case of finite measures, this is an unique extension (analogous

results for σ-finite measure spaces can be found in [10]). The extension is

established through a series of steps. We do this in order, in different sub-

sections below. The proof presented here is taken from [10].

We will restrict the proof to finite measure spaces. Let (X,M, µ) be a fi-

nite measure space and A be an algebra such that M = σ(A). Let µ0 be a

measure defined on A. Recall that this means,

• µ0(φ) = 0

• If {Ai}∞i=0 is a countable collection of pairwise disjoint sets from A and

if
∞⋃
i=0

Ai ∈ A, then µ0(
∞⋃
i=0

Ai) =
∞∑
i=0

µ0(Ai)
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We intially go through the various steps to obtain an unique extension and

at the end, we state the Caratheodory extension theorem

B.3 From a measure on A to an outer mea-

sure on P(X)

We first define an outer measure.

A function µ∗ : P(X)→ [0,∞] is an outer measure if the following holds,

• µ∗(φ) = 0

• If A ⊆ B, then µ∗(A) ≤ µ∗(B)

• For any countable collection of sets {Ai}∞i=0 from P(X), µ∗(
∞⋃
i=0

Ai) ≤
∞∑
i=0

µ∗(Ai)

Now, we define a set function on P(X) using µ0 and argue that it is an outer

measure. The motivation comes from the way the area of a region on a plane

can be obtained as a infimum over all coverings of the region using rectangles.

For E ⊆ X, define µ∗(E) = inf

{
∞∑
i=0

µ0(Ai) : Ai ∈ A, E ⊆
∞⋃
i=0

Ai

}
Claim B.3.1. µ∗ is an outer measure on P(X)

Proof. Since X ∈ A, µ∗(E) is defined for all E ∈ P(X). µ∗(φ) = 0 since

µ0(φ) = 0 and φ ⊆
∞⋃
i=0

φ = φ. WhenA ⊆ B,

{
∞∑
i=0

µ0(Ai) : Ai ∈ A, B ⊆
∞⋃
i=0

Ai

}
⊆{

∞∑
i=0

µ0(Ai) : Ai ∈ A, A ⊆
∞⋃
i=0

Ai

}
, hence it follows that µ∗(A) ≤ µ∗(B).

To prove countable subadditivity property, consider countable collection of

sets {Ai}∞i=0 from P(X). Choose an arbitrary ε > 0. Now, for each i,

there exist {Ei,j}∞j=0, Ei,j ∈ A such that
∞∑
j=0

µ0(Ei,j) < µ∗(Ai) + ε2i+1.
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Observe that
∞⋃
i=0

Ai ⊆
∞⋃
i=0

∞⋃
j=0

Ei,j. Hence, µ∗(
∞⋃
i=0

Ai) ≤
∞∑
i=0

∞∑
j=0

µ0(Ei,j) ≤
∞∑
i=0

(µ∗(Ai) + ε2i+1) ≤
∞∑
i=0

µ∗(Ai) + ε. Since ε is arbitrary, countable subaddi-

tivity follows.

Recapitulating what we did, we obtained an outer measure µ∗ on P(X)

using µ0 defined on the algebra A. It is a trivial observation that µ∗(A) =

µ0(A) for all A ∈ A.

B.4 From an outer measure on P(X) to a

measure on M

We first define a class of ’well-behaved’ sets with respect to the outer measure

µ∗. A set A ⊆ X is defined to be a µ∗-measurable set (or Caratheodory

measureable set) if µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊆ X. The

measurable sets intuitively are the ones which nicely ’paritions’ every subset

of X. We will denote the set of all µ∗-measurable sets as M∗. It is to be

noted that µ∗(E) ≥ µ∗(E ∩A) +µ∗(E ∩Ac) is the only non-trivial inequality

to be verified in order to guarentee the condition for set A to be measurable,

because the reverse inequality holds from the definition of an outer measure

and that fact that E = (E ∩ A) ∪ (E ∩ Ac). Now, we proceed with the next

step in the process of extending µ0. We straightaway prove the following

theorem,

Lemma B.4.1. M∗ is a σ-algebra and µ∗ is a measure on M∗

Proof. We prove both the claims in an interleaved sequence of arguments.

Due to the inherent symmetry in the definition, it is trivial thatM∗ is closed

under complementation.
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If A,B ∈ M, then for any E ⊆ X, µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) =

µ∗(E ∩A∩B) + µ∗(E ∩A∩Bc) + µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc). Since

(A∪B) ⊆ (A∩B)∪(A∩Bc)∪(Ac∩B), we get that , µ∗(E∩A)+µ∗(E∩Ac) =

µ∗(E ∩ A ∩ B) + µ∗(E ∩ A ∩ Bc) + µ∗(E ∩ Ac ∩ B) + µ∗(E ∩ Ac ∩ Bc) ≥

µ∗(E ∩ (A ∪ B)) + µ∗(E ∩ (A ∪ B)c). This proves that M∗ is closed under

finite union.

If A,B ∈M∗ and A∩B = φ, µ∗(A∪B) = µ∗((A∪B)∩A)+µ∗((A∪B)∩Ac)

and hence µ∗ is finitely additive on M∗.

We will consider countable union of sets in M∗. Let {Ai}∞i=1 be a countable

collection of sets fromM∗. We need to show that
∞⋃
i=1

Ai ∈M∗. We will prove

the claim in the case when Ai’s are pairwise disjoint (The general case directly

follows by considering the disjointification of {Ai}∞i=1 , i.e {Fi}∞i=1 and we had

seen earlier that
∞⋃
i=1

Ai =
∞⋃
i=1

Fi). Let Bn =
n⋃
i=1

Ai and B =
∞⋃
n=1

Bn =
∞⋃
i=1

Ai.

Now for any E ⊆ X, µ∗(E ∩ Bn) = µ∗(E ∩ Bn ∩ An) + µ∗(E ∩ Bn ∩ Acn) =

µ∗(E ∩ An) + µ∗(E ∩ Bn−1) (for n > 0). Now this proves that for any

n, µ∗(E ∩ Bn) =
n∑
i=1

µ∗(E ∩ Ai). Now due to closure under finite union,

for any E ⊆ x, µ∗(E) = µ∗(E ∩ Bn) + µ∗(E ∩ Bc
n) =

n∑
i=1

µ∗(E ∩ Ai) +

µ∗(E ∩ Bc
n) ≥

n∑
i=1

µ∗(E ∩ Ai) + µ∗(E ∩ Bc) (the last inequality follows since

Bn ⊆ B for all n > 0). Taking limit as n → ∞ on both sides, we obtain,

µ∗(E) ≥
∞∑
i=1

µ∗(E ∩ Ai) + µ∗(E ∩ Bc). Now using countable subadditivity

of outer measures, we get µ∗(E) ≥ µ∗(
∞⋃
i=1

(E ∩ Ai)) + µ∗(E ∩ Bc) = µ∗(E ∩

B) + µ∗(E ∩ Bc). This proves closure of M∗ under countable union. Since

µ∗(E) ≥ µ∗(
∞⋃
i=1

(E ∩ Ai)) + µ∗(E ∩ Bc) = µ∗(E ∩ B) + µ∗(E ∩ Bc) ≥ µ∗(E),

we proved that all the above terms are in fact equal. Now, when E = B,

we get that µ∗(E) =
n∑
i=1

µ∗(B ∩ Ai) + µ∗(B ∩ Bc) =
n∑
i=1

µ∗(Ai). This proves

countable additivty of µ∗ on M∗. The proof is complete.
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We have the completed a major part in our process of extending µ0. We

prove some properties of the σ-algebra M∗ that we obtained above and the

measure µ∗ defined on it.

Lemma B.4.2. A ⊆M∗

Proof. Let A ∈ M∗.It is enough to prove that for E ⊆ X, µ∗(E) ≥ µ∗(E ∩

A) + µ∗(E ∩ Ac). Choose a collection of sets {Bi}∞i=0 from A such that
∞∑
i=0

µ0(Bi) ≤ µ(E) + ε for arbitrary ε > 0. We get, µ(E) + ε ≥
∞∑
i=0

µ0(Bi) =

∞∑
i=0

µ0(Bi∩A)+
∞∑
i=0

µ0(Bi∩Ac) (This follows from the fact that µ0 is countable

additive on A and B = (B ∩ A) ∪ (B ∩ Ac)). Since E ∩ A ⊆
∞⋃
i=0

(Bi ∩ A),

E ∩ Ac ⊆
∞⋃
i=0

(Bi ∩ Ac) and also due to the fact that A is an algebra, we get

∞∑
i=0

µ0(Bi∩A)+
∞∑
i=0

µ0(Bi∩Ac) ≥ µ0(E∩A)+µ0(E∩Ac). The lemma follows

since ε is arbitrary.

Lemma B.4.3. µ0(A) = µ∗(A) for all A ∈ A

Proof. Since A0 = A and Ai = φ for all i > 0 is a covering of A, we easily

obtain µ∗(A) ≤ µ0(A). Now we have to show µ0(A) ≤ µ∗(A) when A ∈ A.

Let {Bi}∞i=0 be any collection of sets from A such that A ⊆
∞⋃
i=0

Bi. Let

B =
∞⋃
i=0

Bi. Let {Fi}∞i=0 be the disjointification of {Bi}. We have A ⊆
∞⋃
i=0

Fi

and Fi ⊆ Bi for all i. Define, Ei = A∩Fi. It is easy to see that {Ei}∞i=0 ⊆ A.

Furthermore
∞⋃
i=0

Ei =
∞⋃
i=0

(A∩Fi) = A. since Ei’s are disjoint, using countable

additivty of µ0, we get µ(A) =
∞∑
i=0

µ0(Ei). By monotonicity of outer measures,

we get
∞∑
i=0

µ0(Ei) ≤
∞∑
i=0

µ0(Bi)

The above lemmas show that we are almost done with extension, only

the uniqueness remains to be looked into. Now since A ⊆M∗ and sinceM∗
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is a σ-algebra, we get that σ(A) =M⊆M∗. Hence when restricted to M,

µ∗ is a measure defined on it. i.e µ = µ∗|M is a measure on M.

B.5 Uniqueness of the extension

Before summarizing the results of our effort till now, we prove that if ν

is a measure on M such that ν(A) = µ0(A) for all A ∈ A, then in fact,

ν(E) = µ(E) for all E ∈ M. In this sense, µ is an unique extension of µ0

from A to M

Lemma B.5.1. If ν is a measure on M such that ν(A) = µ0(A) for all

A ∈ A, then ν(E) = µ(E) for all E ∈M

Proof. Choose sets {Ai}∞i=0 from A, such that E ⊆
∞⋃
i=0

Ai. Since ν is a

measure, we have ν(E) ≤
∞∑
i=0

ν(Ai). Since ν and µ coincide on A, we get

∞∑
i=0

ν(Ai) =
∞∑
i=0

µ0(Ai). From the definiton of µ = µ∗|M, we get that ν(E) ≤

µ(E).

If {Ai}∞i=0 is a collection of sets from A and A =
∞⋃
i=0

Ai, then using continuity

of measure from below, we get ν(A) = limn→∞ ν(
n⋃
i=0

Ai). Since µ and ν

coincide on A, we get that limn→∞ ν(
n⋃
i=0

Ai) = limn→∞ µ(
n⋃
i=0

Ai) = µ(A)

(The final equality again follows due to continuity of measure from below).

Employing the above observation, we prove the reverse inequality, i.e µ(E) ≤

ν(E) for all E ∈ M. Choose {Ai}∞i=0 from A, such that E ⊆ A and µ(A) ≤

µ(E) + ε for ε > 0 (where A =
∞⋃
i=0

Ai). From the previous observation, we

have µ(A) = ν(A). Now finally, µ(E) ≤ µ(A) = ν(A) = ν(E) + ν(A− E) ≤

ν(E) + µ(A− E) ≤ ν(E) + ε (where we have used ν(E) ≤ µ(E)). Since ε is

arbitrary we get µ(E) ≤ ν(E).

Hence we conclude that µ(E) = ν(E) for all E ∈ A.
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We have all the work necessary to prove the Caratheodory extension

theorem. The proof of the theorem is immediate from the lemmas above.

Theorem B.5.2 (Caratheodry extension theorem). Let µ0 be a finite

measure defined on an algebra A and M = σ(A). Then, there exist a unique

measure µ on M such that µ(A) = µ0(A) for all A ∈ A

Proof. Theorem follows from the lemmas above
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Appendix C

Modes of convergence

Here we introduce various modes of convergence of functions from probability

spaces to real numbers.

Let fn : (Ω,F , P ) → R where n ∈ N be a sequence of real valued functions

on a probability space and f : (Ω,F , P )→ R. The following are the different

modes of convergence (in decreasing order of strength, the reader is expected

to verify that any mode of convergence implies the ones below it)

1. We say fn converges uniformly to f if, for all ε > 0, there exist

m ∈ N such that |fn(x)− f(x)|< ε if n ≥ m for all x ∈ Ω.

2. fn converges pointwise to f if, for all x ∈ Ω and ε > 0, there exist

mx ∈ N such that |fn(x)− f(x)|< ε for all n ≥ mx.

3. fn converges in probability to f if for any ε > 0 and δ > 0, there

exist m ∈ N such that P ({x ∈ Ω : |fn(x)−f(x)|≥ ε) < δ for all n ≥ m.

Expressed more concisely, fn converges in probability to f if for any

ε > 0, limn→∞ P ({x ∈ Ω : |fn(x)− f(x)|≥ ε) = 0.
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Appendix D

Heine Borel Theorem

D.1 Heine Borel Theorem for Rn

It is trivial to prove that compact subsets of Rn are closed and bounded

(in the usual Euclidian metric). Heine Borel theorem provides the converse

and hence we observe that compact subsets of Rn are exactly the closed and

bounded subsets of Rn. We prove it intially for R1 and use the Tychonoff’s

theorem to obtain the generalized version in Rn. The proof below is taken

from [25].

Theorem D.1.1 (Heine Borel theorem in R). Let S ⊆ R. Then, the

following are equivalent,

• S is compact

• S is closed and bounded

Proof. The forward implication is trivial.

We will prove the backward implication. If S is closed and bounded, then

S ⊆ [a, b] for some a, b ∈ R. Since closed subsets of compact sets are compact,

it is enough to show that [a, b] is compact for all a, b ∈ R. The set C =
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{[a, c]|c ∈ (a, b)} ∪ {[d, b]|d ∈ (a, b)} is a closed subbase for the relative

topology on [a, b] as a subset of R. It is enough to show that any non-empty

A ⊆ C with finite intersection property has non-empty intersection. Now the

compactness follows by theorem A.2.1. If A consists only of sets of the form

[a, c], then the conclusion holds since a ∈ ∩A∈AA. Similarly, the intersection

is non-empty if all sets are of the form [d, b]. Suppose A has both types of

sets. Let d̃ = sup{d|[d, b] ∈ A}. It is enough to show that d̃ belongs to all

sets of the form [a, c], since it will then follow that d̃ ∈ ∩A∈AA. Suppose

there exits [a, c] in A such that d̃ ≥ c. Then by definition of d̃, there exits

[d, b] ∈ A such that d ≥ c. But then {[a, c], [d, b]} is a finite set such that

[a, c] ∩ [d, b] = φ. This contradicts the finite intersection property of A and

we obtain d̃ ∈ ∩A∈AA 6= φ.

Theorem D.1.2 (Heine Borel theorem in Rn). Let S ⊆ Rn. Then, the

following are equivalent,

• S is compact

• S is closed and bounded

Proof. The forward implication is trivial. Since S is closed and bounded S is

the subset of an appropriate n-dimensional rectangle
∏n

i=1[ai, bi]. Since each

[ai, bi] is a compact subspace of R by D.1.1, using Tychonoff’s theorem we

get that
∏n

i=1[ai, bi] is a compact topological space where the product is the

taken over the relative topologies in each [ai, bi] (as a subset of R). It remains

to show that the product of relative topologies of each [ai, bi] is the same as

the relative topology on
∏n

i=1[ai, bi] as a subset of Rn. This is done through

a series of steps. The sequence of steps are given below. The verification of

these are elementary and hence left to the reader,
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1. Inside any n-dimensional open rectangle of the form
∏n

i=1(ai, bi), there

is a n-dimensional open sphere (set of the form {x ∈ Rn|d(x, c) < r}

where c ∈ Rn, r ∈ R and d is the Euclidian metric in Rn) totally

contained inside the open rectangle. And conversely inside any n-

dimensional open sphere, there is an n-dimensional open rectangle to-

tally contained inside it.

2. The usual euclidian metric in Rn is generated by the set of all n-

dimensional open spheres. And thus the above proves that the metric

topology on Rn can be also generated by the set of all n-dimensional

open rectangles in Rn

3. The above shows that sets of the form,

{O1×O2×O3× . . . On|Oi is a set of the form [ai, c) or (c, d) or (d, bi]}

is an open base for the relative topology on
∏n

i=1[ai, bi] as a subset of

Rn.

4. The set,

{O1×O2×O3× . . . On|Oi is a set of the form [ai, c) or (c, d) or (d, bi]}

is an open base for the product topology also.

Since these two topologies on the same set
∏n

i=1[ai, bi] has the same open

base, we can conclude that product of relative topologies of each [ai, bi] is the

same as the relative topology on
∏n

i=1[ai, bi] as a subset of Rn.
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Appendix E

Nedoma’s pathology

E.1 Nedoma’s pathology

In theorem 3.2.9, it was proved that when the underlying spaces are second

countable, then the product sigma algebra of the individual Borel sigma al-

gebras
⊗
i∈I
BXi

coincides with the Borel sigma algebra BX generated by the

product topology where X =
∏

i∈I Xi. This is not true in general. We will

provide a counter example in this section called Nedoma’s Pathology. The

following proof is based on the blog post in [16]

Before looking at the main argument we consider some simple properties of

product of Hausdorff Spaces. Recall that a topological space (X, T ) is Haus-

dorff when every pair of points has disjoint open neighbourhoods. Consider

the product X ×X of any set X with itself. We define the diagonal set as

∆ = {(x, x)|x ∈ X}

Lemma E.1.1. Let (X, T ) be a Hausdorff space. Then the diagonal set is

closed in the product topology.

Proof. It is enough to show that X×X−∆ is open. Consider any (x, y) ∈ ∆c.

We have x 6= y. Since X is Hausdorff, we have open sets A and B in T such
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that x ∈ A, y ∈ B and A∩B = φ. Now A×B is an open set in the product

topology and A×B∩∆ = φ since A and B are disjoint. Since choice of (x, y)

was arbitrary, we showed that any point in ∆c has a open neighbourhood

totally contained in ∆c. The lemma follows.

This shows that ∆ is a measurable set in Borel sigma algebra generated

by the product topology BX .

Now suppose ∆ is expressable as the union of sets of the form A×B where

A,B ∈ X,i.e ∆ =
⋃
i∈I Ai × Bi where Ai, Bi ∈ X then it is easy to see that

each Ai, Bi must be singletons and hence cardinality of I should greater than

or equal to that of X. Keeping the two points above in mind we state the

following fact

Theorem E.1.2. If S is a measurable set in the product sigma algebra

BX
⊗
BX , then S is expressable as the union of |P(N) × P(N)| sets of the

form A×B where A,B ∈ X.

Now it should be clear how a counterexample can be produced. We

consider Hausdorff space (X, T ) such that |X|> |P(N) × P(N)|. Now the

diagonal set is a measurable set in BX . But now, ∆ cannot be expressed as

the union of |P(N)×P(N)| sets of the form A×B where A,B ∈ X. Hence ∆

is not measurable in BX
⊗
BX . Hence we get BX

⊗
BX ⊂ BX . We conclude

this section with the proof of the above theorem.

Lemma E.1.3. If S is a measurable set in the product sigma algebra BX
⊗
BX ,

then there exits a countable collection of sets {Ai}i∈N such that S ∈ σ({Ai ×

Aj|i, j ∈ N})

Proof. Consider the collection C of all sets in BX
⊗
BX having the property

required by the lemma. C trivially contains all the measurable rectangles
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{A × B|A,B ∈ BX}. If D ∈ C then Dc ∈ C since the same countable

collection that lets D into C lets Dc too into C. If {Di}i∈N ⊆ C, then by

taking the union of all the countable collections of cross product sets which

lets each Di get into C will again give a countable collection {Ai}i∈N such

that
⋃
i∈N

Di ∈ σ({Ai × Aj|i, j ∈ N}). We have C ⊆ BX
⊗
BX and now we

obtain C = BX
⊗
BX . The lemma follows

Now we give the proof of the theorem above,

Proof. Given S ∈ BX
⊗
BX , let {Ai}i∈N be countable collection guarenteed

by the preceding lemma such that S ∈ σ({Ai × Aj|i, j ∈ N}).

Consider the set of all infinite length binary strings {0, 1}N. Let x = (x1, x2, x3, . . . ) ∈

{0, 1}N. Define Bx =
⋂

i:xi=1

Ai
⋂

i:xi=0

Aci . Observe that {Bx : x ∈ {0, 1}N} is a

partition of X.

We now argue that any A ∈ σ({Ai × Aj|i, j ∈ N}) can be written as an

arbitrary union of sets of the form Bx × By where x, y ∈ {0, 1}N. Consider

the collection C of all sets in σ({Ai × Aj|i, j ∈ N}) that has the required

property.

Any Ai can be written as arbitrary union of sets Bx where x ∈ {0, 1}N. This

is easily observed by taking the union of sets Bx over all binary strings with

the the ith position set to 1. Since union commutes over cartesian product

we observe that every Ai × Aj can be written as an arbitrary union of sets

of the form Bx × By where x, y ∈ {0, 1}N. Let A =
⋃

(x,y)∈J
Bx × By where

J ⊆ {0, 1}N × {0, 1}N. Since sets of the form Bx × By forms a partition of

X × X, Ac =
⋃

(x,y)∈Jc

Bx × By. Finally, it is trivial to observe that if each

set in {Ai}i∈N can be written as arbitrary union of sets of the form Bx×By,

so can be
⋃
i∈N

Ai. Hence C is a σ−algebra containing {Ai × Aj|i, j ∈ N} and

hence is equal to σ({Ai × Aj|i, j ∈ N}).
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Hence, S can be written as an arbitrary union of sets of the form Bx × By

where x, y ∈ {0, 1}N. Since there are atmost |P(N)× P(N)| sets of the form

Bx ×By, the theorem follows.

The reader should note that the above is infact true if |P(N)× P(N)| is

replaced with |P(N)|. But to prove that there are atmost |P(N)| sets of the

form Bx×By, requires some set-theoretic arguments which we do not intend

to explore here.
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Appendix F

Spectral theorem

Here we will establish an important result in Linear Algebra, that is the

spectral decomposition theorem. The necessary notions including that of

Generalized eigenvectors were developed in section 6.4. Recall that when

An×n is a complex matrix. λ ∈ C is said to be a generalized eigenvalue of A

if there exist a positive m ∈ N and x ∈ Cn such that (A − λI)mx = 0. x is

said to be a generalized eigenvector corresponding to generalized eigenvalue

λ. Also, λ is said to be a mth order eigenvalue and x, a mth order eigenvector

of A.

F.1 Proof of the spectral theorem

Here, we restate the spectral theorem and directly proceed to a proof,

Theorem F.1.1 (Spectral Theorem). Let An×n be a complex matrix. Ev-

ery vector x ∈ Cn has a decomposition into generalized eigenvectors of A.

i.e, x = x1 +x2 + · · ·+xm (for some m ∈ N,m ≤ n) where xi are generalized

eigenvectors of A.

The core of the proof that we will do here (the proof is taken from [15])
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is the below linear algebraic fact. Given a complex polynomial p, we will

denote the null space of p(A) by Np. Also, ⊕ denotes the direct sum of

vector spaces.

Lemma F.1.2. Let p1, p2 . . . pm be polynomials with complex coefficients.

If all pi and pj , i 6= j does not have common roots, then, Np1p2...pn =

Np1 ⊕Np2 . . .⊕Npm.

Proof. We will prove the theorem when m = 2. The validity of the statement

for m = 2 implies Np1p2...pn = Np1⊕Np2p3p4...pm . Now the general case follows

by simple induction.

Since p1 and p2 have no common root, we get that gcd(p1, p2) = 1 (or any

c ∈ C). This implies the existance of complex polynomials r and s such that

p1r + p2s = 1.

Applying A to the polynomials, we get p1(A)r(A) + p2(A)s(A) = I.

We will initially prove that any x ∈ Np1p2 has a decomposition of the desired

kind. We will address the uniqueness in a moment.

Applying p1(A)r(A)+p2(A)s(A) = I to x, we get p1(A)r(A)x+p2(A)s(A)x =

Ix = x. Since x ∈ Np1p2 , we observe that p1(A)r(A) ∈ Np2 and p2(A)s(A) ∈

Np1 . The existance is proved.

Let us suppose there exist two decompositions of the desired kind for x ∈

Np1p2 . i.e, x = xa + xb = xa′ + xb′ (where xa, xa′ ∈ Np1 and xb, xb′ ∈ Np2).

Now y = xa − xa′ = xb′ − xb ∈ Np1 ∩Np2 .

Let us apply p1(A)r(A) + p2(A)s(A) = I onto y. We get p1(A)r(A)y +

p2(A)s(A)y = 0 + 0 = 0 = Iy = y. This implies xa = xa′ and xb = xb′ . The

uniqueness of the decomposition is hence proved.

Now, we prove theorem F.1.1

Proof. Let x ∈ Cn. Since the n + 1 vectors x,Ax,A2x, . . . Anx are linearly
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dependent, there exist a polynomial p of degree ≤ n such that p(A)x = 0.

Let p(A) =
∏m

i=1(A− riI)si where m is the number of distinct roots of p(A).

Since x in the null space of
∏m

i=1(x− riI)si , using lemma F.1.2, we get that

x = x1 + x2 + · · · + xm where each xi is in the null space of (x − riI)si ,

equivalently (A− riI)si(xi) = 0 for all i. This shows that x is expressable as

a sum of generalized eigenvectors of A. The theorem follows.

The reader may notice that the proof of the spectral theorem does not

make use of the uniqueness of decomposition as guarenteed by lemma F.1.2.
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