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Preface

At some point late last decade, the core curriculum of many major cs programs,
including the one here at the University of Pittsburgh, switched to teaching Java, C],
or python. While there is no mistaking the prevalence or importance of a modern,
Object-Oriented, garbage-collected programming language, there is also plenty of
room for an “old-fashioned” do-it-yourself language like C. It is still the language
of large programs and Operating Systems, and learning it opens the door to doing
work with real-life systems like GNU/Linux.

Armed with a C compiler, we can produce executable programs, but how were
theymade? What does the file contain? What actually happens tomake the program
run? To be able to answer such questions about a program and its interactions seems
to be fundamental to the issue of defining a system. Biologists have long known the
benefit of studying life in its natural environment, and Computer Scientists should
do no different. If we follow such a model and study a program’s “life” as we run it
on the computer, we will begin to learn about each of the parts that work together.
Only then can we truly appreciate the abstractions that the Operating System, the
hardware, and high-level programming languages provide to us.

Thismaterial picks upwhere high-level programming languages stop, by looking
at interactions with memory, libraries, system calls, threading, and networking.
This course, however, avoids discussing the implementations of the abstractions the
system provides, leaving those topics for more advanced, specialized courses later
in the curriculum.

I started out writing this text not as a book, but as a study guide for the second
exam in CS 0449: Introduction to Systems Software. I did not have a specific textbook
except for the C programming portion of the course, and felt that the students
could use something to help them tie in the lectures, the course slides, and the
projects. So I sat down one Friday afternoon and, through the next four days, wrote
a 60-page “pamphlet.” I’ve since decided to stick with my effort for the next term,



x Preface

as part of a four-book curriculum that includes two other freely available texts on
Linux Programming and Linux Device Drivers (links available in the Bibliography
Section).

Over time, I hope to continue to add new topics and refine thematerial presented
here. I appreciate any feedback that you, the reader, might have. Any accepted
significant improvement is usually worth some extra credit to my students. All
correspondence can be directed to the email address found on the front cover.

Acknowledgments
No book, not even one so quickly written, is produced in a vacuum. I would like
to thank all of my students for their patience while we all came to terms with my
vision for the course. I especially want to thank Nathaniel Buck, Stacey Crotti, Jeff
Kaminski, and Gerald Maloney for taking the time to provide detailed feedback. I’d
also like to thank my parents and friends for contributing in ways from just basic
support to the artistic. This text would not be the same without all of your help.

Notes on the Second Edition
In this edition, I have attempted to improve the integration of the material into
the modern Java curriculum. Several sections (some old, some new) are marked
with the icon and show up in the pdf outline in italics. These indicate that the
material relates to the Java language or the Java Virtual Machine.

—Jonathan Misurda
May 1, 2008



1 | Pointers

As part of implementing a sorting algorithm, we often need to exchange the
values of two items in an array. Good programming practice suggests that when we
have some commonly-reused code we should wrap it in a function:

void swap(int a, int b) {

int t = a;

a = b;

b = t;

}

Then we can call it from our program with swap(a,b). However, if we initially
set x=3; y=5; and run the above swap function, the values of x and y remain
unchanged. This should be unsurprising to us because we know that when we pass
parameters to a function they are passed “by value” (also known as passing “by
copy”).

This means that a and b contain the same values as x and y at the moment
that the call to swap() occurs because there is an implicit assignment of the form
a=x; b=y; at the call site. From that point on in the function swap(), any changes
to a and b have no effect on the original x and y. Thus, our swap code works
fine inside the scope of swap() but once the scope is destroyed when the function
returns, the changes are not reflected in the calling function.

Java
Content

We then wonder if there is another way to write our swap() so that it succeeds.
Our first inclination might be to attempt to return multiple values. In C, like in Java,
this is not directly possible. A function may only return one thing. However, we
could wrap our values in a structure or array and return the one aggregate object,
but then we have to do the work of extracting the values from the object, which
is just as much work as doing the swap in the first place. We soon realize that we
cannot write a swap function that exchanges the values of its arguments in any
reasonable fashion. If we are programming in Java with the primitive data types,
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this is where our attempts must stop. However, in C we have a way to rewrite the
function to allow it to actually work.

In fact, this should not be surprising because we are essentially asking a function
to return multiple pieces of data, and we have already seen one function that can
do that: scanf(). If we pass scanf() a format string like "%d %d" it will set two
argument variables to the integers that the user inputs. In essence, it is doing what
we just said could not be done: It is modifying the values of its parameters. How is
that accomplished? The answer is by using pointers.

1.1 Basic Pointers

A pointer is a variable that holds an address. An address is simply the index into
memory that a particular value lives at. Memory (specifically RAM) is treated as
an array of bytes, and just like our regular arrays, each element has a numerical
index. We haven’t needed pointers until now because we have given our variables
names and used those names to refer to these locations. We don’t even know the
actual addresses because the compiler and the system automate the layout and
management of many of our variables. However, unlike in Java, it is possible in C to
ask for the location of a particular variable in memory.

Referring to a location via a name or an address is not something unique to C,
or even to computers in general. For example, you can refer to the room in which I
work at Pitt as “Jon’s Office,” which is a name, or as “6203 Sennott Square” which is
an address. Both are ways of referring to the same location and this duplication is
known as aliasing.

1.1.1 Fundamental Operations

We can declare a pointer variable using a special syntax. Pointers in C have a type
to them just like our variables did, but in the context of pointers, this type indicates
that we are pointing to a memory location that stores a particular data type. For
instance, if we want to declare a pointer that will hold the address in memory of
where an integer lives, we would declare it as:

int *p;

where the asterisk indicates that p is a pointer. We need to be careful with declaring
multiple variables on one line because its behavior in regards to pointers is surprising.
If we have the declaration:
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x

p

1000

1004 xp1000

Figure 1.1: Two diagrammatic representations of a pointer pointing to a vari-
able.

int *p, q;

or even:

int* p, q;

we get an integer pointer named p and an integer named q. No matter where you
place the asterisk, it binds to the next variable. To avoid confusion, it is best to
declare every variable on its own separate line.

To set the value of a pointer, we need to be able to get an address from an
existing variable name. In C, we can use the address-of operator, which is the unary
ampersand (&) to take a variable name and return its address:

int x;

int *p;

p = &x;

This code listing declares an integer x that lives someplace in memory and an integer
pointer p that also lives somewhere in memory (since pointers are variables too).
The assignment sets the pointer p to “point to” the variable x by taking its address
and storing it in p.

Figure 1.1 shows two ways of picturing this relationship. On the left, we have a
possible layout of ram, where x lives at address 1000 and p lives at address 1004.
After the assignment, p contains the value 1000, the address of x. On the right,
much more abstractly, is shown the “points-to” relationship.
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Now that we have the pointer p we can use it as another name for x. But in
order to accomplish that, we need to be able to traverse the link of the points-to
relationship. When we follow the arrow and want to talk about the location a pointer
points-to rather than the pointer itself, we are doing a dereference operation. The
dereference operator in C is also the asterisk (*). Notice that although we used the
asterisk in the pointer definition to declare a variable as a pointer, the dereference
operator is different.

When we place the asterisk to the left of a pointer variable or expression that
yields a pointer, we chase the pointer link and are now referring to the location it
points to. That means that the following two statements are equivalent:

x = 4; *p = 4;

Note that it is usually a mistake to assign a pointer variable a value that is not
computed from taking the address of something or from a function that returns a
pointer. This general rule should remind us that p = 4; would not be appropriate
because we do not normally know in advance where memory for objects will be
reserved.

1.2 Passing Pointers to Functions

With the basic operations of address-of and dereference, we can begin to use pointers
to do new and useful tasks. If we make a slight modification to our previous swap()
function, we can get it to work:

void swap(int *a, int *b) {

int t = *a;

*a = *b;

*b = t;

}

We also need to change the way we invoke it. If we have our same variables, x and y,
we would call the function as swap(&x, &y). After swap() returns, we now find
that x is 5 and y is 3. In other words, the swap worked.

To better understand what happened here, we can trace the code constructing a
picture like before. Figure 1.2 shows the steps. When the swap() function is called,
there are four variables in memory: x and y which contain 3 and 5, respectively, and
a and b which get set to the addresses of x and y. Next, a temporary variable t is
created and initialized to the value of what a points to, i.e., the value of x. We then
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x
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a

b

5

3

t 3

Figure 1.2: The values of variables traced in the swap() function.

copy the value of what b points to (namely the value of y) into the location that a
points to. Finally, we copy into the location pointed to by b our temporary variable.

Our swap function is an example of one of the two ways that pointers as function
parameters are used in C. In the case of swap(), scanf(), and fread(), among
many others, the parameters that are passed as pointers are actually acting as addi-
tional return values from the functions.

The other reason (which is not mutually exclusive from the previous reason)
that pointers are used as parameters is for time and space efficiency in passing
large objects (such as arrays, structs, or arrays of structs). Since we have already
established that C is pass-by-value, if we pass a large object to a function, that object
would have to be duplicated and that might take a long time. Instead, we can pass a
pointer (which is really just integer-sized), thus taking no noticeable time to copy.
This is why fwrite() takes a pointer parameter even though it does not change the
object in memory.

1.3 Pointers, Arrays, and Strings
With our knowledge of pointers, we now can understand why we had to do certain
things such as prefix variable names with an ampersand for scanf(). However, you
may recall there passing a string was the exception to that rule. To understand why
this is the case, we need to explain a fundamental identity in C:

The name of an array is a (read-only) pointer to it’s beginning.

Imagine we declare an array: int a[4];. If we wish to refer to a particular
integer in the array, we can subscript the array and write something along the lines
of a[i], which represents the ith item. An alternative way to view it is that a[i] is
i integers away from the start of the array. This is valid because we know that all
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elements of an array are laid out consecutively in memory. Thus, in essence, if we
knew where the entire array started, we could easily add an offset to that address
and find a particular element in the array.

To express it mathematically, if we have an array with address base, then the
ith element lives at base + i× sizeof(type) where type is the type of the elements
in the array. This simple calculation is so convenient that C decides to enable it by
making the name of the array be a pointer to the beginning of the array in memory.
This means that if we have an array element indexed as a[3], it lives at the address
a+ 3× sizeof(int).

However, when we convert this formula to C code, there is a slight adjustment
we must make. The appropriate way to rewrite a[3] using pointers and offsets
is *(a+3). Where did the sizeof(int) term go? The answer lies in how C does
pointer arithmetic.

1.3.1 Pointer Arithmetic

Pointers are allowed three mathematical operations to be performed on them.
Addition and subtraction of an integer offset is allowed in order to support the
aforementioned address/offset calculations. The third operation is that two pointers
of the same type are allowed to be subtracted from each other in order to determine
an offset between the pointers.

In the case of addition or subtraction of an integer offset, C recognizes that if
you start with a pointer to a particular type, you will still want a pointer to that
same type when you do your arithmetic. If the expression a+1 added one byte to
the pointer, we’d now be pointing into the middle of the integer in memory. What
C wants is for a to point to the next int, so it automatically scales the offset by the
size of the type the pointer points to.

Because addition and subtraction are supported, C also allows the pre- and
post-increment and -decrement operators to be applied to pointers. These are still
equivalent to the +1 and -1 operations as on integers.

This means that a particularly sadistic person could write the following function:

void f(char *a, char *b) {

while(*a++ = *b++) ;

}

This function is one we have already discussed in the course. It is strcpy(). The
way that it works is that the post-increment allows us to walk one character at a
time through both the source and destination arrays. The dereferences turn the
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pointers into character values. The assignment does the copy of a letter, and yields
the right-hand side as the result of the expression. The right-hand side is then
evaluated in a boolean context to determine if the loop stops or continues. Since
every character is non-zero, the loop continues. The loop terminates when the
nul-terminator character is copied, because its value is zero and thus false. The loop
needs no body, the entirety of the work is done as side-effects of the loop condition.

1.4 Terms and Definitions
The following terms were introduced or defined in this chapter:

Address The index into memory where a particular value lives.

Dereference To follow the link of a pointer to the location it points to. In C, the
dereference operator is *.

Pointer A variable that holds an address.

Pointer Arithmetic Adding or subtracting an offset to a pointer value. In C, this
offset is automatically scaled by the type the pointer points to.
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In a programming language, scope is a term that refers to the region in a program
where a symbol is legal and meaningful. A symbol is a name that represents a
constant, literal, or variable. Scope serves a dual purpose. It allows for a symbol
to be restricted to some logical division of the program, and it allows for duplicate
names to exist in non-overlapping regions.

Restricting the portion of a program where a symbol is legal allows for a simple
form of encapsulation, also known as “data-hiding.” By restricting a symbol’s access
to a programmer-defined, limited region of the program, a programmer can be
sure that minimal code affects the value of a particular variable. Allowing duplicate
names is important when there are many programmers working together. Imagine
a language where every variable was global. For many people to work together,
they would have to avoid using the same variable names as anyone else. This would
lead to some cumbersome naming convention and not encourage using the clearest
name for a variable.

While scope is a compile-time property of code, when the program is actually
executed, variables are created and destroyed. The time from which a particular
memory location is allocated until it is deallocated is referred to as that variable’s
lifetime.

The precise rules governing scope are programming language dependent, and
a language construct rather than something enforced by the organization of the
computer. If we have a variable that is restricted to a particular function (usually
called a local variable), there is nothing preventing that variable from being created
at program start and not destroyed until program termination.

What determines the lifetime of a variable is whether it is static or dynamic data.
Static means non-moving, just as static electricity is an electrical charge separated
from an opposite charge, and not moving towards it (as shown in Figure 2.1). In
computing, static refers to when a program is compiled or anytime before it is run. If
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Figure 2.1: Static electricity is a built-up charge that is separated from an op-
posite charge. When you touch a grounded object, the charges
suddenly flow to cancel out, giving you a shock.

the compiler can compute exactly how much space will be needed for variables, the
variables are static data. Dynamic data is that which is allocated while the program
runs, since its size may depend on input or random values.

At first glance, local variables would seem to be static data, since the compiler
can determine exactly how much space is necessary for them. However, while
the compiler may be able to compute the memory needs of a function, there is
not always a way to determine how many times that function may be called if, for
instance, it is recursive. Since each invocation of the function needs its own copy of
the local variables, allocation of their storage must be dealt with at run-time.

Static data can be allocated when the program begins and freed when the pro-
gram exits. Dynamic data, on the other hand, will need special facilities to handle
the fluctuations in the demand for memory while the program runs.

2.1 Scope and Lifetime in C

Scopes in C are defined by files and blocks. Remember that a block is a region of
code enclosed in curly braces: { and }. In C, local variables are legal in the scope they
are declared in, as well as all scopes that are nested inside of that scope. Figure 2.2
illustrates three nested scopes in a C program: the file, the function, and a loop
within the function. A variable declared in the file is accessible anywhere, but a
variable declared inside the loop can only be used inside that loop.

While two variables with the same name may not occupy the same scope, there
is nothing preventing a nested scope from naming a variable the same as one in
an enclosing scope. When this occurs, the variable of the outer (larger) scope is
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for(i=0;i<10;i++)

int  main()

file.c

Figure 2.2: The nested scopes in a C program.

hidden, and the innermost variable is said to be shadowing the outer one.
Listing 2.1 shows an example of a shadowed variable. The new block redeclares

the shadowed variable, and when this program is run, the value “6” is displayed on
the screen. In general, using shadowed variables is not good practice and can lead
to a great deal of confusion to someone reading the code.

2.1.1 Global Variables

A global variable is a variable that is accessible to all functions and which retains its
value throughout the entire execution of the program. In C, any variable declared
outside of a function could be considered global. However, C treats a file as a scope,
so “global” variables are actually limited to the file they are declared in.

What makes these file-scoped variables special is that they can be imported
into the scope of other files by the extern keyword. If File A contains a global
declaration like int x, File B can also refer to that variable by redeclaring it, but
with the extern qualifier: extern int x.

2.1.2 Automatic Variables

Variable declarations that occur inside functions are implicitly declared auto, mean-
ing an automatic variable. Automatic variables are variables that are created and
destroyed automatically by code generated from the compiler. In general, the life-
time of automatic variables is the lifetime of the block they are defined in. However,
it may be more convenient for all automatic variables to be created on function
entry and destroyed at function return. This is implementation specific and has
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#include <stdio.h>

int main() {

int shadowed;

shadowed = 4;

{

int shadowed;

shadowed = 6;

printf("%d\n", shadowed);

}

return 0;

}

Listing 2.1: Variables in inner scopes can shadow variables of the same
name in enclosing scopes.

no bearing on the correctness of a program since the scope is narrower than the
lifetime.

The only problem that could arise with automatic variables comes as an abuse of
pointers. Consider the code of Listing 2.2. Here function f() creates and returns a
pointer to an automatic variable, which function main() captures. However, when
main() goes to use the memory location referenced by the pointer p, that variable is
“dead” and can no longer safely be used. The gcc compiler is kind enough to issue a
warning if we do this:

(14) thot $ gcc escape.c

escape.c: In function `f':

escape.c:5: warning: function returns address of local variable

However, the code actually compiles and a program is produced. Proving again that
C is not picky about what you do, no matter if you mean it or not.

2.1.3 Register variables

The old C compilers were not always very intelligent when it came to machine
code generation. Thus, a programmer was allowed to give a hint to the compiler to
indicate that a certain variable was particularly important. Such heavily accessed
variables should be stored in architectural registers rather than in memory. Declar-
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int *f() {

int x;

x = 5;

return &x;

}

int main() {

int *p;

p = f();

*p = 4;

return 0;

}

Listing 2.2: A pointer error caused by automatic destruction of variables.

ing a variable as register could have a significant improvement on the performance
of frequently executed code such as in loops.

Modern compilers support the register keyword, but most simply ignore it,
due to the fact that the compiler will examine the code andmake intelligent decisions
about what data to place in registers or in memory. This is done for every variable
without having to specify anything more than a compiler option, if even that.

2.1.4 Static Variables

Static is a much-overloaded term in Computer Science. Earlier it was defined as
pertaining to when a program is compiled. In Java, it was used to declare a method
or field that existed independently of any instances of a class. In C, static is a
keyword with two new meanings, depending on whether it is applied to a local
variable, or to a global variable or function.

Static Local Variables

So far, the distinction between scope and lifetime seems somewhat unnecessary.
Local variables have a lifetime approximately that of their scope, and global variables
need to live for the whole execution of a program. However, if we think about all
possible combinations of scope and lifetime, there are two we have not addressed.
The first, a global scope but a local lifetime, is a recipe for disaster. This is basically
what occurs when returning a pointer to an automatic variable, and even the com-
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char *asctime(const struct tm *timeptr) {

static char wday_name[7][3] = {

"Sun","Mon","Tue","Wed","Thu","Fri","Sat"

};

static char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};

static char result[26];

sprintf(result,

"%.3s␣%.3s%3d␣%.2d:%.2d:%.2d␣%d\n",
wday_name[timeptr->tm_wday],

mon_name[timeptr->tm_mon],

timeptr->tm_mday, timeptr->tm_hour,

timeptr->tm_min, timeptr->tm_sec,

1900 + timeptr->tm_year);

return result;

}

Listing 2.3: Unlike automatic variables, pointers to static locals can be used
as return values.

piler warned that was a bad idea. The other combination is a variable with a local
scope but a global lifetime. This combination would imply that the variable could
be used only within the block it was declared in but would retain its value between
function invocations. Such a variable type might be useful as a way to eliminate
the need for a global variable to fulfill this role. Anytime a global variable can be
eliminated is usually a good thing.

By declaring a local variable static, the variable nowwill keep its value between
function invocations, unlike an automatic variable. Interestingly, an implication of
this is that static local variables can safely have pointers to them as return values.
Listing 2.3 shows the man page for the asctime() function, which builds the string
in a static local variable. The advantage to this is that the function can handle the
allocation but does not require the caller to use free() as if malloc() had been
used.
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#include <string.h>

#include <stdio.h>

int main() {

char str[] = "The␣quick␣brown";
char *tok;

tok = strtok(str, "␣");

while(tok != NULL) {

printf("token:␣%s\n", tok);

tok = strtok(NULL, "␣");
}

return 0;

}

Listing 2.4: The strtok() function can tokenize a string based on a set of
delimiter characters.

The quintessential example of static local variables is the standard library func-
tion strtok(), whose behavior is somewhat atypical. Listing 2.4 shows an example
of splitting a string based on the space character. The first time strtok() is called,
the string to tokenize and the list of delimiters are passed. However, the second
and subsequent times the function is invoked, the string parameter should be NULL.
Additionally, strtok() is destructive to the string that is being tokenized. In order
to understand this, imagine that the following string is passed to strtok() with
space as the delimiter:

t h e q u i c k b r o w n \0

On the first call to strtok(), the return value should point to a string that contains
the word “the.” On the second call, where NULL is passed, the return value should
point to “quick.” If we now examine the original string in a debugger, we would see
the following:

t h e \0 q u i c k \0 b r o w n \0



2.1 Scope and Lifetime in C 15

The delimiter characters have all been replaced by the null terminator! That
explains why we cannot pass the original string on the second call, since even
strtok() will stop processing when it encounters the null, thinking that the string
is over. So now we have “lost” the remainder of the string. The strtok() function,
however, remembers it for us in a static local variable. Passing NULL tells the function
to use the saved pointer from the last call and to pick up tokenizing the string from
the point it left off last.

Static Global Variables

The static keyword, when applied to file-scope variables, takes on an entirely
different meaning. Coming from an object-oriented language such as Java, the
natural comparison is to consider the static keyword as equivalent to the private
keyword. In C, static restricts use of a file-scoped variable to only the file it was
declared in. No other file may import it into that file’s scope through the extern
keyword. The variable is hidden and may not be shared.

As a note, this is also true if the static keyword is used to prefix a function.
The function then may not be called by code from any other files in the program.
In this manner, variables and functions can be kept isolated from each other, one of
the original points of scoping.

2.1.5 Volatile Variables

In most cases, the compiler will decide when to put a value into a register and when
to keep it in memory. In certain cases, the memory location that data is stored
in is special. It could be a shared variable that multiple threads or processes (see
Chapter 9) are using. It could be a special memory location that the Operating
System maps to a piece of hardware. In these cases, the value of the variable in
the register may not match the value that is in memory. Declaring a variable as
volatile tells the C compiler to always reload the variable’s value from memory
before using it. In a way, this could be thought of as the opposite of the register
keyword.

The volatile keyword is somewhat rare to see in normal desktop applications,
but it is useful in systems software when interacting with hardware devices. Though
you may not encounter it much, it is nonetheless important to remember for that
one time you might need it (or more if you develop low-level programs).
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2.2 Summary Table
The following table summarizes the scope and lifetimes that C provides:

Scope Lifetime
Automatic The block it is defined in The life of the function
Global The entire file plus any files

that import it using extern
The life of the program

Static Global The entire file, but may not
be imported into any other
file using #1extern

The life of the program

Static Local The block it is defined in The life of the program

2.3 Terms and Definitions
The following terms were introduced or defined in this chapter:

Dynamic While a program is being run.

Lifetime The time from which a particular memory location is allocated until it is
deallocated.

Local variable A variable with a scope limited to a function or smaller region.

Scope The region in a program where a symbol is legal and meaningful.

Shadowing A variable in an inner scope with the same name as one in an enclosing
scope. The innermost declaration is the variable that is used; it shadows the
outermost declaration.

Static While a program is being compiled.

Symbol A name that represents a constant, literal, or variable.



3 | Compiling & Linking:
From Code to Executable

In this chapter, we begin to look at the computer as a system: A group of programs
written by many different people, all trying to work together to accomplish useful
tasks. No single component exposes the innermost workings of a system quite as
well as the compiler. We begin this chapter by briefly describing the process of
compilation, linking, and the makeup of executable files.

Certainly programming languages other than C can be compiled and executed,
but C’s original purpose was for writing Operating Systems. Thus we will discuss
the C compiler as the prototypical compiler. Modern Linux systems use the gcc
compiler, created by Richard Stallman as part of his free gnu system. This text
will assume the gcc compiler, and it has been used to test the code listings found
throughout the book.

3.1 The Stages of Compilation
Figure 3.1 shows the typical stages that a C program goes through while being
compiled under the gcc compiler on Unix/Linux. Starting with one or more C code
source files, the files are first sent to cpp, the C Preprocessor. The preprocessor
is responsible for doing textual replacement on the input files by following all of
the commands that begin with a #. After the preprocessor does its job, the fully
expanded C code is passed to cc1, the compiler, which is responsible for syntax
checking and code generation. If there are multiple sources of code in your program
(which if you are using any of the standard library code, there are), ld, the linker,
needs to resolve how to find this code. Some code will be copied into the executable
and some will be left out until the program is loaded. At this point, however, there
is a recognizable executable file (assuming there were no errors).
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.c cpp cc1 .o ld

C source
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Object
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Figure 3.1: The phases of the gcc compiler for C programs.

3.1.1 The Preprocessor

The two most common preprocessor directives are #include and #define. When
the preprocessor encounters a #include command, it seeks out the file whose name
comes after the include command and inserts its contents directly into the C code
file. The preprocessor knows where to look for these files by the delimiters used
around the filename. Here are two examples:

#include <stdio.h>

#include "myheader.h"

If< and> are used, the preprocessor looks on the include path1 where the standard
header files for the system are found. A header file contains function and data type
definitions that are found outside of a particular file. If “ and ” are used instead, the
local directory is searched for the named file to include.

The directive #define creates a macro. A macro is a simple or parameterized
symbol that is expanded to some other text. One common use of a macro is to
define a constant. For example, we might define the value of π in the following way:

#define PI 3.1415926535

Now we may use the symbol PI whenever we want the value of π:

double degrees_to_radians(double degrees) {

return degrees * (PI / 180.0);

}

1 Under Linux this is usually /usr/include.
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We can actually parameterize ourmacros to allow formore generic substitutions.
For instance, if we frequently wanted to know which of two numbers is larger, we
could create a macro called MAX that does this for us:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

Notice that we do not need to put any type names in our definition. This is because
the preprocessor has no understanding of code or types; it is just following simple
substitution rules: Whatever is given as a and b will be inserted into the code. For
instance:

c = MAX(3,4);

will become:

c = (((3) > (4)) ? (3) : (4));

However,

c = MAX("bob","fred");

will become:

c = ((("bob") > ("fred")) ? ("bob") : ("fred"));

which is not legal C syntax. The preprocessor will do anything you tell it to, but
there is no guarantee that what it produces is appropriate C.

3.1.2 The Compiler

The compiler is a complex and oftentimes daunting piece of software. There is an
entire course on it alone. (And another one at the graduate level!) Thankfully, what
we need to understand about the compiler is fairly simple. The compiler takes our
source code, checks to make sure it is legal syntax, and then generates machine code.
This machine code may be optimized — meaning that the compiler had some rule
by which it transformed your code into something it believed would run faster or
take up less memory.

The output of the compiler is an object file, which is denoted by the .o extension
when using gcc.2 There is one object file produced per source code file. An object
file contains machine code, but any function call to code that is in a different source
file is left unresolved. The address the code should jump to is unknown at this stage.

2 Visual Studio under Windows produces object files with the extension .obj



20 Compiling & Linking: From Code to Executable

3.1.3 The Linker

Code in an executable can come from one of three places:

1. The actual source code

2. Libraries

3. Automatically generated code from the linker

The job of the linker is to assemble the code from these three places and create the
final program file.

The source code is, of course, the code the programmer has written. The li-
braries are collections of code that accomplish common tasks provided by a com-
piler writer, system designer, or other third party.3 C programs nearly always refer to
code provided by theC Standard Library. The C Standard Library contains helpful
functions to deal with input and output, files, strings, math, and other common
programming tasks. For instance, we havemademuch use of the function printf()

in our programs. To gain access to this function in our code, two independent steps
must be done.

The first step is to inform the compiler that there is a function named printf()

that takes a format string followed by a variable number of arguments. The compiler
needs to know this information to do type checking (to ensure the return value and
parameters match their specifications) and to generate appropriate code (which
will be elaborated upon in Chapter 6). This information is provided by a function
prototype declaration that resides in <stdio.h>.

The second step is to tell the linker how to find this code. The simplest way
to assemble all three sources of code into a program is to literally put it all into
one big file. This is referred to as static linking. It is not the only option, however.
Remember that static is a term that is often used to describe the time a program
is compiled. Its opposite is dynamic — while the program is running. It comes
then as no surprise that we also have the option to dynamically link libraries, so
that the code is not present in the executable program but is inserted later while the
program loads (link loading) or executes (dynamic loading).

Each of these techniques has the same goal: put the code necessary for our pro-
gram to run into ram. Most common computer architectures follow the von Neu-
mann Architecture where both code and data must be loaded into a main memory

3 You can always write your own libraries as well!
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Figure 3.2: In static linking, the linker inserts the code from library archives
directly into the executable file.

before instructions can be fetched and executed. Static linking puts the code into
the executable so that when the Operating System loads the program, the code is
trivially there. Dynamic linking defers the loading of library code until runtime.
We will now discuss the issues and trade-offs for each of these three mechanisms.

Static Linking

Static linking occurs during compilation time. Figure 3.2 gives an overview of
the linker’s function during static linking. When the linker is invoked as part of
the compilation process, code is taken from the libraries and inserted into the
executable file directly. The code for the libraries in Unix/Linux comes from archive
(.a) files. The linker reads in these files and then copies the appropriate code into
the executable file, updating the targets of the appropriate call instructions.

The advantages of static linking are primarily simplicity and speed. Because all
targets of calls are known at compile time, efficient machine code can be generated
and executed. Additionally, understanding and debugging the resultant program
is straightforward. A statically-linked program contains all of the code that is
necessary for it to run. There are no dependencies on external files and installation
can be as simple as copying the executable to a new machine.

There are two major disadvantages to static linking, however. The first is an issue
of storage. If you examine a typical Unix/Linux machine, you will find hundreds
of programs that all make use of the printf() function. If every one of these
programs had the code for printf() statically linked into its executable, we would
have megabytes of disk space being used to store just the code for printf().

The second major disadvantage is exposed by examining such programs under
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Figure 3.3: Dynamic linking resolves calls to library functions at load time.

the light of Software Engineering, wheremodularity— the ability to break a program
up into simple, reusable pieces — is emphasized. Imagine that a bug in printf()

is subsequently discovered on our system that is entirely statically linked. To fix
our bug, we will have to find every program that uses printf() and then recompile
them to include the fixed library. For programs whose source code we do not have,
we would have to wait until the vendor releases an update, if ever.

Dynamic Linking

A better approach for code that will be shared between multiple programs is to use
dynamic linking. Figure 3.3 shows the process. Notice that the executable file has
already been produced, and that we are about to load and execute the program. In
dynamic linking, the linker is invoked twice: once at compile time and once every
time the program is loaded into memory. For this reason, the linker is sometimes
referred to as a link loader.

When the linker is invoked as part of the compiler (ld as a part of gcc, for
instance) the linker knows that the program will eventually be loaded, and any
library calls will be resolved. The linker then inserts some extra information into
the executable file to help the linker at load time. When the linker runs again, it
takes this information, makes sure the dynamically linked library is loaded into
memory, and updates all the appropriate addresses to point to the proper locations.

On Unix/Linux, dynamically linked libraries are called shared objects and
have .so as their extension. Windows calls them Dynamically Linked Libraries
(appropriately) with the extension .DLL.

Dynamic linking allows for a system to have a single copy of a library stored on
disk and for the library code to be copied into the process’s address space at load time.
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The term for the remove of duplicate information is deduplication. Deduplication
is a common technique that is necessary for systems to work with large amounts
of data. Consider an email provider like Google’s GMail. If a spammer managed
to get a list of one million GMail addresses, they could send a 1MB file to each of
them. That would require GMail to naïvely store 1TB of data for this one email
message. That obviously wouldn’t be possible. Instead, GMail deduplicates email
messages and attachments, storing them just once. Each user has a reference to that
object that they see. The disadvantage is that GMail cannot delete the file when any
individual user clicks delete, but must rather wait for everyone who received the
email to delete it before reclaiming that space.

Fixing a bug in a library only requires the library to be updated. Since it is an
independent file, the one-and-only copy of the library can be replaced with the
updated version and all future references to the library at load time will be resolved
with the updated version.

While dynamic linking solves the storage and update problems, it introduces
some issues of its own. The first issue is that the extra work to resolve the addresses
to their actual location is done at load time and thus slows the program’s execution.
The solution to this is to let the linking at load time be “lazy.”

In the “lazy” approach to dynamic linking, a call instruction jumps to a large
table in memory that contains the actual address of any function that was dynam-
ically linked. However, this incurs extra penalties in the cost of doing the call

instruction the first time. To make the second execution of the call faster, the
linker may rewrite the call to jump directly to the proper location, a technique
known as back-patching.

A second issue that arises with dynamic linking concerns versioning. A pro-
grammer may wish to use a new function included with the most recent version of
a library. If the programmer distributes the program without including this library,
the end user may have an older version of that library without the important func-
tion. To get around this, the developer may wish to distribute the shared libraries
with the application. But if every application does this, we are not much better off
than with static linking.4 Unix/Linux solves this with a file naming system that
includes the version number, allowing a programmer to specify a particular version
if it is needed. Windows does not have an elegant solution to this problem, which is

4 The developer can still fix bugs in either the main application or the library without having to
distribute both files. However, this is somewhat minor compared to the advantage of having just one
copy of a library on a system.
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Figure 3.4: Dynamically loaded libraries are loaded programmatically and on-
demand.

affectionately referred to as “dll Hell.”5
A third issue is related to security. A malicious programmer could name their

own library the same as one the program expects to find on the system already. As
long as it exports the same functions and data, they could write the library to do
whatever they please. This seems to be a fatal flaw with dynamic linking. However,
the problem is not related directly to linking but rather the security of the file system
where the libraries are stored. Thus, the solution to this problem is to restrict the
permissions of who can alter the location where shared libraries are stored on disk.

Dynamic Loading

Dynamic loading is a subset of dynamic linking where the linking occurs completely
on demand, usually by a program’s explicit request to the Operating System to load
a library. Figure 3.4 shows an example of a Windows program making a request to
load two dlls programmatically. In Windows, a programmer can make a call to
LoadLibrary() to ask for a particular library to be loaded by passing the name as
a string parameter. Under Unix/Linux there is an analogous call, dlopen().

One challenge for the Operating System in supporting dynamic loading is where
to place the newly loaded code in memory. To handle this and traditional load-time
linking, a portion of a process’s address space (see Chapter 5) will typically be
reserved for libraries.

Care has to be taken by the programmer to handle the error condition that arises

5 Recent versions of Windows protect core dlls from being overwritten by older versions, but this
does not solve 100% of all problem cases.
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if the load fails. It is possible that a library has been deleted or not installed, and the
code must be robust to not simply crash. This is one significant issue with dynamic
loading, since with compile- or load-time linking the program will not compile
or run without all of its dependencies available. A user will not be happy if they
lose their work because in the middle of doing something the program terminates,
saying that a necessary library was not found.

For this reason, core functionality of the program is probably best included
using static or dynamic linking. Dynamic loading is often used for loading plugins
such as support for additional audio or video formats in a media player or special
effect plugins for an image editor. If the plugins are not present, the user may be
inconvenienced, but they will likely still be able to use the program to do basic tasks.

3.2 Executable File Formats

After the linker runs as part of the compilation process, if there were no errors an
executable file is created. The system has a format by which it expects the code and
data of a program to be laid out on disk, which we call an executable file format.

Each system has its own file format, but the major ones that have been used are
outlined here:

a.out (Assembler OUTput) — The oldest Unix format, but did not have adequate
support for dynamic linking and thus is no longer commonly used.

COFF (Common Object File Format) — An older Unix format that is also no
longer used, but forms the basis for some other executable file formats used
today.

PE (Portable Executable) — The Windows executable format, which includes a
coff section as well as extensions to deal with dynamic linking and things
like .net code.

ELF (Executable and Linkable Format) — The modern Unix/Linux format.

Mach-O — The Mac osx format, based on the Mach research kernel developed at
cmu in the mid 1980s.
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Though a.out is not used any longer,6 it serves as a good example of what types
of things an executable file might need to contain. The list below lists the seven
sections of an a.out executable:

1. exec header

2. text segment

3. data segment

4. text relocations

5. data relocations

6. symbol table

7. string table

The exec header contains the size information of each of the other sections as a
fixed-size chunk. If we were to define a structure in C to hold this header, it would
look like Listing 3.1.

struct exec {

unsigned long a_midmag; //magic number

unsigned long a_text;

unsigned long a_data;

unsigned long a_bss;

unsigned long a_syms;

unsigned long a_entry;

unsigned long a_trsize;

unsigned long a_drsize;

};

Listing 3.1: The a.out header section.

The magic number is an identifying sequence of bytes that indicates the filetype.
We saw something similar with id3 tags, as they all began with the string “TAG”.
Word documents begin with “DOC”. The loader knows to interpret this file as an
a.out format executable by the value of this magic number.

The text segment contains the program’s instructions and the data segment
contains initialized static data such as the global variables. The header also contains

6 When using gcc without the -o option, you will notice it produces a file named a.out, but this file,
somewhat confusingly, is actually in elf format.
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public class StringTable {

public static void main(String[] args) {

String s = "String␣literal";

if(s == "String␣literal") {

System.out.println("Equal");

}

}

}

Listing 3.2: String literals are often deduplicated.

the size of the BSS section which tells the loader to reserve a portion of the address
space for static data initialized to zero.7 Since this data is initialized to zero, it does
not take up space in the executable file, and thus only appears as a value in the
header. The two relocation sections allow for the linker to update where external or
relocatable symbols are defined (i.e., what addresses they live at).

The symbol table contains information about internal and external functions
and data, including their names. Since the linker may need to look things up in
this table, we want random access of the symbol table to be quick. The quickest
way to look something up is to do so by index, as with an array. For this to work,
however, we need each record to be a fixed size. Since strings can be variable length,
we want some way to have fixed-sized records that contain variable-sized data. To
accomplish this, we split the table into two parts. The symbol table with fixed-sized
entries, and a string table that contains only the strings. Each record in the symbol
table will contain a pointer to the appropriate string in the string table.

Java
Content

The string table will also contain any string literals that appear in the program’s
source code. This is another example of deduplication. In Listing 3.2, we see a
common beginner’s mistake in Java. The == operator tests for equality, but when
applied to objects the equality it tests for is that the two objects live at the same
address. Obviously, we wanted to use the .equals method. But if we compile and
run this, what would we see? The output is:

Equal

7 A reputable link on the meaning of bss states that it is “Block Started by Symbol.” See http://www.
faqs.org/faqs/unix-faq/faq/part1/section-3.html.

http://www.faqs.org/faqs/unix-faq/faq/part1/section-3.html
http://www.faqs.org/faqs/unix-faq/faq/part1/section-3.html
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Why did we get the right answer? Java class files are executable files too. And to
save both storage space and network bandwidth when transferred, Java deduplicates
string literals during compilation. When the class file is loaded into memory, the
string literal is only loaded once. Thus the references compare as equal since both
are pointing to the same object in memory. One small change and it will break. If
we change the initialization of s to:

String s = new String("String␣literal");

We are now constructing a new object inmemory that will live in a differentmemory
location and our comparison will fail.

This is not specific to Java. In C, we have similar concerns. If we declare a string
variable as:

char s[] = "String␣literal";

we get a variable s that points to the string literal. It is unsafe (and generally a
compiler warning) tomodify the string literal by doing something like s[0] = 's';.
This is prevented in Java because String objects are immutable.

3.3 Linking in Java
When a Java program is compiled, an executable file called a .class file is produced.
This has the standard parts including code, data, string table, and references to other
classes that it depends on. One interesting thing to note is that Java has no concept
of static linking. All references to code that lives in other class files are resolved
while the program runs (dynamic loading).

A natural thing to assume then would be that the import keyword indicates
that you want to link against a particular package. However, this is not the case.
The import keyword simply indicates to the compiler the fully qualified path to a
particular object, such as ArrayList being in java.util. This is mostly a scope
issue, but it does enable the compiler to produce the appropriate name for the
imported class, which is then, in turn, used by the dynamic class loader to find it.

3.4 Terms and Definitions
The following terms were introduced or defined in this chapter:

Back-Patching Rewriting a jump to a dynamically loaded library so that it jumps
directly to the code rather than via an intermediate table.
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Compiler A tool for converting a high-level language (such as C) to a low-level
language such as machine code.

Deduplication The elimination of duplication, often by storing something once
and replacing each copy with a reference or link to it.

Executable File or simply “Executable” — A file containing the code and data
necessary to run a program.

Header File A file containing function and data type definitions that refer to code
outside of a given file.

Library Collections of code that accomplish common tasks provided by a compiler
writer, system designer, or other third party.

Linker A tool for combining multiple sources of code and data into a single exe-
cutable or program.

Loader The portion of the Operating System that is responsible for transferring
code and data into memory.

Macro A simple or parameterized symbol that is expanded to some other text.

Object File A file containing machine code, but calls to functions that are outside
of the particular source file it was generated from are unresolved.

Preprocessor The program responsible for expanding macros.

von Neumann Architecture A commonly-used computer architecture where the
code and data must both be resident in main memory (ram) in order to run
a program.



4 | Function Pointers

Both code and data live in memory on a computer. We have seen how it is
possible to refer to a piece of data both by name and by its address. We called a
variable containing such an address a pointer. But in addition to being able to point
to data, we can also create pointers to functions. A function pointer is a pointer
that points to the address of loaded code. An example of function pointers is given
in Listing 4.1.

This example simply displays “3” upon the console. The interesting thing to note
is that there is no direct call to f() (there is no f(…) in the code), but there is a call to
g() which seems to have no body. However, we do use f() as the right-hand side of
an assignment to g. The odd declaration of gmakes it look like a function prototype.
However, with experience, it becomes apparent that it is a function pointer because
of the fairly unique syntax of having the asterisk inside of the parentheses. The
function pointer g is now pointing to the location where the function f() lives in
memory. We can now call f() directly as we always could by saying f(3), or we
can dereference the pointer g.

Remember that with arrays, the name of an array is a pointer to the beginning
of that array. There is no need to use the dereference operator (*) because the
subscript notation ([ and ]) does the dereference automatically. The same is true for
functions. The name of the function is a pointer to that function. We do not need to
dereference it with a * because the ( and ) do it automatically. Thus as the argument
to printf(), g(3) dereferences the pointer g to obtain the actual function f() and
calls it with the parameter 3.

4.1 Function Pointer Declarations

The most complicated part of function pointers is their declaration. Care needs
to be taken to distinguish the fact that we have a function pointer, rather than a
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#include <stdio.h>

int f(int x) {

return x;

}

int main() {

int (*g)(int x);

g = f;

printf("%d\n",g(3));

return 0;

}

Listing 4.1: Function pointer example.

function that returns a pointer. For example:

int *f();

means that we have a function f() that returns a pointer to an integer.

int (*f)();

means we have a function pointer that can point to any function that has an empty
parameter list and returns an integer. The difference is in the parenthesization.

int *(*f)();

means we have a function pointer that can point to any function that has an empty
parameter list and returns a pointer to an integer. If we forget the parentheses:

int **f();

we are declaring a function that takes no parameters but returns a pointer to an
integer pointer.

Why do function pointer declarations need to be so hard? The answer lies in
code generation. To correctly set up the arguments to the function, the compiler
needs to know exactly how many are required and what size (indicated by the
type) they are. This means that there is only one correct way to have declared g in
Listing 4.1.
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void qsort( void *base,

size_t num,

size_t size,

int (*comparator)(const void *, const void *)

);

Listing 4.2: qsort() definition.

4.2 Function Pointer Use

Function pointers primarily get used in two particular ways. Both ways depend
on the ability to defer knowledge of what function we are calling until the very
moment we make the call. The first use, and the most common from a high-level
programmer’s perspective, is to pass a function pointer as an argument to another
function. The second use is to make an array of function pointers to use as a jump
or call table. This is a technique that can be used to accomplish dynamic linking.

4.2.1 Function Pointers as Parameters

The easiest way to explain the motivation for passing a function a pointer to another
function is by example. Let us imagine we are writing a function to sort some
data. While we are coding our algorithm, we find some line that requires us to do a
comparison. If we are comparing the primitive data types, we can do comparison
by simply using the < or > operators. But what about a more complex data type,
such as a structure? Is there any way we could compare them? Additionally, if our
function takes the array to sort as a parameter, what type do we define it as?

The C Standard Library includes a function called qsort() that seeks to be a
generic sorting routine that anyone can call on any array, regardless of what type of
data it contains. The declaration for qsort() is given in Listing 4.2.

The first parameter is of type void *, which means it is a pointer to anything.
This solves our problem of how to declare the parameter but presents a new problem.
We use typed pointers because C is able to determine the size of the data at the
particular address from the size of the type. But a void pointer could be pointing
to anything, and thus we need to do something extra to tell qsort() the size of
each element. We pass that size as the third parameter. The second parameter is the
length of the array we want to sort, since there is no way to query the length of an
array from its pointer in C.
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#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define NUM_NAMES 5

#define MAX_LENGTH 10

int main() {

char names[NUM_NAMES][MAX_LENGTH] = {

"Mary","Bob", "Fred",

"John", "Carl"};

int i;

qsort(names, NUM_NAMES, MAX_LENGTH, strcmp);

for(i=0;i<NUM_NAMES; i++) {

printf("%d:␣%s\t", i, names[i]);

}

return 0;

}

Listing 4.3: qsort()ing strings with strcmp().

Thefinal parameter looks complex but, based on our earlier discussion, it should
be evident that this is a function pointer (the * inside the parentheses gives it away).
The function we pass to qsort() should return an integer, and take two parameters
that will point to two items in our array which this function is supposed to compare.
The return values for comparator need to be handled as:

comparator =


< 0, if the first parameter is < the second
0, if they are equal
> 0, if the first parameter is > the second

This rule might remind us of the return values for strcmp(). In fact, strcmp()
makes an obvious choice for sorting an array of strings. The only requirement is
that all the strings need to be a fixed size for this to work. Since sorting requires
swapping elements, qsort() must be told as a parameter the size of the elements
in the array in order to rearrange the array elements correctly. Listing 4.3 gives an
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example. When we run this code, we get the expected output indicating a successful
sort:

0: Bob 1: Carl 2: Fred 3: John 4: Mary

One interesting thing to note is that this code compiles with a warning:

(11) thot $ gcc qs.c

qs.c: In function `main':

qs.c:15: warning: passing arg 4 of `qsort' from incompatible pointer type

This message is telling us that there is something wrong about passing strcmp() to
qsort(). If we look at the formal declaration of strcmp():

int strcmp(const char *str1, const char *str2);

we see the parameters are declared as char * rather than the void * that the
function pointer was declared as in Listing 4.2. This is one warning that is all right
to ignore. In the old days of C, there was no special void * type, and a char * was
used to point to any type when necessary.

To do something more complicated like sorting an array of structures, we will
need to write our own comparator function. Listing 4.4 shows an example. The
program sorts the structures first by age and then by name if there is a “tie.” The
output is the following:

18: Bob 18: Fred 20: John 20: Mary 21: Carl

4.2.2 Call/Jump Tables

A call table, or jump table, is basically an array of function pointers. It can be
indexed by a variety of things, for instance, by a choice from a menu to decide
what function to call. Compilers may generate such a table to implement switch
statements.

Of specific interest to us is how a linker might use a call table to do dynamic
linking. Each dynamically linked library exports some public functions. If we give
these functions a number, referred to as an ordinal, we can use this ordinal to index
a table created by the linker in order to find a specific function’s implementation in
memory.
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#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define NUM_STUDENTS 5

struct student {

int age;

char *name;

};

int mycmp(const void *a, const void *b) {

struct student *s1 = (struct student *)a;

struct student *s2 = (struct student *)b;

if(s1->age < s2->age)

return -1;

else if(s1->age > s2->age)

return 1;

else

return strcmp(s1->name, s2->name);

}

int main() {

struct student s[NUM_STUDENTS] = {

{20, "Mary"}, {18, "Bob"}, {18, "Fred"},

{20, "John"}, {21, "Carl"}};

int i;

qsort(s, NUM_STUDENTS,

sizeof(struct student), mycmp);

for(i=0; i<NUM_STUDENTS; i++) {

printf("%d:␣%s\n", s[i].age, s[i].name);

}

return 0;

}

Listing 4.4: qsort()ing structures with a custom comparator
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4.3 Terms and Definitions
The following terms were introduced or defined in this chapter:

Call Table or Jump Table — A table of function pointers.

Function Pointer A pointer that points to code rather than data.

Ordinal A number used to refer to a particular function in a dynamically linked
library.
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After the loader has done its job, the program is now occupying space in mem-
ory. The program in memory is referred to as a process. A process is the Operating
System’s way of managing a running program and keeping it isolated from other
processes on the system. Associated with each process is a range of legal addresses
that the program may reference. These addresses form what is known as an ad-
dress space. To make sure that a programmer does not interfere with any other
running process (either by accident or maliciously), the Operating System needs
to ensure that one program may not change the code or data of another without
explicit permission.

One way to solve this problem of protection is to have the computer enforce
strict limits on the range that an address in a process may take. At each instruction
that references a memory address, that address is checked against this legal range
to ensure that the instruction is only affecting the code or data in that process.
However, this incurs a performance penalty since the cpu has to do extra checking
every time there is a memory operation.

Modern Operating Systems take a different approach. Through a technique
referred to as Virtual Memory, a process is given the illusion that it is the only one
running on the computer. Thismeans that its address space can be all of thememory
the process can reference in the native machine word size. On a 32-bit machine
with 32-bit pointers, a process can pretend to have all 232 = 4 gigabytes to itself. Of
course, even the most expensive high-end computers do not have 4GB of memory
per process of physical ram, so the Operating System needs to work some magic
to make this happen. It makes use of the hard disk, keeping unneeded portions of
your program there until they need to be reloaded into physical memory.

Figure 5.1 shows a diagram of what a typical process’s address space contains.
The loader has placed all of the code and global variables into the low addresses.
But this does not take up all of the space. We also need some dynamic storage
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Figure 5.1: A process has code and data in its address space.

for function invocations and dynamically generated data. Functions will keep
their associated storage in a dynamically managed section called the stack. Other
dynamic data, which needs to have a lifetime beyond that of a single function call,
will be placed in a structure called a heap.1

Notice that the stack and the heap grow toward each other. In a fixed-sized
region, the best way to accommodate two variable sized regions is to have them
expand toward each other from the ends. This makes sense for managing program
memory as well, since programs that use a large amount of heap space likely will
not use much of the stack, and vice versa. Chapter 6 and Chapter 7 will discuss the
stack and the heap at more length.

5.1 Pages

Memory management by the Operating System is done at a chunk size known as a
page. A page’s size depends on the particulars of a system, but a common size is
4 kilobytes. The Operating System looks at what chunks you are using and those
that you do not have allocated. It is clear that smaller programs will have large
chunks of unallocated space in the region between the stack and the heap. These
unallocated pages do not need to take up physical memory.

1 Unfortunately, the term “heap” has two unrelated meanings in Computer Science. In this context,
we mean the portion of the address space managed for dynamic data. It can also refer to a particular
data structure that maintains sorted order between inserts and deletes, and is commonly used to
implement a priority queue.
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Since the Operating System manages the pages of the system, it can do some
tricks to make dynamic libraries even more convenient. We already motivated
dynamic libraries by saying they can save disk storage space by keeping common
code in only one place. However, from our picture of process loading, it would
appear that every shared library is copied into every process’s address space, wasting
ram by having multiple copies of code loaded into memory. Since physical memory
is an even more precious resource than disk storage, this seems to be less of a benefit
than we initially thought. The good news is that the Operating System can share the
pages in which the libraries are loaded with every process that needs to access them.
This way, only one copy of the library’s code will be loaded in physical memory, but
every program can use the code.

5.2 Terms and Definitions
The following terms were introduced or defined in this chapter:

Address Space The region of memory associated with a process for its code and
data.

Page The unit of allocation and management at the Operating System level.

Process A program in memory.

Virtual Memory The mechanism by which a process appears to have the memory
of the computer to itself.
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Activation Records

The first type of dynamic data we will deal with is local variables. Local variables
are associated with function invocations, and since the compiler does not necessarily
know how many times a function might be called in a program, there is no way to
predict statically howmuchmemory a programneeds. As such, a portion ofmemory
needs to be dedicated to holding the local variables and other data associated with
function calls. Data in this region should ideally be created on a function’s call and
destroyed at a function’s return. If we look at the effect of having a function call
other functions, we see that the local variables of the most recent function call are
the ones that are most important. In other words, the local variables created last
are used, and are the first ones to be destroyed; those created earlier can be ignored.
This behavior is reminiscent of a stack.

To create a stack we need some dedicated storage space and a means to indicate
where the top of the stack lives. There is a large amount of unused memory in the
address space after loading the code and global data. That unused space can be used
for the stack. Since practically every program will be written with functions and
local variables, the architecture will usually have a register, called the stack pointer,
dedicated to storing the top of the stack.

With storage and a stack pointer, we can make great strides in managing the
dynamic memory needs of functions. When a function is compiled, the compiler
can figure out how many bytes are needed to store all of the local variables in that
function and then write an instruction that adjusts the stack pointer by that much
on every function call. When we want to deallocate that memory on function return,
we could adjust the stack pointer in the opposite direction.

Other than local variables, what information might we want to store on the
stack? Since the concept of a stack is so intrinsically linked with function calls, it
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...
Caller’s data

...

Shared Boundary
...

Callee’s data
...

Figure 6.1: The shared boundary between two functions is a logical place to set
up parameters.

seems to make sense that the return address of the function should be stored on
the stack as well. If we examine the caller/callee relationship, we see that their data
will be in adjacent locations on the stack. Figure 6.1 shows the two stack entries
and the boundary between them. If the caller function needs to set up arguments
for the callee, this boundary seems a natural place to pass them.

On machines with many registers, some registers may be designated for tem-
porary values in the computation of complicated expressions. These temporary
registers may be free for any function to use, and thus, if a function wants a particu-
lar register to be saved across an intervening call to another function, the calling
functionmust save it on the stack. This is referred to as a caller-saved register. Other
registers may be counted upon to retain their values across intervening function
calls, and if a called function wants to use them, it is responsible for saving it on
the stack and restoring them before the function returns. These are callee-saved
registers. In general, the stack is used to save any architectural state that needs to be
preserved.

We now have the following pieces of data that need to be on the stack:

1. The local variables— including temporary storage, such as for saving registers

2. The return address

3. The parameters

All of these together will form a function’s activation record (sometimes called a
frame). Not every system will have all of these as part of an activation record. How
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MIPS x86
Arguments: First 4 in %a0–%a3, re-

mainder on stack
Generally all on stack

Return values: %v0–%v1 %eax

Caller-saved registers: %t0–%t9 %eax, %ecx, & %edx

Callee-saved registers: %s0–%s9 Usually none

Figure 6.2: A comparison of the calling conventions of MIPS and x86

parameters are passed, be it on the stack or in registers, is part of a “contract” the
system abides by, called the calling convention.

6.1 Calling Convention

For one function to call another, they must first agree on the particulars of where
parameters will be passed and where return values will be stored. Each system
will have a different calling convention depending on its particular details, such
as the number of general purpose registers. Figure 6.2 summarizes two different
architectures’ calling conventions.

Beyond an architecture or system’s designers specifying the details of a calling
convention, individual programming languages may specify how some data is to be
exchanged. Let us start with a look at a C program written for an x86 processor
running Linux and the assembler output generated by gcc. Figure 6.3 shows the
source and output for a main() function that calls a function f()with one parameter.

If we begin to trace the first five instructions of the main() function, we notice
that they are all related to the management of the two stack-related registers, %esp,
the stack pointer, and %ebp, the base pointer. In this context, %ebp is being used
to keep track of the beginning of the activation record, and is sometimes referred
to as the frame pointer. The andl $-16, %esp instruction is a way to do data
alignment. On many architectures, it is faster to access data that begins at addresses
that are multiples of some power of two because of memory fetches and caches.
The subl $16, %esp allocates some memory on the stack for the parameter to f().
This is a subtract because the stack starts from a high address and grows towards
lower addresses. All figures in this book have been drawn with that detail in mind.
Thus, a push is a subtract and a pop is an add. Whenever a function call is made,
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#include <stdio.h>

int f(int x) {

return x;

}

int main() {

int y;

y = f(3);

return 0;

}

f: pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

leave

ret

main: pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

subl $16, %esp

movl $3, (%esp)

call f

movl %eax, -4(%ebp)

movl $0, %eax

leave

ret

Figure 6.3: A function with one parameter.
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the call instruction pushes the return address onto the top of the stack and then
jumps to the subroutine. Below is a diagram of the current state of the stack (the
dots indicate extra space left unused due to alignment).

%ebp→ Saved %ebp
...
3

return address ← %esp

When we enter into f(), we again set up an activation record by first saving
main()’s frame pointer and then adjusting the frame pointer to point to the bottom
of f()’s activation record.

Saved %ebp
...
3

return address
f’s %ebp→ main’s %ebp saved ← %esp

At this point, f() wants the value of its parameter, which is stored above the
current base pointer. The instruction movl 8(%ebp), %eax accesses it, which is two
words (8 bytes) away. There is no need for any calculation in this simple function,
and the return value is directly placed into %eax. The leave instruction restores
main()’s frame by popping the activation record, setting %esp to %ebp, and then
restoring %ebp to the old value. The ret instruction pops the return address off the
stack and returns back to main().

While a lot is going on in these few instructions, everything seems fairly straight-
forward. An activation record is created for main(), the parameter is placed on the
stack, and the function f() is called, which sets up its own frame and does the work.
Deallocating the frame is simple due to the leave and ret instructions.

Let us now look at the code in Figure 6.4, which illustrates a function that takes
two parameters. Much the same is going on in Figure 6.3; the only difference is we
push two parameters instead of one. The stack looks like:

%ebp→ Saved %ebp
...
4
3 ← %esp
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#include <stdio.h>

int f(int x, int y) {

return x+y;

}

int main() {

int y;

y = f(3, 4);

return 0;

}

f: pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

leave

ret

main: pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

subl $16, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call f

movl %eax, 4(%esp)

movl $0, %eax

leave

ret

Figure 6.4: A function with two parameters.
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when we make the call to f().
Something that is peculiar here is that the two parameters seem somehow

backwards. They have been pushed in reverse order from the way they are written.
This particular quirk in the C calling convention is introduced entirely for the
support of one very common function:

int printf(const char *format,...);

The printf() function takes a variable number of arguments. As such, there
is no way for it to know how far down the stack to look for data. The only way it
might be able to know is to look inside the format string, which is what it does. The
number of scan codes inside the format string tells printf() how many arguments
to expect. Because of this, you must always be sure to pass as many arguments as
you have scan codes, or printf()might start printing other values off the stack. By
pushing the arguments in reverse order, the closest argument to %ebp is the format
string, always at a fixed offset in a predictable location. This is why the C calling
convention pushes arguments in reverse order.

6.2 Variadic Functions
A variadic function is a function that takes a variable number of arguments. In C,
a variadic function declaration is easy to recognize due to the ellipses (…) in the
function declaration. The stdarg.h header file provides several macros to help deal
with the parameter list. Listing 6.1 shows an example of a variadic function that
turns its parameter list into an array. The va_start macro takes the last required
parameter and initializes the va_list variable ap. The va_arg macro facilitates
advancing the pointer to walk the stack by the size of the appropriate type (which
must be known by the function). It casts the data at that address back to the
appropriate type and advances the pointer automatically.

Java and other languages with built-in support for dynamic arrays often expose
Java

Content
the parameters of a variadic function as an array. For example:

public static void printArray(Object ... objects) {

for (Object o : objects)

System.out.println(o);

}

printArray(3, 4, "abc");

displays its parameters on the screen, one per line.
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#include <stdio.h>

#include <stdarg.h>

int *makearray(int a, ...) {

va_list ap;

int *array = (int *)malloc(MAXSIZE*sizeof(int));

int argno = 0;

va_start(ap, a);

while (a > 0 && argno < MAXSIZE)

{

array[argno++] = a;

a = va_arg(ap, int);

}

array[argno] = -1;

va_end(ap);

return array;

}

int main() {

int *p;

int i;

p = makearray(1,2,3,4,-1);

for(i=0;i<5;i++)

printf("%d\n", p[i]);

return 0;

}

Listing 6.1: A variadic function to turn its arguments into an array.
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void f(char *s) {

gets(s);

}

int main() {

char input[30];

f(input);

}

main:

pushl %ebp

movl %esp, %ebp

subl $40, %esp

andl $-16, %esp

subl $16, %esp

leal -40(%ebp), %eax

movl %eax, (%esp)

call f

leave

ret

Figure 6.5: A program with a buffer overrun vulnerability.

6.3 Buffer Overrun Vulnerabilities

Thecode in Figure 6.5 has a problem. The code allocates an array of thirty characters,
then calls gets() to ask the user to enter some input. The gets() function takes
only one parameter, and from our knowledge of C, we know that there is no way
to tell from that one pointer parameter just how big the array is that was passed.
This means that a malicious person could enter something much larger than 30
characters. Since gets() has no idea when to stop copying input into our array, it
keeps going. As the assembly listing shows, the array was allocated on the stack.
When gets() exceeds that space, it starts writing over the rest of the data on the
stack, corrupting it.

If our malicious user notices that the program crashes with long input, he or
she may suspect that the input is overwriting the activation record on the stack.
By carefully crafting the input string, the user can deliberately overwrite specific
offsets on the stack, including the return address of gets(). With the return address
modified, when gets() returns, code will start executing at whatever location the
user entered.

With some more careful crafting of the input string, the return address can
be modified so that it points to the location in memory where the array is stored.
Cleverly, the user can place machine code as the input, and when gets() returns, it
jumps via the return address to the code that the attacker entered. If this program
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had been a system service, running as a superuser on the machine, the attacker
could have injected code to make themselves a superuser too. This type of attack is
known as a buffer-overrun vulnerability.

Great care must always be taken with arrays on the stack. Overrunning the end
of the buffer means writing over activation records, and possibly subjecting the
system to an attack. Always check that the destination of a copy is large enough to
hold the source!

6.4 Terms and Definitions
The following terms were introduced or defined in this chapter:

Activation Record The local variables, parameters, and return address associated
with a function’s invocation.

Alignment Making sure that data starts at a particular address for faster access due
to memory fetches or the cache.

Callee-Saved Apiece of data (e.g., a register) thatmust be saved by a called function
before it is modified and restored to its original value before the function
returns.

Caller-Saved A piece of data (e.g., a register) that must be explicitly saved if it
needs to be preserved across a function call.

Calling Convention An agreement, usually created by a system’s designers, on
how function calls should be implemented — specifically regarding the use
of registers and the stack.

Frame Another name for an activation record.

Frame Pointer A pointer, usually in a register, that stores the address of the begin-
ning of an activation record (frame).

Return Address The address of the next instruction to execute after a function call
returns.

Stack A portion of memory managed in a last-in, first-out (lifo) fashion.

Stack Pointer The architectural register that holds the top of the stack.



7 | Dynamic Memory Allocation
Management

While the stack is useful for maintaining data necessary to support function calls,
programs also may want to perform dynamic data allocation. Dynamic allocation is
necessary for data that has an unknown size at compile-time, an unknown number
at compile-time, and/or whose lifetime must extend beyond that of the function
that creates it. The remaining portion of our address space is devoted to the storage
of this type of dynamic data, in a region called the heap.

As is often the case, there are many ways to track and manage the allocation of
memory. There are trade-offs between ease of allocation and deallocation, whether
it is done manually or it is automatic, and the speed and memory efficiency need
to be considered. Also as usual, the answer to which approach is best depends on
many factors.

This chapter starts by describing the major approaches to allocation and deal-
location. We first describe the two major ways to track memory allocation. The
first is a bitmap — an array of bits, one per allocated chunk of memory — that
indicates whether or not the corresponding chunk has been allocated. The second
management data structure is a linked list that stores contiguous regions of free
or allocated memory. A third technique, the Buddy Allocator attempts to reduce
wasted space from many allocations. The chapter also describes an example imple-
mentation of malloc(), the C Standard Library mechanism for dynamic memory
allocation.

7.1 Allocation
The two operations we will be concerned with are allocation, the request for memory
of a particular size, and deallocation, returning allocated memory back to the system
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for subsequent allocations to use. The use of the stack for function calls led us
to create activation records upon function invocation and to remove them from
the stack on function return. In essence, we were allocating and deallocating the
activation records at runtime — the very operations we are attempting to define for
the heap.

The question is then, why is the stack insufficient and what is different about
the heap? As the name implies, the stack is managed as a fifo with allocation
corresponding to a push operation and deallocation corresponding to pop. This
worked for function calls because the most recently called function, the one whose
activation record was allocated most recently and lives at the top of the stack, is
the one that returns first. Deallocations always occur in the opposite order from
the allocations. New allocations always occur at the top of the stack, and with the
stack growing from higher addresses to lower ones by convention, this means that
all space above the stack pointer is in-use. All space at lower addresses is free or not
part of the stack.

Thus, allocation is simplymoving the top of the stack, and deallocation ismoving
it back. But for objects whose lifetime is not limited to the activation of a particular
function, this order requirement is too restrictive. We would like to be able to
allocate objects A, B, and C, and then deallocate object B. This leaves an unallocated
region in the middle that we may wish to reuse to allocate object D.

In this section, we are considering this more general case of allocation: the
possibility that we have free space in between allocated spaces. We need to track
that space and to allocate from it. With that in mind, the simple dividing line
between free and used space that the stack pointer represented is insufficient and
we need to use a more flexible scheme.

7.1.1 Allocation Tracking Using Bitmaps

What we wish to do is to ask for an arbitrary piece of memory, is this space in use
or is it free? At the heart of it, this question is answered via a single boolean value
that is mutually exclusive: yes, it is being used or no, it is free. That information can
be stored in a single bit per piece of memory. For an entire region of memory, we
can combine all of the individual bits into a single array of bits called a bitmap.

When a modern computer user thinks of the term bitmap, he or she invariably
recalls the image format. This is appropriate, since if we were to create a format
for storing black and white images, we might devote one bit per pixel and treat the
image as a large array of pixels. The same concept applies to managing memory
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Memory regions

Bitmap

1111 1100 0011 1000 0111 1111 1111 1000

A B C D
8 16 24 320

Figure 7.1: A bitmap can store whether a chunk of memory is allocated or free.

using bitmaps. We store an array of bits where a 0 indicates an unallocated chunk of
memory, and a 1 indicates a chunk has been allocated for some purpose. Figure 7.1
shows a region of 32 chunks. Several parts are allocated to A, B, C, and D, with the
remainder of the chunks free. Below it is the corresponding bitmap.

Bitmaps have several significant disadvantages that make them undesirable for
common use. The first major drawback is the space requirement. A part of the
region of memory that we are managing will have to be devoted to storing the
bitmap itself. If the unit of allocation is very small, for instance a single byte, the
bitmap will need to be large (one bit per byte). This means that for every eight bytes
we will need one more byte for the bitmap. One out of nine bytes (11%) will be
wasted in management overhead.

To reduce the size of the bitmap then, we could try to reduce the number of
bits necessary by having one bit represent more space. This will result in increasing
the smallest unit we can allocate. Instead of each bit tracking a single byte being
allocated or free, each bit will represent a contiguous chunk of memory. Now, for a
memory region of size S and a chunk size of size c, we will only need S

c
bits.

While this will reduce the size of the bitmap, a new problem arises: It is impos-
sible to allocate less than a single chunk, since a single bit cannot represent partial
allocations — only whole ones. This leads to the problem of internal fragmenta-
tion, which is wasted space due to an allocation unit being bigger than our need.
When we allocate a contiguous region of memory, on average the very last chunk
will be half full. This could result in a large amount of wasted space over the lifetime
of a program.

A second disadvantage to using bitmaps is the difficulty in finding a large enough
free space to hold a given allocation. The challenge lies in how to discern that there
are the right number of zeros in a row. If the empty space is at the end, the search
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Figure 7.2: A linked list can store allocated and unallocated regions.

may be slow. Practically, it would involve a lot of bit shifting and masking. As
such, using bitmaps for any significant tracking of dynamic memory allocations is
unlikely, but bitmaps do often find a use in tracking disk space allocation.

7.1.2 Allocation Tracking Using Linked Lists

The potentially huge size of a bitmap relative to the memory region it was manag-
ing drove us to chunk memory and introduce internal fragmentation. However,
there are two properties of a bitmap that might allow us to reduce its overall size
while avoiding the necessity of chunks. One observation that we may make is that
frequently the bitmap may contain many zeros. This would be the case when the
region is new and there haven’t been many allocations, when there have been a lot
of deallocations, or when a region is simply much larger than the current dynamic
memory needs. Noticing this, we can take a page from matrices. When a matrix
has mostly zero entries, we call it sparse. In the CS world, we find that sparseness
can apply to various data structures including our bitmap. A space-saving idea with
a sparse data structure is to only store the elements that are nonzero. A linked list is
a sparse data structure that supports storing a variable number of elements with
dynamic inserts and deletes. We can omit the zero entries and infer that anything
not in the linked list is free space.

While the choice to use a sparse data structure is likely a good one, there are
two issues that prevent us from stopping here. The first is that sparseness is good for
size, but we need the linked list to easily support fast allocations that come from the
free space. If the information about unallocated space is not directly stored in the
linked list, we must infer the necessary space is available and of the proper size. This
motivates having additional linked list nodes that represent free space, but in doing
so, we have lost the sparseness that made a multi-byte linked list node a reasonable
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thing to store over a single bit in a bitmap.
The solution here is that our observation of sparseness in the bitmapwas accurate,

but it did not go far enough in describing the situation. Not only are many of the
bitmap entries zeros, those zeros are also likely to be next to other zeros in long
contiguous runs. When we have an allocation, that also exists in the bitmap as a run
of ones. A key observation is that the number of ones or zeros in a particular run is
actually an encoding of that regions’s length, albeit in unary (base 1). Unary turns
out to be the worst of all bases in terms of compactness because to represent the
number n, you need a string of length n. If we instead consider base two (binary),
the length of a string of bits needed to represent the value n is only log2(n).

This logarithmic rather than linear growth gives us a better scheme for storing
the size of a particular allocation. Instead of denoting a size as a run of n ones or
zeros in a bitmap, we could simply store the size in a normal variable in memory. A
32-bit integer would only be enough space to store information about 32 chunks
when used as a bitmap, but because of the slow growth of logarithms, those same
32 bits can store a value of 232, or about four billion! Even if we decided not to use
chunks but track memory at the byte granularity, an often unreasonable choice for
a bitmap, we could still represent allocations of up to 4GB in size.

The removal of runs is a simple form of compression known as run-length
encoding or rle. Using rle to compress allocations and free spaces allows us to
have one linked list node per allocated or free contiguous region. Figure 7.2 shows
the same region and allocations as in Figure 7.1, but with the nodes of a linked list
corresponding to the free and allocated spaces. The first number is the starting
index of the contiguous space; the second is the size of the allocation.

Like a bitmap, the linked list needs to be stored in the same memory it is
managing. With the bitmap, since the size is known ahead of time (it is simply the
size of the region divided by the size of the chunk), space can be reserved before
any allocations are done. The bitmap will not grow or shrink as long as the region
and chunk do not change size. The linked list, on the other hand, has a number
of nodes that is proportional to the number of allocations and free spaces. This
number changes as the region is used.

To store the linked list, we could reserve the worst-case size in advance, much as
we did with the bitmap. The worst case length of the linked list would occur when
there is one node per minimum unit of allocation. This could occur for a number of
different scenarios, such as with a full region of individual unit-size allocations or
where unit allocations are separated by unit-sized free spaces. In this case, we would
have n list nodes just as we had n bits in the bitmap. However, while each entry
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in the bitmap only required a single bit’s worth of storage, how large might a list
node be? We need to store the size, the start, and links for the linked list. For faster
deallocation support, we probably want this to be a doubly-linked list, requiring us
to have two node pointers. Assuming all of these fields are four bytes in size, we
would need 4× 4 = 16 bytes or 16× 8 = 128 bits. Thus, to reserve space for the
worst case scenario, we would need 128n bits where the bitmap only needed n bits.
The linked list is 128 times the size!

This is horrible and we may wonder how we began by trying to reduce the size
of a data structure but ended up making it 128 times worse. The answer is in the
worst case scenarios. They were the worse case because they eliminated the runs
that were the bases of our compression. When our assumptions are not valid, our
end result is likely to come out worse. The good news is that our assumptions are
valid in the typical case. Such degenerate linked lists are not likely to result from
the normal use of dynamic memory.

While we have convinced ourselves the linked list is still a valid approach, we still
need a good solution for where to store the elements of the linked list. Reserving
the space in advance is not feasible. A better solution might be to think of the
memory-tracking data structure as a “tax” on the region of memory we are tracking.
For a bitmap, we pay a fixed-rate tax off the top — before we have even used the
region. For paying that tax, we never have to pay again. For the linked list however,
we could instead pay a tax on each allocation. Every time we get a request for
dynamic memory, we could allocate a bit extra to store the newly-required list node.
For instance, if we get a request for 100 bytes, we actually allocate 116 bytes and use
the additional space to store one of the nodes we described above.

7.1.3 Allocation Algorithms

Searches through the linked list are necessary to find a region to satisfy an allocation
request, but the integer size comparisons are easier for the computer compared
to the bit matching needed for bitmaps. Whichever technique we use, when an
allocation request is made there may be many free spots that could accommodate
the request. Which one should we choose? Below is a list of various algorithms
from which we could pick:

First fit Find the first free block, starting from the beginning, that can accommo-
date the request.

Next fit Find the first free block that can accommodate the request, starting where
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the last search left off, wrapping back to the beginning if necessary.

Best fit Find the free block that is closest in size to the request.

Worst fit Find the free block with the most left over after fulfilling the allocation
request.

Quick fit Keep several lists of free blocks of common sizes, allocate from the list
that nearest matches the request.

First fit is the simplest of the algorithms, but suffers from unnecessary repeated
traversals of the linked list. Each time first fit runs, it starts at the beginning of the
list and must search over space that is unlikely to have any free spaces due to having
allocated from the beginning each prior time the function was called. To avoid this
cost, we could remember where the last allocation happened and start the search
from there. This modification of first fit is called next fit.

Both of these algorithms take the first free block they find, which may not be
ideal. This strategy may leave uselessly small blocks or prevent a later request from
being fulfilled because a large free block was split when a smaller free spot elsewhere
in the list might have been a better fit. This wasted space between allocations is
external fragmentation.

To avoid external fragmentation, we may wish to search for the best fit. The
best fit algorithm searches the entire list looking for the free space that is closest in
size to the request. This means that we will never stop a large future request from
being fulfilled because we took a large block and split it unnecessarily. However,
this algorithm can turn out to be poor in actual usage because we end up with many
uselessly small leftovers when the free space is just slightly larger than the request.
This is guaranteed to be as small as possible whenever an exact fit is not found, due
to the difference between the free space and the allocation being minimized by our
definition of “best”. Additionally, best fit is slow because we must go through the
entire linked list, unless we are lucky enough to find a perfect fit.

To avoid having many small pieces remain, we could do the exact opposite
from best fit, and find the worst fit for a request. This should leave a free chunk
after allocation that remains usefully large. As with best fit, the entire list must
be searched to find the worst fit, resulting in poor runtime performance. Unlike
best fit, which could stop early upon finding a perfect fit, the worst fit cannot be
known without examining every free chunk. Despite our intuition, simulation of
this algorithm reveals that it is not very good in practice. An insight into why is that
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after several allocations, all of the free chunks are around the same, small size. This
is bad for big requests and makes looking through the whole list useless as every
free chunk is about equal size.

An alternative to the search-based algorithms, quick fit acknowledges that most
allocations come clustered in certain sizes. To support these common sizes, quick fit
uses several lists of free spaces, with each list containing blocks of a predetermined
size. When an allocation request is made, quick fit looks at the list most appropriate
for the request. Performance is good because searching is eliminated: With a fixed
number of lists, determining the right list takes constant time. Leftover space
(internal fragmentation) can be bounded since an appropriately-sized piece of
memory is allocated. If the lists were selected to match the needs of the program
making the allocation, this would leave very little wasted space. Additionally, that
leftover space should not harm future large requests because the large requests
would be fulfilled from a different list. One issue with quick fit is the question of
whether or not to coalesce free nodes on deallocation or to simply return them to
their appropriate list. One solution is to provide a configurable parameter to the
allocator that says how many adjacent small free nodes are allowed to exist before
they are collapsed into one. This ensures large unallocated regions as well as enough
of the more common smaller regions.

The two likely “winners” of the allocation battle are next fit and quick fit. They
both avoid searching the entire list yet manage to fulfill requests and mostly avoid
fragmentation. Thegnu glibc implementation of malloc() uses a hybrid approach
that combines a quick fit scheme with best fit. The writers claim that while it is not
the theoretically best performing malloc(), it is consistently good in practice.

7.2 Deallocation

The other important operation to consider is deallocation. This is where the true
distinction against stack allocation is drawn. Whenever we free space on the stack,
we reclaim only the most recently allocated data. The heap has no such organization,
and thus deallocations may occur regardless of the original allocation order. Since
the stack is completely full from bottom to top, the only bookkeeping necessary is
an architectural register to store the location of the top. The heap, on the other hand,
will inevitably have “holes” — free spaces from past deallocations — that will arise.
Keeping track of the locations of these holes motivates the use of a data structure
such as a bitmap or linked list. In this section, we look at the various approaches a
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Figure 7.3: Coalescing free nodes on deallocation.

system might take to deallocation.

7.2.1 Using Linked Lists

When we allocate some memory, our linked list changes. The free node is split into
two parts: the newly allocated part and the leftover free part. Eventually dealloca-
tions happen, and it is time to release a once-used region of memory. Figure 7.3
shows the four scenarios that we might find when doing a free operation. The top-
most shows a region being deallocated (indicated with an ‘X’) that has two allocated
neighboring regions; in this case, we simply mark the middle region as free. The
second and third cases show when the left or right neighbor is free. In this case, we
want to coalesce the free nodes into a single node so that we may later allocate this
as one large contiguous region. The final case shows both of our neighbors being
free, and thus we will need to coalesce them all.

To facilitate coalescing nodes, we may want to use a doubly linked list, which
has pointers to the next node as well as the previous node. Note that we do not want
to coalesce allocated nodes because we would like to be able to search the linked
list for a particular allocation by name (or address, if that is what we are storing as
the “name”).

7.2.2 Using Bitmaps

For all of the flaws of using bitmaps for dynamicmemorymanagement, deallocation
of a bitmap-managed region is surprisingly simple: the appropriate bits switch
from 1 (allocated) to 0 (deallocated). The beauty of this approach is that free regions
are coalesced without any explicit effort. The newly freed region’s zeros naturally
“melt” into any neighboring free space.
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7.2.3 Garbage Collection

Up until this point, we have been assuming that requests for deallocation have
come directly from the user. Forgetting to explicitly deallocate space can lead to
memory leaks, where a dynamically allocated region cannot be explicitly freed
because all pointers to it have either been overwritten or gone out of scope. It
requires the diligence of the programmer to avoid leaking memory, a tedious task
that might seem to lend itself to being automated.

For deallocation to be done automatically, the system needs to know that a
chunk of dynamically allocated memory is no longer used. A clue to how this might
be determined is in the previous paragraph. If we have leaked the memory — that
is, we have no valid pointers to it — then we can reclaim that space. The system is
now faced with a fundamental problem: If there are no pointers to a region, how
does the system itself (in Java’s case, the Virtual Machine) find it? There are several
approaches that might work. The jvm could keep an internal list of pointers to
every object that is allocated. Another alternative is to walk the stack looking for
object references.

Once all of the data items that are unreachable are discovered, the task of freeing
their space, called garbage collection, starts. Since it takes time to find all of the
“garbage,” the collection process is not usually on-demand in the same way that
free() works in C. Except for the so-called concurrent collectors, garbage collectors
run only when necessary—usually when the amount of free heap space has dropped
below some threshold. When this threshold is hit, the program generally pauses and
garbage collection begins. While there is a vast array of techniques by which to free
used space, we will discuss three common strategies: reference counting, in-place
collectors, and copying collectors.

Reference Counting

We have already determined that a dynamically-allocated object is garbage and can
be collected when it has been leaked and there are no longer any valid references to
the memory. Possibly the simplest way to determine this is to count valid links to
an object and, when the count reaches zero, automatically free the memory. This
strategy is known as reference counting and can be implemented relatively easily
even in native code.

Each object needs a reference count variable associated with it. This variable is
incremented or decremented as the program runs. It will need to be updated:



60 Dynamic Memory Allocation Management

Refs = 2 Refs = 1

A B
ptr

Figure 7.4: Reference counting can lead to memory leaks. If the pointer ptr
goes out of scope, the circularly linked list should be collected. How-
ever, each object retains one pointer to the other, leading to neither
having the requisite zero reference count for deallocation.

1. When a reference goes out of scope.

2. When a reference is copied (explicitly with assignment or implicitly in pa-
rameter passing, for example).

When a reference goes out of scope, the reference count on the associated object
must be decremented. Copying references affects both sides of the assignment. The
left-hand side (often called an l-value) might have been referring to an object prior
to the assignment. This reference is now going to be lost from the overwrite, so the
original object’s reference count must be decremented. The right-hand side of the
assignment (predictably called the r-value) is now going to have one more reference
to it and the associated counter must be incremented accordingly.

When an object’s reference count reaches zero, the object is garbage and can be
collected. This might happen while the program is running (making it a concurrent
collector) or at periodic breaks in the program’s execution (a stop-the-world collec-
tor). The act of garbage collection can be as easy as freeing the object with whatever
heap management operation is available.

A problem that can arise in a reference counting garbage collector is, remarkably,
that it can leak memory. If a data structure has a cycle, such as in a circularly linked
list as shown in Figure 7.4, there can be no way to collect the data structure. With
a cycle, there is at least one reference to each object that remains even after all
references from the program code are gone. Since the reference count never reaches
zero, the objects are not freed. Possible solutions to this problem include detecting
that the objects are part of a cycle or by using one of the other garbage collection
algorithms.
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In-place Collectors

Another approach to garbage collection is via an in-place collector. The process is
comprised of two phases: a mark phase and a sweep phase. During the mark phase,
all of the references found on the stack are followed to find the objects to which
they refer. Those objects may contain references themselves. As the algorithm
traverses this graph of references, it marks each object it encounters as reachable,
thus indicating it is not to be collected. When every reference that can be reached
has its associated object marked, the algorithm switches to the sweep phase.

In the sweep phase, all unmarked objects are freed from the heap. All that
remains are the reachable objects. When the deallocation is finished, all of the
marked objects are reset to unmarked so that the process may begin all over again
when the garbage collector is invoked the next time.

This mark and sweep approach is simple and relatively fast. It avoids cycles
because encountering an object we have already seen can be detected as the object
will be already marked as seen. It suffers from a significant problem, however. The
newly freed spacemight be between objects that are still alive and remain in the heap.
We now have holes that are small and scattered throughout memory, rather than a
big free contiguous chunk of memory from which to allocate new objects. While
there might be a significant fraction of space that is free, it might be fragmented to
the point of being unusable. This is once again, external fragmentation, and was the
motivation behind coalescing the adjacent free nodes in a linked list management
scheme.

Copying Collectors

To fix the fragmentation issue of the in-place collector, a garbage collector could
compact the region by moving all of the objects closer together. This would con-
stitute a third compaction phase and is actually unnecessary. We can avoid a third
phase by combining deallocation and compaction into a single pass through the
heap.

Copying garbage collectors such as the semispace collector typically divide the
heap into two halves and copy from the full half into the reserved, empty half.
Figure 7.5 shows an example. In Figure 7.5a, objects B and D have been designated
unreachable and should be freed. Rather than explicitly do this freeing and be left
with two small holes in memory, objects B and D are left untouched. Objects A
and C are referenced and thus alive. A copying collector will move these live objects
to the reserved half of the heap, placing them contiguously to avoid wasting space.
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Heap

A B C D

(a)Objects B andDareunreachable and the
heap is nearly half full.

Heap

A C

(b)Objects A and C are moved to the re-
served half, and the original half is
marked as free.

Figure 7.5: Copying garbage collectors divide the heap in half and move the
in-use data to the reserved half, which has been left empty.

Figure 7.5b shows the resultant heap.
While copying all the live objects seems like it should be more expensive, the

reduction of fragmentation in the free space usually negates the cost of copying. An
allocation that has to search through a list or bitmap to find space is slow, whereas a
contiguous region is simple to dole out.

To accommodate a copying garbage collector, some restrictions on references
need to be made. Since the addresses that data items live at can change during
the execution of the program, there can be no hard-coded addresses. Additionally,
references must be kept distinct from integer types since when the system moves an
object, all references must be able to be found before they can be properly updated.
Indirection may be employed through a “table of contents,” where references are
indices into a table that has real addresses that are updated as needed. This, however,
incurs additional cost whenever a dereference occurs. While garbage collection
makes life easier for the programmer, it does come at the cost of efficiency.

7.3 Linked List Example: malloc()
The C Standard Library provides a heap allocator called malloc(). When the loader
creates an address space for the process, the typical layout is that code and global
data start at a low address and extend as needed. The end of this fixed-size portion
is represented as the symbol _end. The stack, by convention, starts at a high address
and grows downward. The space between _end and the stack pointer can be used
as the heap. malloc() and the Operating System denote the maximum space of
the heap by the symbol brk. Figure 7.6 shows the relation of these symbols to each
other.

The break can be set via a system call brk() or a library wrapper sbrk(). When
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_end
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Unallocated Space
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Globals

Figure 7.6: Heap management with malloc().

malloc() gets a request for allocation that cannot fit, it extends brk. The heap is
exhausted if the break gets too near the top of the stack. Likewise, the stack may be
exhausted (usually from deep recursion) if it gets too close to brk.

Typically malloc() uses a linked list allocation strategy to track free and allo-
cated space. One of the issues with linked lists is the question of where to store the
list. An implementation of malloc() might store the linked list inside the heap,
with each node near the allocated region. This allows calls to free() to easily access
the size field of the node in the list corresponding to the region to reclaim. The
drawback to this is that any over- or under-run of a heap-allocated buffer may
overwrite the list, resulting in a corrupted heap.

Not all implementations of malloc() adjust the value of brk. The gnu imple-
mentation in glibc uses mmap() for allocations beyond 128KB. The mmap() system
call requests pages directly from the Operating System. Some malloc()s use only
mmap() for allocation.
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7.4 Reducing External Fragmentation:
The Buddy Allocator

The concern over external fragmentation has lead to various algorithms being
developed beyond those used with the basic bitmap or linked list data structures.
One particularly good algorithm for reducing external fragmentation is called the
buddy allocator. Consider the case that we have a free memory region of 2MB and
that we wish to allocate 4KB. The buddy algorithm looks for a free space reasonable
to hold the allocation request. Right now, there is a single free space of size 2MB
which is too large to reasonably allocate to this space. The buddy allocator takes
the region and splits it into two allocations of half of the original size. So in this
case, the algorithm turns our space into two allocations of 1MB each. This is still
too much, and so one of the 1MB regions is split into two 512KB, and again split
to 256KB, and so on, until finally we split an 8KB space into two 4KB regions. We
now mark one of them as in-use and return it for the user.

Free regions of a particular size are linked together, using a portion of the region
as a list node as in the implementation of malloc() described in the previous section.
This way the left over regions from previous splits can be handed out quickly. We
don’t need to keep a list node for an allocated region, however. All that is necessary
is a single bit that indicates that the region is free. Practically, we may still wish to
reserve space for an entire list node for when the space is later freed.

We don’t need to keep a list of allocated space because of a nice property that our
scheme has. Every time a region was split into two, the two regions have addresses
with a specific relationship. For a block of size n at address 0, when split it becomes
two blocks of size n

2
, one with address 0 and the other at address n

2
. If we started

with n being a power of two, then n
2
is one less power of two. This means the regions

that were created have addresses that differ only by the value of a single bit, in the
position of the new size.

Given an addressL of a region of size 2k, we can find its “buddy” (the other node
split from the parent node) by inverting the kth bit. The bitwise XOR (eXclusive-OR)
operator computes this for us: buddy = L ^ size. Note that this only works if
the first region began at address 0 and was a size that is a power of two. If the
starting address was something else, as it often will be in a practical application, we
can simply subtract the actual starting address from L before performing the XOR
operation.

If a block and its buddy are both free after deallocation, they can be safely
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coalesced back into a node of size 2k+1. The free buddy will be removed from the
linked list of free spaces of size 2k and the combined space will be inserted into the
free list of size 2k+1. Since this may result in both a region and its buddy being free
at size 2k+1, we can repeat this process with progressively larger regions until the
newly coalesced region’s buddy is not free or only the original entire free space is
left.

7.5 Terms and Definitions
The following terms were introduced or defined in this chapter:

Bitmap An array of bits indicating which chunks are allocated.

Coalesce To combine two or more nodes into one.

External Fragmentation Free space that is too small to be useful, a result of deal-
location without compaction.

Garbage Collection Automatic deallocation of dynamicmemory that occurs when
a memory region is no longer needed.

Heap Aregion of a process’s address space dedicated to dynamic datawhose lifetime
extends beyond that of the function that creates it.

Internal Fragmentation Wasted space due to the minimum allocation unit being
too large.

Memory Leak When a dynamically allocated region cannot be deallocated because
all pointers to it have been lost.

Run-length Encoding A simple compression scheme where n values in a row can
be replaced by the number n in any base greater than one. For example, the
string “AAAAA” could be compressed to “5A”.
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The Operating System (os) is a special process on a computer responsible for two
major tasks: managing resources and abstracting details. An os manages the shared
resources on the computer. These resources include the cpu, ram, disk storage,
and other input and output devices. The os is also useful in abstracting the specific
details of the system away from application programmers. For instance, an os may
provide a uniform way to print a document to a printer regardless of its specific
make and model.

The core process of the os is called the kernel. The kernel runs at the highest
privilege level that the cpu allows and thus can perform any action. The kernel
is responsible for management and protection; it should be the most trusted com-
ponent on the system. The kernel runs in its own address space that is referred to
as kernel space. Programs that are not the kernel, referred to as user programs,
cannot access the memory of the kernel and run at a lower privilege level. This
portion of the computer is called user space.

Application programmers access the facilities that the Operating System pro-
vides via system calls. System calls are functions that the Operating System can do,
usually related to process management and i/o operations.

8.1 System Calls
The particular system calls an Operating System provides depend on the particular
os and version. Because of this, most application programmers access system calls
via a library wrapper function. Wrapper functions provide an os-neutral way to
do common tasks such as file and console i/o. The C Standard Library contains
many wrapper calls as part of the stdio package.

Figure 8.1 shows the steps involved in executing a library call that needs to call
the Operating System. If we have a call to printf() in our program, it is compiled
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Figure 8.1: A library call usually wraps one or more system calls.

fstat(1, {st_mode=S_IFCHR|0600, st_rdev=makedev(136, 7), ...}) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2a95557000

write(1, "Hello world!\n", 13Hello world!) = 13

exit_group(0)

Figure 8.2: A “Hello world” program run through strace.

to a call to the C Standard Library. In the library, the code to interpolate the
arguments is run, and the final output string is prepared. When it is finally time to
display the string, the library makes a system call to do the actual i/o operation. The
Unix/Linux utility strace provides a list of system calls made during the execution
of a program. In Figure 8.2 we see the system calls made by a “hello world” program
using printf().

The Unix and Linux Operating Systems provide a write() system call that
interacts with i/o devices. The first parameter being the value 1 indicates that
the output should go to the stdout device. Section 8.1.2 will detail the i/o calls
provided by Unix and Linux systems.
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8.1.1 Crossing into Kernel Space fromUser Space

Figure 8.1 also illustrates that a system call forces the cpu to switch modes from
dealing with a process running in user space to the kernel running in kernel space.
User space applications cannot cross this boundary themselves but instead issue
a trap instruction that signals to the cpu that a context switch into the kernel
should occur. A context switch occurs whenever the cpu switches from running
one process to another. To resume the suspended process, the state of themachine—
called a process’s context, which includes the registers, open files, and stack — must
be saved. To run the new process, its context must be restored. Context switches are
very time consuming and all attempts to avoid doing more than absolutely necessary
are made.

Whenever the cpu receives a trap or interrupt, it transfers control via an array of
function pointers indexed by interrupt number called the interrupt vector, which
is set up by the Operating System when it boots up. Under Linux the system call
trap is int 0x80.

Upon entering the os via a trap, the cpu is now in kernelmode and can perform
the privileged operations of the os, such as talking to the system i/o devices. The
dispatcher selects the appropriate system call routine to execute based on the value
of a register when the interrupt was sent. The kernel can now perform the requested
operation.

8.1.2 Unix File System Calls

Listing 8.1 gives an example of how to write a program that writes text to a file
without using the C Standard Library calls. Unix and Linux systems provide the
primitive I/O operations of open(), read(), write(), and close() to operate on
files. These operations end up being used to perform almost every I/O operation
due to the traditional Unix paradigm of treating all devices as files in the file system.

While C programs that operate on files make use of a FILE * to track open files,
the Unix system calls designate an integer as a file descriptor, which represents an
open file. When a program begins, three file descriptors are automatically opened.
They are:

Descriptor C Name Usage
0 stdin Standard Input: Usually the keyboard
1 stdout Standard Output: Usually the terminal
2 stderr Standard Error: Usually the terminal
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#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int main() {

int fd;

char buffer[100];

strcpy(buffer, "Hello,␣World!\n");

fd = open("hello.txt", O_WRONLY | O_CREAT);

write(fd, buffer, strlen(buffer));

close(fd);

exit(0);

return 0;

}

Listing 8.1: Using the Unix system calls to do a “Hello World” program.
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Notice that stdout and stderr both display upon the screen by default. They are
separate streams, however, and may be redirected or piped independently of each
other.

Another thing to notice about Listing 8.1 is the second parameter to open().
Two macros are bitwise-ORed together. If we look for the definitions of these in the
header files, we see them as:

#define O_RDONLY 0

#define O_WRONLY 1

#define O_RDWR 2

#define O_CREAT 16

which are all powers of two. This technique is common when we want to send
several flags that affect the operation of a function. Each separate bit in an integer
can be seen as an independent boolean flag. Bitwise-ORing them together allows
the programmer to specify one or more flags simultaneously. In this example the
flags to open the file for writing and to create it if it does not already exist are set.
The implementation can check whether a particular flag is set by bitwise-ANDing
the parameter with the same constants. This technique is also very commonly seen
in the functions Microsoft Windows provides.

8.1.3 Process Creation with fork() and execv()

No survey of important system calls under Unix/Linux would be complete without
discussing some issues of process management. A programmer may frequently wish
to spawn off a new process to do some additional work concurrently. The system
call to do this is fork(). Listing 8.2 shows an example of fork()’s usage. When
fork() is called, the Operating System creates a clone of the original process that is
identical in every way except for the return value of the fork() call. In the original
process, denoted the parent, the return value is the process ID — the number that
the os uses to keep track of processes — of the child. In the child process, the return
value is zero.

If we run the program, we might try to predict its output. The problem with
doing this is that there is usually no guarantee that two separate processes will run
in any particular order. At the very least, we can be sure that there will be four lines
printed to the screen: the two inside the if/else and each process’s copy of the
“Hi from both” line. The other guarantee is that the lines will print in the proper
relative order in terms of a single process. That is, there is no way to see both “Hi
from both” lines before “Hi from the child” and “Hi from the parent” have each
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#include <stdio.h>

#include <unistd.h>

int main() {

if(fork()==0) {

printf("Hi␣from␣the␣child!\n");
}

else {

printf("Hi␣from␣the␣parent\n");
}

printf("Hi␣from␣both\n");
return 0;

}

Listing 8.2: An example of process creation using fork.

been displayed. On the test run, the following output was seen:

Hi from the child!

Hi from both

Hi from the parent

Hi from both

This indicates that the child process ran and completed before the parent process
resumed its execution.

The other common use of fork() is to launch a separate program entirely.
The family of execv() functions all wrap around the execv() system call, which
embodies the loader we described in Chapter 3. The unusual thing about execv()
is that it needs a process to be created for it. The system call itself will not create
a process; rather it will replace the process that called it with the new program
to be loaded. This means that execv() often comes shortly after a call to fork().
Listing 8.3 shows an example of a program that launches the ls program. The
parent, in the else, waits for all child processes to complete before it continues by
using the wait() function.
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#include <stdio.h>

#include <unistd.h>

int main() {

if(fork()==0) {

char *args[3] = {"ls", "-al", NULL};

execvp(args[0], args);

}

else {

int status;

wait(&status);

printf("Hi␣from␣the␣parent\n");
}

return 0;

}

Listing 8.3: Launching a child process using fork and execvp.

8.2 Signals
A signal is a message from the Operating System to a user space program. Signals
are generally used to indicate error conditions, in much the same way that Java
Exceptions function. A program can register a handler to “catch” a particular signal
and will be asynchronously notified of the signal without the need to poll. Polling is
simply the action of repeatedly querying (e.g., in a loop) whether something is true.

Figure 8.3 shows a list of the os signals on a modern Linux machine. You can
generate a complete list for your system by executing the command kill -l. Most
signals tend to fall into a few major categories. There are the error signals, which
indicate something has gone awry:

SIGILL The cpu has tried to execute an illegal instruction.

SIGBUS A bus error, usually caused by bad data alignment or a bad address.

SIGFPE A floating point exception.

SIGSEGV A segmentation violation, i.e., a bad address.

There are several ways to tell a program to forcibly exit on a system:
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SIGHUP SIGINT SIGQUIT SIGILL SIGTRAP SIGABRT

SIGBUS SIGFPE SIGKILL SIGUSR1 SIGSEGV SIGUSR2

SIGPIPE SIGALRM SIGTERM SIGCHLD SIGCONT SIGSTOP

SIGTSTP SIGTTIN SIGTTOU SIGURG SIGXCPU SIGXFSZ

SIGVTALRM SIGPROF SIGWINCH SIGIO SIGPWR SIGSYS

Figure 8.3: The standard signals on a modern Linux machine.

SIGINT Interrupt, or what happens when you hit ctrl+c.

SIGTERM Ask nicely for a program to end (can be caught).

SIGKILL Ask meanly for a program to end (cannot be caught).

SIGABRT, SIGQUIT End a program with a core dump.

The remaining signals send information about the state of the os, including
things like the terminal window has been resized or a process was paused.

8.2.1 Sending Signals

Signals can be sent programmatically by using the kill() system call. The name
is somewhat misleading, since any of the signals can be sent by using it, but most
often the signals that are sent seem to be related to process termination. The code
in Listing 8.4 makes the program stop with the SIGSTOP signal. The program will
not resume until it receives a SIGCONT signal. The getpid() call asks the os for the
current process’s id. If you know the process id of another process, you can send it
signals as well.

It is useful to be able to send termination signals via the command line in a Unix
shell, and the command kill allows you to do this. You need to pass the process id,
but that can be obtained using the ps command. By default, kill with a process
id argument will send that process a SIGTERM signal, which a process can choose
to ignore. If a process is truly crashed, it is better to send the SIGKILL signal. You
can specify the signal to send by saying -NAME, where name is the name portion of
a signal, like SIGNAME. You may also specify a signal’s numerical value, and you will
often see a forcible termination of a process done like:

kill -9 process_to_kill_pid
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#include <unistd.h>

#include <sys/types.h>

#include <signal.h>

int main() {

pid_t my_pid = getpid();

kill(my_pid, SIGSTOP);

return 0;

}

Listing 8.4: Signals can be sent programmatically via kill.

8.2.2 Catching Signals

Much like Java Exceptions, signals can be caught by a program. However, since
many of the signals indicate something has gone terribly wrong, great care has to
be taken in how a caught exception is dealt with. Any of the termination signals, if
caught, should only be used as an opportunity to clean up any open or temporary
files and exit gracefully. Memory statemay be corrupted, so any attempts to continue
will just make the program fail further down the line. A few signals are useful to
catch, like SIGALRM. Listing 8.5 gives an example.

In this program, we set up a signal handler by using the signal() function. It
takes two parameters, the first is the signal to listen for, the second is a function
pointer of a function to call upon receipt of the signal. The alarm signal allows
you to specify a timeout upon which the program will be notified that the time has
elapsed. In our example, alarm() function tells the os to send a SIGALRM in one
second. This is not a precise time, as it may be beyond one second that the handler
is called. The program in Listing 8.5 makes a countdown timer from ten to one and
then exits.

One final signal of particular interest is SIGTRAP. This is the Breakpoint Trap
signal. Debuggers such as gdb listen for this signal to retake control of an executing
process in order to examine it.

The Intel x86 instruction set defines all interrupts with a two-byte instruction
encoding. The int opcode is 0xCD followed by the interrupt number. For example,
the Linux system call trap (int 80) would be 0xCD 0x80. However, there is a special
one-byte encoding for the breakpoint trap, int 3. It is the opcode 0xCC.

Debuggers place breakpoints by overwriting existing instructions, since in-
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#include <unistd.h>

#include <signal.h>

int timer = 10;

void catch_alarm(int sig_num) {

printf("%d\n",timer--);

alarm(1);

}

int main() {

signal(SIGALRM, catch_alarm);

alarm(1);

while(timer > 0) ;

alarm(0);

return 0;

}

Listing 8.5: SIGALRM can be used to notify a program after a given amount of
time has elapsed.
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serting them would require rewriting the code. With the x86’s variable-length
instruction set architecture, a two-byte breakpoint might overwrite more than one
instruction. This would be problematic if a particular breakpoint was skipped over
and the target of a jump was the second byte of the breakpoint. To avoid this prob-
lem, the breakpoint trap is given a special one-byte encoding. Remembering this
encoding may come in handy if you ever are dealing with low-level code and want
to insert a breakpoint by hand.

8.3 Terms and Definitions
The following terms were introduced or defined in this chapter:

Context The state of a process, necessary to restart it where it left off. Usually
includes the state of the registers and other hardware details.

Context Switch The act of saving the context of a running process and restoring
the context of a suspended process in order to change the currently running
program.

Interrupt A cpu instruction or signal (the voltage kind) issued by hardware that in-
terrupts the currently executing code and jumps to a handler routine installed
by the Operating System. On Intel x86 computers, there is no distinction in
name between an interrupt and a trap; both are referred to as interrupts.

Interrupt Vector An array of function pointers indexed by interrupt number used
to call an os-installed handler routine.

Kernel The core process of an Operating System.

Kernel Space The Operating System’s address space.

Operating System A program that manages resources and abstracts details of hard-
ware away from application programmers.

Poll The act of repeatedly querying some state in a loop.

Process ID The number that the os uses to keep track of processes.

Signal A message from the Operating System, delivered asynchronously, that usu-
ally indicates an error has occurred.
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System Call A function that the Operating System provides to user programs to
interact with the system and/or perform i/o operations.

Trap A software interrupt, usually used to signal the cpu to cross into kernel space
from user space. See also: interrupt

User Program Any application that is not part of the Operating System and runs
in User Space.

User Space The unprivileged portion of the computer in which user programs run.

Wrapper Function A function, typically part of a library, that provides a generic
way to do a system-specific common task such as file and console i/o.
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Figure 9.1: While the CPU sees just one stream of instructions, each process
believes that it has exclusive access to the CPU.

9 | Multiprogramming&Threading

In Chapter 5, we introduced the abstraction of a running program in memory
called a process. One of the significant parts of that abstraction was the process’s
view that it had a large amount of ram all to itself as part of its address space.
Another part of the process abstraction is the idea that a process has the entire cpu
to itself. On a large supercomputer or a small embedded device, this might be the
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case. In general, however, a modern Operating System has to manage multiple
processes all competing for the shared resource of the cpu. Figure 9.1 illustrates
the differing perspectives that the cpu and the processes have. The cpu sees one
unified stream of instructions, whereas each process believes it has exclusive access
to the machine.

An observation about running processes is that they frequently will need to
perform some type of i/o operation. Whenever an i/o device is accessed, there is a
delay until it is ready to transmit or receive data. During this delay, a process cannot
proceed and is said to be blocked. For instance, imagine a very fast typist typing
at 120 words per minute. Two words per second is fast for a person, but modern
computers can do billions of operations per second. Most of the time, the computer
is waiting for the user to do something. If during this waiting time the computer
could do other work, it could provide the illusion of doing multiple tasks at the same
time. This abstraction is calledmultiprogramming. Figure 9.1c shows the progress
of processes over time. Note the gap in B’s execution while C runs. Process B should
be totally unaware that it was not in control of the cpu for a portion of time.

To change from one application to another, we need to save the current appli-
cation’s cpu state, which we defined before as its context. Just as we did a context
switch when we wanted to enter the kernel to perform a system call, when one
process is paused and another is begun, the Operating System does a context switch.

It is also possible that a program is CPU-Bound, meaning that it does not do
very much i/o but rather is computing something intensive, using as much of the
cpu as it can get. In these cases, a cpu-bound process would stop other processes
from being able to run. To prevent such a process from starving out the others,
periodically the hardware will issue a timer interrupt. This timer interrupt will
cause the Operating System to run, and then it can determine whether the program
should continue or should be paused to let another process have the cpu. This
process of pausing a running program after a period of time is called preemption.

Figure 9.2 shows the life cycle of a process. When a process is created, it enters
a queue of processes on the system that are available to run, called the ready queue1.
When a process is in the running state it eventually will yield the cpu, either because
it performs an i/o operation and transitions to the blocked state or because it is
preempted and goes back into the ready queue. At this point, a component of the
Operating System called the scheduler chooses a ready process (from the queue) and

1 While this queue may be managed in fifo order, we will use ‘queue’ just to imply a set of waiting
objects.
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Figure 9.2: The life cycle of a process. Dashed lines indicate an abnormal termi-
nation.

Per Thread Per Process

Program counter Address space
Registers Open files
Stack & stack pointer Child processes
State Signals & handlers

Accounting info
Global variables

Figure 9.3: Thread State versus Process State.

lets it run. Processes eventually finish voluntarily or because of an error (indicated
by the dashed transitions in Figure 9.2).

Sometimes, we as programmers know that a process will be I/O Bound, and we
would explicitly like to do some other task related to the process simultaneously.
If we launch another process to do work in parallel, we have two issues. The first
issue is that we have no guarantee from the scheduler when a particular process will
run, so we may not be doing the other work while the first process is blocked. The
second problem is that because of the isolation an address space provides, it is very
cumbersome and slow to share information between processes. Ideally, we’d like
the ability to run multiple streams of instructions that share a single address space
so that sharing data is as easy as loads and stores.

We can have multiple streams of instructions in a single process’s address space
by having a mechanism called a thread. A thread is a stream of instructions and its
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associated context. A thread’s context should be small, since the Operating System
will still manage the process as a whole. For instance, a list of open files is part of
a process’s context but not an individual thread’s. Figure 9.3 shows a list of what
might be part of a process’s context and what context needs to be stored per thread.
If we define a stream of instructions as a function, we can more easily see what state
we need to store. A function needs the machine registers and a stack of its own.
This will form a minimal thread context.

9.1 Threads

Every process has one thread by definition. An application must explicitly create
any additional threads it needs. Support for threading can come from two sources.
In user threading, a user-space library provides threading support with minimal,
if any, support from the Operating System. In kernel threading, the Operating
System has full support for threads and manages them in much the same way as it
manages processes.

9.1.1 User Threading

With user threading, we assume the Operating System has no explicit support for
threads. A library containing helper functions will take care of thread creation
and maintenance of the threads’ state. There are two major hurdles to making user
threading work. Imagine two processes are running on a system, one of which wants
100% of the cpu, the other wants 10%. Since the Operating System can preempt
the greedy process, the one that needs only a little bit of cpu time can get it.

Imagine now two threads of a process that have the same characteristics. The
greedy thread runs and runs until the process containing both threads is interrupted.
When the process resumes execution, the greedy thread continues to run. The
process abstraction prevents the process from knowing it was ever stopped. While
each process was protected from the others on a system, there is no protection from
the Operating System for threads since it does not know they are even there!

This may seem to be the downfall of user threading. However, if we go back to
the original motivation for having threads at all, it was that we wanted to do work
in a cooperative way and that the isolation afforded to us by an address space was
too much. Since threads live within a single application, they can be expected to
cooperate. A user threading library could then supply a yield() call whereby one
thread voluntarily gives up the cpu, and the threading library can pick a different
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thread to run. Application programmers writing a multithreaded program only
need to be aware that they should call yield() at appropriate times. This explicit
yielding even gives a bit of extra power to the developer, because it becomes easy to
make one thread bemore important than the others by having it yield less frequently.

Having solved that problem, let us tackle a second. Imagine that a thread is
executing some code and comes upon an i/o operation. The operation traps into
the kernel, and finding the data not yet ready, the kernel moves the process into
the blocked state. One of the original motivations was that during these times of
being blocked, we would like to run some other code to do some useful work, so we
might assume that another thread will get to run. But remember, the kernel knows
nothing of the threads and has put the entire process to sleep. There is no way any
other code in the process can run until the i/o request has finished.

Though we found a reasonable way around the yielding problem, this seems the
death knell for user threads. There is no way to avoid the inevitable block that will
happen to the process when the i/o operation cannot be completed. The only way
around it would be if there was some facility by which going into a blocked state
could be prevented. If an Operating System has a facility for non-blocking i/o calls,
the user threading library could use them and insert a yield to run a different thread
until the requested data was ready.

Unix/Linux systems have a system call named select() or poll() that tells
whether a given i/o operation would block. It has the added side effect of doing the
actual i/o request. Since select() can be non-blocking, the threading library could
provide its own version of the i/o calls. A thread would use the library’s routines,
and when in the library, the library could make a call to select() to see if the
operation would block. If it would, it can put that thread to sleep and allow another
thread to run. The next time we are in the library, via a yield(), a create(), or an
i/o call for another thread, we can check to see whether the original call is ready,
and if so, unblock the requesting thread.

Since anOperating System needs to have non-blocking i/o support tomake user
threading work, it is arguable that user threads actually require no explicit support.
The select() call is useful for more than just threads, including checking to see
whether any network packets have arrived. While this minimal level of functionality
is required, we will see with kernel threads that the level of os support is far beyond
a single system call.
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9.1.2 Kernel Threading

Kernel threading is the complete opposite of user threading. With kernel threads,
the Operating System is completely in charge of managing threads. The os has
a system call that creates threads. The scheduler in the os knows that when one
thread is blocked, another thread from the very same process could still run. A
cpu-bound thread can be preempted without any need for the programmer to put
in explicit calls to a yield() function. In short, kernel threads are everything that
user threads were not. However, kernel threads also may be slower to create.

In user threads, any thread operation was a library call, and since no process
boundaries were crossed, no context switches needed to be done. But anytime a
thread is created in kernel threading, the os must update its internal record-keeping,
and a context switch into the kernel must be done. Context switches are expensive,
so creating many threads will be significantly slower. Thread and process switching
will both require context switches with kernel threading. These issues may not be
a problem for a program using a small number of threads, but a Web server for a
high-demand Web site may be spawning new threads for every request a hundred
times per second. In that case, kernel threads may have too much overhead.

Ultimately, when it comes time to make a multithreaded program, you will be
at the mercy of the system you are developing for. If it has kernel threads, your life
may be easier, but performance may not be as good as possible. The good news is
that you can always use user-threading libraries on a system with kernel threads.
Use the tool that works best for the situation.

9.2 Terms and Definitions

The following terms were introduced or defined in this chapter:

Blocked A process that is unable to continue because it is waiting for something,
usually an i/o request to complete.

CPU-Bound A process that primarily needs to do computation and rarely needs
to do an i/o operation.

I/O Bound A process that spends most of its time blocked.

KernelThreading Operating System support for thread management.
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Multiprogramming Part of the process abstraction where a process appears to
have the cpu entirely to itself, even when there are multiple processes on a
single machine.

Preemption Interrupting a process because it has had the cpu for some amount
of time in order to allow another process to run.

Scheduler The portion of the Operating System responsible for choosing which
process gets to run.

Thread A stream of instructions and its associated context.

UserThreading Threading done via a user space library that provides thread sup-
port with minimal, if any, support from the Operating System.
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nization, & Deadlocks

To facilitate multithreaded programming on a wide range of Operating Systems,
a standard library was developed to hide the implementation details of writing mul-
tithreaded programs. The posix group created a standard library called pthreads
that allows for the creation and management of multithreaded programs without
concern for the underlying implementation — that is, whether user threading or
kernel threading is supported.

With an abstraction such as the pthreads library, it is possible to write portable
threaded programs that run on a variety of systems. In this chapter, we will examine
the functionality the library provides. Once we are able to create and manage
threads, we will consider issues of synchronization: The need for many threads
that share data to safely modify that data. Likewise, we need to examine the issue of
deadlocks. Deadlocks arise when two or more threads are unable to make progress
while waiting on each other to do some task.

10.1 Threading with pthreads
Themost basic operations for a threading library to provide are functions for creating
and destroying threads. The pthread library provides several functions to aid us
with these tasks. All processes consist of one thread of execution already, and so
any additional threads we want to create will be in addition to this original thread.
Thread creation is done via the pthread_create() function.

Listing 10.1 shows an example of running the do_stuff() function in two
threads. The main thread is “recycled” to run the function in addition to the newly
spawned thread. pthread_create() takes four parameters. The first is a pointer to
a variable of type pthread_t that is set to a unique identifier for the newly created
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#include <stdio.h>

#include <pthread.h>

void *do_stuff(void *p) {

printf("Hello␣from␣thread␣%d\n", *(int *)p);

}

int main() {

pthread_t thread;

int id, arg1, arg2;

arg1 = 1;

id = pthread_create( &thread, NULL,

do_stuff, (void *)&arg1 );

arg2 = 2;

do_stuff((void *)&arg2);

return 0;

}

Listing 10.1: Basic thread creation.

thread. This identifier is “opaque,” meaning that we do not know what type this
identifier is (integer, structure, etc.) and we should not depend on its being any
particular type or having any particular value. The second parameter controls how
the thread is initialized, and for most simple implementations it can be set to NULL

to take on the defaults.
The third and fourth parameters specify the stream of instructions to run in the

new thread. First comes a pointer to a function containing the code to run. This
function can, of course, call other functions, but it could be considered analogous
to a “main” function for that particular thread. The signature of the function must
be such that it takes and returns a void *. Because of the strict type checking done
on passing function pointers in terms of return values and parameters, this function
needs to be as generic as possible while still having a well-defined prototype. The
advantage in using a void * is that it can point to anything, even an aggregate data
type like an array or structure. In this way, no matter how many arguments are
actually needed, the function can receive them. The final parameter is the actual
parameters to pass to this function, which can be NULL if unnecessary.
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int main() {

pthread_t thread;

int id, arg1, arg2;

arg1 = 1;

id = pthread_create(&thread, NULL,

do_stuff, (void *)&arg1);

pthread_yield();

arg2 = 2;

do_stuff((void *)&arg2);

return 0;

}

Listing 10.2: Inserting a yield to voluntarily give up execution.

Compiling this program requires an additional command-line option to gcc.
Since the pthread library is not part of the C Standard Library, it is not linked
against the program automatically. Adding the -pthread switch tells the linker to
include the appropriate code and data.

Executing the resulting program may lead to some interesting results. On one
system, the following output from Listing 10.1 was seen:
Hello from thread 2

It would appear that the newly created thread is not run. If we did a similar test using
fork() instead, the output of both would be seen. So what is the difference? When
the main() function returns, the process is over. Since main() terminates relatively
quickly, the other thread never gets a chance to run. With two processes (from
fork()), each will not terminate until its respective main() finishes, guaranteeing
that each will print its output before completing.

Some control over when a thread runs or when the process terminates is nec-
essary. From the discussion of threading in the previous chapter, we know that it
is possible to voluntarily yield control to a separate thread. The pthread library
exposes this through the pthread_yield() function. If we rewrite the main()

function as in Listing 10.2, we get the following output:
Hello from thread 1

Hello from thread 2

However, this is no guaranteed solution. While the pthread_yield() is a sugges-
tion to let another thread run, there is no way to force this to happen. The other
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int main() {

pthread_t thread;

int id, arg1, arg2;

arg1 = 1;

id = pthread_create(&thread, NULL,

do_stuff, (void *)&arg1);

arg2 = 2;

do_stuff((void *)&arg2);

pthread_join(thread, NULL);

return 0;

}

Listing 10.3: Waiting for the spawned thread to complete.

thread(s) might be blocked, or the scheduler might simply ignore the yield. A better
solution is to force the process to wait until the other thread completes.

Listing 10.3 illustrates the better way to ensure threads complete. Calling the
pthread_join() function blocks the thread that issued the call until the thread
specified in the parameter finishes. The second parameter to the pthread_join()
call is a void **. When a function needs to change a parameter, we pass a pointer
to it. Passing a pointer-to-a-pointer allows a function to alter a pointer parameter,
in this case, setting it to the return value of the thread the join is waiting on. We
can, of course, choose to ignore this parameter, in which case we can simply pass
NULL. Note, however, joining the threads still does not guarantee they will run in
any particular order before the call to pthread_join().

The moral of the threading story is that, unless explicitly managed, threads
run in no guaranteed order. This lesson becomes even more important when we
begin to access shared resources in multiple threads concurrently. When we need
to manipulate shared objects, we may need to ensure a particular order is preserved,
which leads to the next topic: Synchronization.

10.2 Synchronization

Imagine that there are two threads, Thread 0 and Thread 1, as in Figure 10.1. At
time 3, Thread 0 is preempted and Thread 1 begins to run, accessing the same
memory location X. Because Thread 0 did not get to write back its increment to
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Thread 0 Thread 1
1 read X

2 X = X + 1

3 read X

4 X = X + 1

5 write X

6 write X

Figure 10.1: Two threads independently running the same code can lead to a
race condition.

memory, Thread 1 has read an older version. Whichever thread writes last is the
one that makes the update, and the other is lost. When the order of operations,
including any possible preemptions, results in different values, the program is said
to have a race condition.

Determining whether code is susceptible to race conditions is an exercise in
Murphy’s Law.1 Race conditions occur when code that accesses a shared variable
may be interrupted before the change can be written back. The obvious solution to
preventing a race condition is to simply forbid the thread from being interrupted
during execution of this critical region of code. Allowing a user-space process to
control whether it can be preempted is a bad idea, however. If a user program were
allowed to do this, it could simply monopolize the cpu and not allow any other
programs to run. Whatever the solution, it will require the help of the Operating
System, as it is the only part of the system we can trust to make sure an action is not
interrupted.

A better solution is to allow a thread to designate a portion of its code as a
critical region and control whether other threads can enter the region. If a thread
has already entered a critical region of code, all other threads should be blocked
from entering. This lets other threads still run and do “non-critical” code; we have
not given up any parallelism. The marking of a critical region itself must not be
interruptible, a trait we refer to as being “atomic.” This atomicity and the ability
to make other threads block means that we need the Operating System or the
user-thread scheduler’s help.

Several different mechanisms for synchronization are in common use. We will
focus on three in this text, although a fourth, known as a Monitor, forms the basis

1 “Anything that can go wrong, will go wrong.”
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Thread 0 Thread 1
1 lock mutex

2 read X

3 X = X + 1

4 lock mutex

5 write X

6 unlock mutex

7 read X

8 X = X + 1

9 write X

10 unlock mutex

Figure 10.2: Synchronizing the execution of two threads using a mutex.

for Java’s support for synchronization. The pthread library provides support for
Mutexes and Condition Variables. Semaphores can be used with the inclusion of a
separate header file.

The pthread library provides an abstraction layer for synchronization primitives.
Regardless of the facilities of the Operating System, with respect to its support
for threading or synchronization, mutexes and condition variables will always be
available.

10.2.1 Mutexes

The first synchronization primitive is a mutex. The term comes from the phrase
Mutual Exclusion. Mutual exclusion is exactly what we are looking for with respect
to critical regions. We want each thread’s entry into a particular critical region to
be exclusive from any other thread’s entry. A mutex behaves as a simple lock, and
thus we get the two operations lock() and unlock() to perform.

With a mutex and the lock and unlock operations, we can solve the problem of
Figure 10.1. Figure 10.2 assumes a mutex variable named mutex that is initially in
an unlocked state. Thread 0 comes along first, locks the mutex, and proceeds to do
its work up until time 4, when it is preempted and Thread 1 takes over. Thread 1
attempts to acquire the mutex lock but fails and is blocked. With no other threads
to run, Thread 0 resumes and finishes its work, unlocking the mutex. With the
mutex now unlocked, the next time that Thread 1 is scheduled to run it can, as it is
no longer in the blocked state.

The pthread library provides a simple and convenient way to use mutexes. A
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#include <stdio.h>

#include <pthread.h>

int tail = 0;

int A[20];

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void enqueue(int value) {

pthread_mutex_lock(&mutex);

A[tail] = value;

tail++;

pthread_mutex_unlock(&mutex);

}

Listing 10.4: Using a pthread_mutex to protect an enqueue operation on a
shared queue.

mutex is declared of type pthread_mutex_t and can easily be initialized to start off
unlocked by assigning PTHREAD_MUTEX_INITIALIZER to it. Locking and unlocking
are done via the pthread_mutex_lock() and pthread_mutex_unlock() functions.
Listing 10.4 shows an example of protecting a shared queue using a mutex.

10.2.2 Condition Variables

Sometimes we would like to do more than just protect a region. Imagine two
threads working together, one of which is producing items into a fixed-size buffer,
the other consuming them from that same buffer. This is a classic problem of
synchronization known as the Producer/Consumer Problem. Figure 10.3 gives a
pseudocode implementation. Since the buffer is fixed-size, we must be careful not
to overrun or underrun the bounds. We want to stop the producer when the buffer
is full and stop the consumer when it is empty. Let us then assume that we have a
sleep() call to put the current thread to sleep and a corresponding wakeup() that
will wake up a particular sleeping thread by notifying the scheduler that the thread
is no longer blocked.

If we examine the consumer, we see the conditional if(counter==0) and the
action sleep(). Here, obviously, the code is being guarded from the possibil-
ity of underrun. Possibly less obvious is the if(count==N-1) followed by the
wakeup(producer). If count is currently one less than the maximum, we know the
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Shared Variables

#define N 10;

int buffer[N];

int in = 0, out = 0, counter = 0;

Consumer Producer

while(1) {

if(counter == 0)

sleep();

... = buffer[out];

out = (out+1) % N;

counter--;

if(counter == N-1)

wakeup(producer);

}

while(1) {

if(counter == N)

sleep();

buffer[in] = ... ;

in = (in+1) % N;

counter++;

if(counter==1)

wakeup(consumer);

}

Figure 10.3: A pseudocode implementation of the Producer/Consumer prob-
lem. Note that this code has an unresolved synchronization prob-
lem.
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void *producer(void *junk) {

while(1) {

pthread_mutex_lock(&mutex);

if( counter == N )

pthread_cond_wait(&prod_cond, &mutex);

buffer[in] = total++;

printf("Produced:␣%d\n", buffer[in]);

in = (in + 1) % N;

counter++;

if( counter == 1 )

pthread_cond_signal(&cons_cond);

pthread_mutex_unlock(&mutex);

}

}

Listing 10.5: The producer function using condition variables. The con-
sumer function would be similar.

buffer was full before we consumed an item, and if the buffer was full, the producer
is asleep, so wake it up.

However, there is a subtle problem here. Imagine that the consumer is running,
executes the if(counter==0) line, and finds the buffer empty. But right before the
sleep is executed, the thread is preempted and stops running. Now the producer
has a chance to run, and since the buffer is empty, successfully produces an item
into it. The producer notices that the count is now one, meaning the buffer was
empty just before this item was produced, and so it assumes that the consumer is
currently asleep. It sends a wakeup which, since the consumer has not yet actually
executed its sleep, has no effect. The producer may continue running and eventually
will fill up the buffer, at which point the producer itself will go to sleep. When the
consumer regains control of the cpu, it executes the sleep() since it has already
checked the condition and cannot tell that it has been preempted.2 Now both the
consumer and the producer threads are asleep and no useful work can be done.
This is called a deadlock and is the subject of Section 10.3.

There are two ways to prevent this problem. The first is to make sure that the
check and the sleep are not interrupted. The second is to remember that there was a

2 In fact, it does not need to have been preempted if these two threads were running on separate cores
or processors.
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wakeup issued while the thread was not sleeping and to immediately wake up when
the next sleep is executed in that thread. The first way is implemented via condition
variables, the second solution is a semaphore.

A condition variable is a way of implementing sleep and wakeup operations in
the pthread library. A variable of type pthread_cond_t represents a “condition”
and acts somewhat like a phone number. If a thread wants to sleep, it can invoke
pthread_cond_wait() and go to sleep. The first parameter is a condition variable
that enables another thread to “phone it” and wake it up. A thread sleeping on a
particular condition variable is awoken by calling pthread_cond_signal() with
the particular condition variable that the sleeping thread is waiting on. Condition
variables can be initialized much the same way that mutexes were, by assigning a
special initializer value to them appropriately called PTHREAD_COND_INITIALIZER.

While this enables us to wait and signal (sleep and wake up), we still have
the issue of possibly being interrupted. This is where the second parameter of
pthread_cond_wait() comes into play. This parameter must be a mutex that
protects the condition from being interrupted before the wait can be called. As soon
as the thread sleeps, the mutex is unlocked, otherwise deadlock would occur. When
a thread wakes back up it waits until it can reacquire the mutex before continuing
on with the critical region. Listing 10.5 shows the producer function rewritten to
use condition variables.

10.2.3 Semaphores

The semaphore.h header provides access to a third type of synchronization, a
semaphore. A semaphore can be thought of as a counter that keeps track of how
many more wakeups than sleeps there have been. In this way, if a thread attempts
to go to sleep with a wakeup already having been sent, the thread will not go to
sleep. Semaphores have two major operations, which fall under a variety of names.
In the semaphore.h header, the operations are called wait and post, but they can
also be known as lock and unlock, down and up, or even P and V. Whenever a wait
is performed on a semaphore, the corresponding counter is decremented. If there
are no saved wakeups, the thread blocks. If the counter is still positive or zero, the
thread can continue on. The post function is an increment to the counter and if
the counter remains negative, it means that there is at least one thread waiting that
should be woken up.

One way to conceptualize the counter is to consider it as maintaining a count
of how many resources there are currently available. In the Producer/Consumer
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void *producer(void *junk) {

while(1) {

sem_wait(&semempty);

sem_wait(&semmutex);

buffer[in] = total++;

printf("Produced:␣%d\n", buffer[in]);

in = (in + 1) % N;

sem_post(&semmutex);

sem_post(&semfull);

}

}

Listing 10.6: The producer function using semaphores. The consumer func-
tion would be similar.

example, each array element is a resource. The producer needs free array elements,
and when it exhausts them it must wait for more free spaces to be produced by the
consumer. We can use a semaphore to count the free spaces. If the counter goes
negative, the magnitude of this negative count represents how many more copies of
the resource there would need to be to allow all of the threads that want a copy to
have one.

Semaphores and mutexes are very closely related. In fact, a mutex is simply a
semaphore that only counts up to one. Conceptually, a mutex is a semaphore that
represents the resource of the cpu. There can only be one thread in a critical region
that may be running, and all other threads must block until it is their turn.

Semaphores can be declared as a sem_t type. There is no way to have a fixed
initializer, however, because a semaphore can initially take on an integer value rather
than being locked or unlocked. A semaphore is initialized via the sem_init()

function, which takes three parameters: the semaphore variable, the value 0 on all
Linux machines, and the initial value for the semaphore. Listing 10.6 shows the
producer/consumer problem solved by using semaphores. Notice that they can
even replace the mutex, although we could use a mutex if we wanted. The semempty
(initialized to N) and semfull (initialized to 0) semaphores count how many empty
and full slots there are in the buffer. When there are no more empty slots, the
producer should sleep, and when there are no more full slots, the consumer should
sleep.
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10.3 Deadlocks

The formal definition of a deadlock is that four things must be true:

Mutual exclusion Only one thread may access the resource at a time.

Hold and wait When trying to acquire a new resource, the requesting thread does
not release the ones it already holds.

No preemption of the resource The resource cannot be forcibly released from the
holding thread.

Circular wait A thread is waiting on a resource that is owned by a second thread
which, in turn, is waiting on a resource the first thread has.

For our purposes, we will truly worry about the circular wait condition. This
means that we must be careful about how and when we acquire resources, including
mutexes and semaphores. If we do something as simple as mistakenly alter the
order of the semaphores from Listing 10.6 to be:

sem_wait(&semmutex);

sem_wait(&semempty);

our program will instantly deadlock. If there are no empty slots, the thread does
not release the semaphore used for mutual exclusion so that the other thread may
run and consume some items.

Ensuring that your code is deadlock-free can sometimes be a difficult task. A
simple rule of thumb can help you avoid most deadlocks and produce code that
spends as much time unblocked as possible:

Always place the mutex (or semaphore being used as a mutex) around the absolute
smallest amount of code possible.

This is not a perfect rule, and surely there is a counter-example to defeat it. No rules
will ever replace understanding the issues of synchronization and using them to
illuminate the potential problems of your own code.
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10.4 Terms and Definitions
The following terms were introduced or defined in this chapter:

Critical Region A region of code that could result in a race condition if interrupted.

Deadlock A program that is waiting for events that will never occur.

Race Condition A region of code that results in different values depending on the
order in which threads are executed and preempted.

Synchronization The protection against race conditions in critical regions.
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In this chapter we will examine the basics of having two or more computers talk
to each other over an electronic or radio-frequency connection. Having computers
connected to a network is almost taken for granted in this day and age, with the
quintessential network being the Internet. There are plenty of other networks, from
telephones (both cellular and land-line) to the local-area networks that share data
and applications in businesses and homes.

We will start with an introduction to networking basics from a programmer’s
perspective. We focus on the makeup and potential issues of network communi-
cation, and how they affect the performance and reliability of transmitting and
receiving data. We then move to the de facto standard for programming network
applications: Berkeley Sockets. Berkeley Sockets is anApplication Programming
Interface (api). An api is an abstraction, furnished by an Operating System or
library that exposes a set of functions and data structures to do some specific tasks.

11.1 Introduction

A network is a connection of two or more computers such that they can share
information. While networking is ubiquitous today, some details are important to
understand before network-aware applications can be adequately written.

Networks, like Operating Systems, can be broken up into several layers to ab-
stract specific details and to allow a network to be made up of heterogeneous
components. There is a formal seven-layer model for networking known as the
OSI model that serves as a set of logical divisions between the different components
into which a network can be subdivided. The Internet uses five of these layers and
results in the diagram shown in Figure 11.1. The bottom-most layer represents the
actual electronic (physical) connection. While wireless networks are common, most
networks will consist of a closed electrical circuit that sends signals and needs to
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Application
(DHCP, DNS, FTP, HTTP, IRC, POP3, TELNET…)

Transport
(TCP, UDP, RTP…)

Internet
(IP)

Data Link
(ATM, Ethernet, FDDI, Frame Relay, PPP…)

Physical Layer
(Ethernet physical layer, ISDN, Modems, SONET…)

Figure 11.1: The Internet Layer Model.

Bits 0–3 4–7 8–15 16–18 19–31

0 Version Header Length Type of Service Total Length

32 Identification Flags Fragment Offset

64 Time to Live Protocol Header Checksum

96 Source Address

128 Destination Address

160 Options

192– Data

Figure 11.2: Layout of an IP packet.

resolve issues of message collision. On top of this layer comes an agreement on how
to send data by way of these electronic signals. The data is organized into discrete
chunks called packets. How these packets are organized needs to be standardized
for communication to be intelligible to the recipient. This standard agreement on
how to do something is known as a protocol. The protocol governing the Internet
is appropriately known as the Internet Protocol (ip).

The Internet Protocol defines a particular packet, as illustrated in Figure 11.2.
The first 192 bits (24 bytes) form a header that indicates details such as the desti-
nation and source of the packet. To identify specific computers in a network, each
computer is assigned a unique IP address, a 32- or 128-bit number. Because of
the way ip addresses are allocated, it often works out that many computers share a
single ip address, but the details of how this works are beyond the scope of this text.
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Ethernet IP Protocol Application Data
Header Header Header Header

Figure 11.3: Each layer adds its own header to store information.

The different sizes of ip addresses come about as a result of two different standards.
ipv4 is the current system using 32-bit addresses. Addresses are represented in
the familiar “dotted decimal” notation such as 127.0.0.1. As networked devices
keep growing, an effort to make sure that every device can have a unique address
spawned the ipv6 standard. With this standard’s 128-bit addresses, there is little
chance of running out anytime in the foreseeable future.

Packets sent via ip make no guarantees about arrival or receipt order. As a
theoretical concept, such a guarantee is impossible to make. Imagine that Alice
sends a message to Bob and wants to know that Bob receives it, so she asks Bob to
send a reply when he gets it. A week passes, and Alice hears nothing from Bob and
begins to wonder. However, she is met with an unanswerable question: Did Bob
not get her message, or did she not get Bob’s reply?

The good news in regard to this conundrum is that modern networks are usually
reliable enough that “dropped” packets are rare. A protocol that does nothing to
guarantee receipt is known as a Datagram protocol. The term Datagram comes
from a play on telegram, which also had no guarantee about receipt.

While mostly reliable communication might be adequate for some uses, the
majority of applications want reliable, order-preserving communication. Email,
for instance, would be useless if the message arrived garbled and with parts miss-
ing. Since we assume a mostly-reliable network, we can do better. A protocol
implemented on top of ip called Transmission Control Protocol (tcp) attempts
to account for the occasional lost or out-of-order packet. It does this through ac-
knowledgment messages and a sequence number attached to each packet to indicate
relative order. To do this, tcp needs to add this sequence number to the packet,
and so it adds its own header following the ip header. Figure 11.3 illustrates the
concatenation of headers done by each layer. (Note that the figure assumes the data
link layer is Ethernet.)

Some applications, like streaming audio or video, or data for video games, can
tolerate the occasional lost or out-of-order packet. Not worrying about receipt or or-
der allows for larger amounts of data to be sent at faster rates. In fact, no connection
is even necessarily made between the sender and the recipient. The most common
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Server Client
socket()

bind() connect()

listen()

accept()

send() and recv()

close()

Figure 11.4: The functions of Berkeley Sockets divided by role.

of these so called connectionless protocols is udp, or theUserDatagramProtocol.
Using udp provides nearly raw access to the ip packet without the overhead, or
guarantees, associated with tcp.

The topmost layer is the Application Layer. This is implemented on top of tcp
or udp and consists of a protocol for programs to talk to each other. The protocol
might be binary, like the Oscar protocol for aol’s Instant Messenger, or it might be
text such as the famous Hypertext Transfer Protocol (http) used by Web browsers
to ask for Web pages from Web servers.

While ip addresses are convenient for computers to store and manipulate, they
are not generally easily remembered by humans. People would rather have a name
or other word to associate with a particular computer. On the Internet, each Web
site has a unique Domain Name that corresponds to a particular ip address of the
Web server. The World Wide Web provides a set of servers to facilitate translating
a name into an ip address, a process known as domain name resolution. A Do-
main Name Server (dns) provides a way to look up a particular ip address based
upon the parts of a domain name.

11.2 Berkeley Sockets

Unix-like Operating Systems try to interact with devices, files, and networks in a
uniform fashion by treating them all as part of the filesystem. By doing this, the
programmer’s interaction with the i/o device is uniform: The device can be opened,
read or written, and closed. Berkeley Sockets serve to implement this abstraction
for network communication.

The functions of the Berkeley Sockets api are listed in Figure 11.4. A socket is
an i/o device representing a connection to a computer via a network. The socket()
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call creates a file descriptor representing the connection to be used by the other
functions. Berkeley Sockets distinguish between a listening server and a connecting
client. Listing 11.1 gives the code for a server that simply replies with “Hello there!”
to any program that connects to that particular machine and port pair. A port is an
application-reserved connection point on a particular ip address.

Due to the fact that a network communication failure is much more likely than
failures with many other i/o operations, even a simple program ends up with many
lines of code. If something goes wrong, every function will return a negative number
and set errno, the global error code, to the appropriate value. Using perror()

converts errno into a (sometimes) useful error message and prints it to the screen.
For the send() and recv() functions, the returned value indicates how many bytes
were actually sent. If the data is too large, multiple calls may be needed to handle it.

We can connect to the server in Listing 11.1 by using telnet, which emulates a
terminal and connects to a specified address and port. If the server is running on
the local machine, the following output would be seen:

(1) thot $ telnet localhost 1100

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Hello there!

Connection closed by foreign host.

Berkeley Sockets also support connectionless protocols like udp. The sendto()
and recvfrom() calls take extra parameters that specify the address of the recipient
or the sender. There is no need to do anything other than set up a socket to use
them.

11.3 Sockets and Threads
The theme of Chapter 9 was that threads are useful when a program wants to do
tasks in parallel. However, if all of those threads are cpu-bound, we may not see
any performance advantage on a single-processor machine. Fortunately, we quickly
realized that many modern programs are i/o-bound, and while the i/o operations
are blocked, another thread could be scheduled to run.

While the i/o operations on a local machine may seem slow to the cpu, they are
nothing compared to the delay incurred by doing network communication. Thus,
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#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <stdio.h>

#include <stdlib.h>

#define MYPORT 1100

int main() {

int sfd, connfd, amt = 0;

struct sockaddr_in addr;

char buf[1024];

if((sfd=socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("Socket␣failed");
exit(EXIT_FAILURE);

}

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;

addr.sin_port = htons(MYPORT);

addr.sin_addr.s_addr = INADDR_ANY;

if(bind(sfd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {

perror("Bind␣failed");
exit(EXIT_FAILURE);

}

if(listen(sfd, 10) < 0) {

perror("Listen␣failed");
exit(EXIT_FAILURE);

}

if((connfd=accept(sfd, NULL, NULL)) < 0) {

perror("Accept␣failed");
exit(EXIT_FAILURE);

}

strcpy(buf, "Hello␣there!\n");
while(amt < strlen(buf)) {

int ret = send(connfd, buf+amt, strlen(buf)-amt, 0);

if(ret < 0) {

perror("Send␣failed");
exit(EXIT_FAILURE);

}

amt += ret;

}

close(connfd);

close(sfd);

return 0;

}

Listing 11.1: A server using sockets to send “Hello there!”.
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we frequently see programs that access remote machines written in a multithreaded
fashion. One such application is the multithreaded Web server.

A Web server does not necessarily meet the traditional idea of a multithreaded
application, since each page request is likely to be independent and there is no real
advantage to sharing a single address space. However, the real benefit comes from
the idea of a main thread that accepts connections and then spawns a worker thread
to take care of the i/o operations. The thread creation cost should be much cheaper
than the overhead needed to create a full process, and thus the server can utilize cpu
time more effectively. Other performance enhancements can also be incorporated.
With a single address space, the server is free to make a shared cache in memory of
frequently accessed files, reducing the need for disk i/o.

The more obvious marriage of threads and sockets comes from the frequent
need to do asynchronous, bidirectional communication. Consider writing a simple
instant messaging program that can talk to another program across a network.
Which of the two instances of the program is the server and which is the client?
Both programs want to send data at the request of the user. If the program was
written in a single threaded fashion, it would need to have a sequence of send()s
and recv()s, but their order dictates who can talk and who must listen.

The solution to this problem comes by having two separate threads, one devoted
to sending and the other to receiving messages. This way, the receiving thread can
remain safely blocked and the user can send any number of messages without delay.

11.4 Terms and Definitions
The following terms were introduced or defined in this chapter:

Application Programming Interface/API An abstraction, furnished by an Oper-
ating System or library, which exposes a set of functions and data structures
to do some specific tasks.

Internet Protocol (IP) Address A number that represents a particular computer
on the Internet.

Network A group of computers wired to talk to each other.

Packet The unit of data transmission on a network.

Port An application-reserved connection point on a particular IP address.



11.4 Terms and Definitions 105

Protocol An agreement on how data should be sent.

Socket An abstraction representing a connection to another computer over a net-
work.
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ture

The Intel x86 32-bit architecture is an example of a Complex Instruction Set
Computer (cisc). While more recently designed cpus have a simplified set of min-
imal operations, a cisc computer has many different instructions, special purpose
registers, and complex addressing modes.

Figure A.1 gives a list of the general purpose registers. The first six can be used
for most any purpose, although some instructions expect certain values to be in a
particular register. %esp and %ebp are used for managing the stack and activation
records. The program counter is %eip, which is read-only and can only be set via a
jump instruction. The results of comparisons for conditional branches are stored in
the register EFLAGS.

The registers %eax, %ebx, %ecx, and %edx each have subregister fields as shown
in Figure A.2. For example, the lower (least-significant) 16 bits of %eax is known as
%ax. %ax is further subdivided into two 8-bit registers, %ah (high) and %al (low).
There is no name for the upper 16-bits of the registers. Note that these subfields
are all part of the %eax register, and not separate registers, so if you load a 32-bit
quantity and then read %ax, you will read the lower 16-bits of the value in %eax.
The same applies to the other three registers.

Operations in x86 usually have two operands, which are often a source and a
destination. For arithmetic operations like add, these serve as the addends, and the
addend in the destination position stores the sum. In mathematical terms, for two
registers a and b, the result of the operation is a = a + b, overwriting one of the
original values.
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%eax Accumulator
%ebx Base
%ecx Counter
%edx Data

%esi String Source
%edi String Destination

%esp Stack Pointer
%ebp Base or Frame Pointer

%eip Instruction Pointer
EFLAGS Flag register

Figure A.1: The 32-bit registers.

%eax︷ ︸︸ ︷
%ah %al

︸ ︷︷ ︸
%ax

Figure A.2: %eax, %ebx, %ecx, and %edx have subregister fields.
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sub Subtract
add Add
and Bitwise AND

push Push a value onto the stack
pop Pop a value off of the stack

mov move a value
call call a function

leave clean up a stack frame
ret return from a function

lea compute an address (pointer)

Figure A.3: The instructions used in this book.

A.1 AT&T Syntax
at&t syntax is used by default in gcc and gdb. In at&t assembler syntax, every
operation code (opcode) is appended with the type of its operands:

b byte (8-bit)
w word (16-bit)
l long (32-bit)
q quad (64-bit)

After the opcode, the first operand is the source and the second operand is the
destination. Memory dereferences are denoted by ( ). Listing A.1 gives an example
of a “hello world” program as produced by gcc.

A.2 Intel Syntax
Intel assembler syntax is the default syntax of the Intel documentation, Microsoft’s
compilers and assemblers (masm), and nasm – the Netwide Assembler. Instead of
appending the operand size to the opcode, Intel syntax uses C-like casts to describe
the size of operands. The type sizes are spelled out:
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.file "asm.c"

.section .rodata.str1.1,"aMS",@progbits,1

.LC0:

.string "hello␣world!"

.text

.globl main

.type main, @function

main:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp ;1111 1111 1111 0000

subl $16, %esp

movl $.LC0, (%esp)

call puts

movl $0, %eax

leave

ret

Listing A.1: Hello world in AT&T assembler syntax.

main:

push ebp

mov ebp, esp

sub esp, 8

and esp, -16 ;1111 1111 1111 0000

sub esp, 16

mov DWORD PTR [esp], .LC0

call puts

mov eax, 0

leave

ret

Listing A.2: Hello world in Intel assembler syntax.
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BYTE 1 byte
WORD 2 bytes
DWORD 4 bytes (double word)
QWORD 8 bytes (quad word)

Intel syntax orders the operands completely in reverse from the at&t con-
vention. The first operand is the destination, the second operand is the source.
Dereferences are denoted by [ ]. Listing A.2 gives a sample of the same “hello
world” program as in Listing A.1 rewritten in Intel syntax.

A.3 Memory Addressing

One of the biggest surprises in the x86 instruction set for risc assembly program-
mers is the memory addressing model. Architectures such as mips require that all
Arithmetic/Logical Unit (alu) operations have only registers as operands. Moving
to and from memory requires explicit load and store instructions. However, most
x86 instructions may take one operand as a memory location, as long as the other
(if necessary) is a register. You may not have both a source and a destination that
are in memory.

Memory addresses can be constructed from four parts: a signed offset (constant),
a base (register), an index (register), and a scale (constant: 1, 2, 4, or 8). The resulting
address is determined as: base + index × scale + offset. As an example, we can
choose %ebx as the base, %eax as the index, 4 as the scale, and 16 as the offset. In
at&t syntax this would be expressed as: 16(%ebx,%eax,4). In Intel syntax, it
would be written as: [ebx+eax*4+16]. If the offset is zero or the scale is one it can
be omitted, as can either of the registers if they are unnecessary.

A.4 Flags

Suppose we have a conditional statement in C such as if(x == 0) { ... } which
we could translate into x86 using the compare and jump-if-equals instructions as:

cmpl $0, %eax

je .next

; ...

.next:
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One thing that is not immediately apparent in the code is how the branch “knows”
the result of the previous compare instruction. The answer is that the compare
instruction has a side-effect: It sets the %eflags register based on the result of the
comparison.

The %eflags register is a collection of single-bit boolean variables that represent
various pieces of state beyond the normal result. Many instructionsmodify %eflags
as a part of their operation. Some arithemetic instructions like addition set flags if
they overflow the bounds of the destination. The conditonal jumps consume the
state of various flags as the condition on which to branch. In the above example,
the jump-equals instruction actually checks the value of the special zero flag (ZF)
that is part of %eflags. In fact, the je instruction is actually a psuedonym for the
jz instruction: jump if the zero flag is set.

The side-effect of an operation setting flags can lead to confusing code. Consider
the listing:

test %eax, %eax

je .next

; ...

.next:

This is functionally equivalent to the version that used cmpl above. The test

instruction computes the bitwise-AND of the two arguments, in this case both are
the register %eax. Since anything AND itself is going to be itself, this seems to be a
no-op. But test takes the result of that AND and sets the ZF based on it. To learn
about these side-effects, it is always handy to have the instruction set manual nearby.

A good compiler will probably generate the listing that uses test rather than
cmp since the immediate 0 takes up 4 bytes of representation that are not needed
in the encoding of test. The smaller code is generally preferred for performance
(caching) reasons.

A.5 Privilege Levels
To keep user programs and the kernel separate, x86 processors have four different
privilege rings that processes may run in (Figure A.4). The kernel itself runs as the
most privileged process in ring 0. Ring 1 is usually reserved for drivers, which can
be thought of as kernel processes. Ring 2 is used for either drivers or user libraries.
The final ring is for unprivileged user programs. The general protection rule is that
a process running in a particular ring may access the data of the rings above but not
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Figure A.4: Privilege rings on an x86 processor.

below it. This allows the os to modify anything and to be protected from malicious
or buggy user programs.
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Often you will want to be able to examine a program while it executes, usually to
find a bug or learn more about what a program is doing. A debugger is a program
that gives its user control over the execution and data of another program while
running.

With the very first programs a new programmer writes come the first problems,
known as “bugs.” These are logical errors that the compiler cannot check. To
track down these bugs, a concept known as debugging, beginners often use print
statements. While such statements certainly work, this approach is often tedious
and time-consuming due to frequent recompiling and re-execution. Adding print
statements can alsomask bugs. Since these are additional function calls, they provide
legitimate stack frames where before an array out of bounds problem might have
been a segmentation violation. With multithreaded programs, print statements can
change timings and context switch points resulting in a different execution order
that may hide a concurrency issue or race condition.

Print statements generally come in two kinds: The “I’m here” variety, which
indicates a particular path of execution, and the “x is 5” variety that examine the
contents of variables. The first type is an attempt at understanding the decisions
that a program makes in its execution, i.e., what branches were taken. The path of
a program through its flowchart representation is known as its control flow. The
second type explores data values at certain points of execution.

We can do both of these things with a debugger, without the need to modify the
source code. We may, however, choose to modify the executable at compile-time
to provide the debugger with extra information about the program’s structure and
correspondence to the source. Remember that a compiled executable has only
memory locations and machine instructions. Gone are symbols like x or count for
variables; all that remains are registers and memory addresses. For a debugger to
be more helpful, we can choose to add extra information to the executable while
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compiling that equates those particular addresses back to the human-readable
names they originally had. For gcc, the -g flag indicates that the compiler should
augment the symbol table and executable code with debugging information.

Debuggers come in all shapes and sizes. Some might be part of an Integrated
Development Environment (ide); others might be stand-alone. They can be graphi-
cal or text-based. For this chapter, we will use the stand-alone, textual debugger gdb.
All of the concepts and commands we establish will be portable to other debuggers,
usually without many, if any, differences. We will begin our discussion of the role
of the debugger by discussing how to examine (and stop) the flow of control in a
program.

B.1 Examining Control Flow
The simplest way to control the execution of a program is to make it pause. We
can ask a program to stop by having the debugger insert a breakpoint at a specific
location. Locations can be specified in many ways, such as:

Function Name Execution will stop before the specified function is executed.

Line Number Execution will stop before the specified line of code is executed.

Absolute Address Execution will stop before the instruction at that address is exe-
cuted.

The first two specifications require the executable to have additional informa-
tion that may not necessarily be there. The line number information requires the
executable to have been built with debugging information. The function names are
usually part of the symbol table even without a special compilation but the symbol
table may be “stripped” out after compilation. Specifying an absolute address always
works, but gives no high-level language support.

Running gdb is as simple as specifying an executable to debug on the command
line. If your program requires command line arguments, they can be specified by
using the --args command line option, or by issuing the set args command once
gdb has started up.

Once in gdb, the command to place a breakpoint is break, which can be abbre-
viated just by typing b. For example, a breakpoint could be placed at the main()
function by typing b main. When the program is run via run or r, the program
will immediately stop at the main() function. If there is debugging information, a
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breakpoint can be set at a particular file and line number, separated by a colon: b
main.c:10 sets a breakpoint at line 10 in the main.c file.

It is also possible to put a breakpoint at an arbitrary instruction by specifying its
address in memory. The syntax is b *0x8048365, where the hexadecimal number
needs to be the start of an instruction. It is up to you to ensure that this address
is valid. If it is not aligned to the start of an instruction, the program might crash.
Section 8.2.2 gives some insight on how breakpoints are implemented and why
placing a breakpoint in the middle of a multibyte instruction would be catastrophic
to the program.

Once the program is stopped, you will probably want to examine some data, the
topic of the next section. One useful thing to check, however, is what the call stack
contains, i.e., what function calls led to the current place. This is called a backtrace
and can be seen via the backtrace (abbreviated back or bt) command.

When you are finished with your examination, you have either found your bug
and want to stop debugging, or you will need to continue on. Typing run or r
allows you to restart the program from the beginning. The quit command exits
gdb. If you want to continue, you can simply issue the command or the shortcut c.
Continuing runs the program until it hits another breakpoint or the program ends,
whichever comes first.

You may also want to step through the execution of the program, as if there were
a breakpoint at each line. If the program was built with debugging information, you
can use the commands next and step. These two commands are identical except
for how they behave when they encounter a function call. The step command will
go to the next source line inside the called function. The next command will skip
over the function call and stop at the source code line immediately following the
call. In other words, it will not leave the current function. Both step and next can
be abbreviated with their first letter.

If the source code is not available and the program was not built with debugging
information, step and next cannot be used. However, there are parallel commands
for operating directly on the machine instructions. The stepi command goes to
the next machine instruction, even if that is inside a separate function, whereas
nexti skips to the next instruction following a call without leaving the current
function. The abbreviation for stepi is si and for nexti is ni.

Each of the above control flow instructions (i.e., continue, next, step, nexti,
and stepi) take an optional numerical argument. This number indicates a re-
peat count. The particular operation is performed that many times before control is
returned to the debugger.
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The technique of last resort is to interrupt the program with a SIGINT signal
(see Section 8.2) by pressing ctrl+c. The signal will be handled by gdb and it will
return control back to the user. One word of caution, however: it may be somewhat
surprising where execution has stopped (it could be deep in a bunch of library calls),
so it may be helpful to use back to get a backtrace and possibly some locations for
regular breakpoints.

B.2 Examining Data
With execution stopped and control transferred back to the debugger, most likely
you will want to examine data values in memory. In gdb there are are two primary
commands for examining data, print and x. The print command will display the
value of an expression, which can be written using C-style syntax:

(gdb) print 1+2

$1 = 3

If the program was built with debugging symbols, you can write your expressions
in terms of actual program variables to see what they contain. If your program is
without such symbols, you can always look at register values. For example, on an
x86 platform, you could display the contents of the register %eax by prefixing it
with a dollar sign ($) like so:

(gdb) print $eax

$1 = 10

With the ability to use casts and dereferences, the print command is likely all
that you need. However, the relative frequency with which you will want to look
at the contents of some memory locations is high enough that there is a dedicated
examine command, x. With the x command, the specified argument must be an
address. By default, the contents are dumped as a hexadecimal number in the
machine’s native word size. It is possible to also specify a format, which acts as a
typecast for the data. The type is specified by a single letter code following a forward
slash. For instance:

(gdb) x 0x8048498

0x8048498 <_IO_stdin_used+4>: 0x6c6c6548

(gdb) x/d 0x8048498

0x8048498 <_IO_stdin_used+4>: 1819043144



B.3 Examining Code 117

(gdb) x/x 0x8048498

0x8048498 <_IO_stdin_used+4>: 0x6c6c6548

(gdb) x/s 0x8048498

0x8048498 <_IO_stdin_used+4>: "Hello, world!"

Note that all four x commands operate upon the same address, but each has a
different data interpretation. With /d, the number is printed out in decimal, rather
than the hexadecimal (also obtainable via /x). Specifying /s will treat the address
as the start of a C-style string and will attempt to print data until it encounters a
null character.

The above example also illustrates a few of the output features of gdb. The
first column is the address that is being examined, but in between the < and >,
gdb attempts to map this address back to the nearest entry in the symbol table.
In some cases, this can be quite useful, since with debugging symbols, individual
variable names will be identified even when you know only an address (say from
the contents of a pointer). Without full debugging symbols, or with a stripped
executable, the output might not be correct, so common sense must always be used
when interpreting the output.

B.3 Examining Code
Whenever a breakpoint is encountered and control is returned to gdb, the current
source line will be displayed if it is available. When the program contains debugging
information and the source files are available, the debugger can operate in terms of
the source code. You can see the source code around the current instruction pointer
by using the list command. You can also specify a file and line number, as with
breakpoints, or a function name.

When the source is unavailable, you can only see the machine instructions
by using the command disassemble. Like list, disassemble will, by default,
attempt to disassemble the instructions around %eip. You can additionally specify
a region of memory addresses to dump. Care must be taken to ensure that the first
address is actually the valid start of an instruction; otherwise, on a variable-length
instruction set architecture, the disassembler could get confused.

One final trick is especially useful when ctrl+c is used to stop the program.
Using the examine command with the /i format, you can disassemble an individual
instruction at a certain location. To disassemble the instruction at the current
instruction pointer location, do:
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x/i $eip

B.4 gdb Command Quick Reference

Command Abbrv. Description
help Get help on a command or topic
set args Set command-line arguments
run r Run (or restart) a program
quit q Exit gdb
break b Place a breakpoint at a given location
continue c Continue running the program after hitting a break-

point
backtrace bt Show the function call stack
next n Go to the next line of source code without entering

a function call
step s Go to the next line of source code, possibly entering

a new function
nexti ni Go to the next instruction without entering a func-

tion call
stepi si Go to the next instruction, possibly entering a new

function
print Display the value of an expression written in C no-

tation
x Examine the contents of a memory location
list List the source code of the program
disassemble disas List the machine code of the program
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B.5 Terms and Definitions
The following terms were introduced or defined in this chapter:

Backtrace A list of function calls that led to the current call; a stack dump.

Breakpoint A location in code where execution should stop or pause, usually used
to transfer control to a debugger.

Control Flow The path or paths possible through a region of code as a result of
decision (control) structures.

Debugger A program that controls and examines the execution and data of another
program.
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